Daniel R. Sheldon
2024
Using spatio-temporal information in weather radar data to detect and track communal bird roosts
by Gustavo Perez, Wenlong Zhao, Zezhou Cheng, Maria Carolina T. D. Belotti, Yuting Deng, Victoria F. Simons, Elske Tielens, Jeffrey F. Kelly, Kyle G. Horton, Subhransu Maji, and Daniel Sheldon, Remonte Sensing in Ecology and Conservation, 2024.
Challenges of COVID-19 case forecasting in the US, 2020–2021.
by Velma K. Lopez, Estee Y. Cramer, Robert Pagano, John M. Drake, Eamon B. O’Dea, Madeline Adee, Turgay Ayer, Jagpreet Chhatwal, Ozden O. Dalgic, Mary A. Ladd, Benjamin P. Linas, Peter P. Mueller, Jade Xiao, ..., Daniel Sheldon, ..., and Michael A. Johansson,
PLOS Computational Biology, 2024.
2023
Artificial light at night is a top predictor of bird migration stopover density
by Kyle G Horton, Jeffrey J Buler, Sharolyn J Anderson, Carolyn S Burt, Amy C Collins, Adriaan M Dokter, Fengyi Guo, Daniel Sheldon, Monika Anna Tomaszewska, and Geoffrey M Henebry, Nature Communications, 2023.
Quantifying long-term phenological patterns of aerial insectivores roosting in the great lakes region using weather surveillance radar
by Yuting Deng, Maria Carolina T. D. Belotti, Wenlong Zhao, Zezhou Cheng, Gustavo Perez, Elske Tielens, Victoria F. Simons, Daniel Sheldon, Subhransu Maji, Jeffrey F. Kelly, and Kyle G. Horton, Global Change Biology, 2023.
Long-term analysis of persistence and size of swallow and martin roosts in the US Great Lakes
by Maria Carolina T. D. Belotti, Yuting Deng, Wenlong Zhao, Victoria F. Simons, Zezhou Cheng, Gustavo Perez, Elske Tielens, Subhransu Maji, Daniel Sheldon, Jeffrey F. Kelly, and Kyle G. Horton, Remote Sensing in Ecology and Conservation, 2023.
Predictive performance of multi-model ensemble forecasts of covid-19 across european nations
by K. Sherratt, H. Gruson, R. Grah, G.C. Gibson, E.L. Ray, N.G. Reich, D. Sheldon, Y. Wang, N. Wattanachit, ..., J. Bracher, and S. Funk. Predictive performance of multi-model ensemble forecasts of covid-19 across european nations, eLife, 2023.
2022
Population-level inference for home-range areas
by C. H. Fleming, I. Deznabi, S. Alavi, M. C. Crofoot, B. T. Hirsch, E. P. Medici, M. J. Noonan, R. Kays, W. F. Fagan, D. Sheldon, J. M. Calabrese. Methods in Ecology and Evolution, 2021.
[preprint]
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US
by Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, ..., Daniel Sheldon, Graham Casey Gibson, ..., Jo W. Walker, Rachel B. Slayton, Michael Johansson, Matthew Biggerstaff, and Nicholas G. Reich. In Proceedings of the National Academy of Sciences, 119(15), 2022.
Our model, UMass-MechBayes, was the most accurate individual (non-ensemble) model according to several overall performance metrics.
The United States COVID-19 Forecast Hub dataset
by Estee Y. Cramer, Yuxin Huang, Yijin Wang, Evan L. Ray, Matthew Cornell, ... , Nicholas G. Reich and the US COVID-19 Forecast Hub Consortium, including Daniel Sheldon. Scientific Data, 9(1):462, 2022.
2021
Drivers of fatal bird collisions in an urban center
by Benjamin M. Van Doren, David E. Willard, Mary Hennen, Kyle G. Horton, Erica F. Stuber, Daniel Sheldon, Ashwin H. Sivakumar, Julia Wang, Andrew Farnsworth, and Benjamin M. Winger. In Proceedings of the National Academy of Sciences, 118(24), 2021.
2020
Ensemble forecasts of coronavirus disease 2019 (COVID-19) in the U.S.
by Evan L Ray, Nutcha Wattanachit, Jarad Niemi, Abdul Hannan Kanji, Katie House, Estee Y Cramer, Johannes Bracher, Andrew Zheng, Teresa K Yamana, Xinyue Xiong, Spencer Woody, Yuanjia Wang, Lily Wang, Robert L Walraven, Vishal Tomar, Katherine Sherratt, Daniel Sheldon, Robert C Reiner, B. Aditya Prakash, Dave Osthus, Michael Lingzhi Li, Elizabeth C Lee, Ugur Koyluoglu, Pinar Keskinocak, Youyang Gu, Quanquan Gu, Glover E George, Guido España, Sabrina Corsetti, Jagpreet Chhatwal, Sean Cavany, Hannah Biegel, Michal Ben-Nun, Jo Walker, Rachel Slayton, Velma Lopez, Matthew Biggerstaff, Michael A Johansson, and Nicholas G Reich. medRxiv preprint, 2020.
Phenology of Nocturnal Avian Migration Has Shifted at the Continental Scale
by Horton, Kyle G., Frank A. La Sorte, Daniel Sheldon, Tsung-Yu Lin, Kevin Winner, Garrett Bernstein, Subhransu Maji, Wesley M. Hochachka, and Andrew Farnsworth. Nature Climate Change, 2020.
2019
MistNet: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks
by Tsung‐Yu Lin, Kevin Winner, Garrett Bernstein, Abhay Mittal, Adriaan M. Dokter, Kyle G. Horton, Cecilia Nilsson, Benjamin M. Van Doren, Andrew Farnsworth, Frank A. La Sorte, Subhransu Maji, and Daniel Sheldon.
Methods in Ecology and Evolution, 2019.
[pdf] [press]
Computational sustainability: Computing for a better world and a sustainable future
by Carla Gomes, Thomas Dietterich, Christopher Barrett, Jon Conrad, Bistra Dilkina, Stefano Ermon, Fei Fang, Andrew Farnsworth, Alan Fern, Xiaoli Fern, Daniel Fink, Douglas Fisher, Alexander Flecker, Daniel Freund, Angela Fuller, John Gregoire, John Hopcroft, Steve Kelling, Zico Kolter, Warren Powell, Nicole Sintov, John Selker, Bart Selman, Daniel Sheldon, David Shmoys, Milind Tambe, Weng-Keen Wong, Christopher Wood, Xiaojian Wu, Yexiang Xue, Amulya Yadav, Abdul-Aziz Yakubu, and Mary Lou Zeeman. Communications of the ACM, 2019.
2018
Correcting for missing and irregular data in home‐range estimation
by C. H. Fleming, D. Sheldon, W. F. Fagan, P. Leimgruber, T. Mueller, D. Nandintsetseg, M. J. Noonan, K. A. Olson, E. Setyawan, A. Sianipar, J. M. Calabrese.
Ecological Applications, 28(4):1003–1010, 2018.
2017
2016
Innovative visualizations shed light on avian nocturnal migration
by Judy Shamoun-Baranes, Andrew Farnsworth, Bart Aelterman, Jose A. Alves, Kevin Azijn, Garrett Bernstein, Sergio Branco, Peter Desmet, Adriaan M. Dokter, Kyle Horton, Steve Kelling, Jeffrey F. Kelly, Hidde Leijnse, Jingjing Rong, Daniel Sheldon, Wouter Van den Broeck, Jan Klaas Van Den Meersche, Benjamin Mark Van Doren, and Hans van Gasteren, PLoS ONE, 11(8):1-15, 2016
2015
Inference in a partially observed queueing model with applications
in ecology by Kevin Winner and Daniel Sheldon. AAAI
2015 Workshop on Computational Sustainability, 2015
2014
Reconstructing Velocities of Migrating Birds from Weather Radar—A Case Study in Computational Sustainability by Andrew Farnsworth, Daniel Sheldon, Jeffrey Geevarghese, Jed Irvine, Benjamin Van Doren, Kevin Webb, Thomas G. Dietterich, and Steve Kelling, AI Magazine, Vol. 35 No. 2, pp.31–48, 2014.
2013
Dynamic Resource Allocation for Optimizing Population Diffusion by Shan Xue, Alan Fern, and Daniel Sheldon. NeurIPS Workshop on Machine Learning for Sustainability (MLSUST), 2013.
Integrating Information from Geolocators, Weather Radar and Citizen Science to Uncover a Key Stopover Area for an Aerial Insectivore
by Andrew J. Laughlin, Caz M. Taylor, David W. bradley, Dayna Leclair, Robert G. Clark, Russell D. Dawson , Peter O. Dunn, Andrew Horn, Marty Leonard, Daniel R. Sheldon, Dave Shutler, Linda A. Whittingham, David W. Winkler, and D. Ryan Norris.
The Auk, 130(2):230–239, 2013.
2012
Elevated Summer Temperatures Delay Spawning and Reduce Redd Construction for Resident Brook Trout (Salvelinus fontinalis)
by Dana R. Warren, Jason M. Robinson, Daniel C. Josephson, Daniel R. Sheldon and Clifford E. Kraft.
Global Change Biology,
In press, 2012.
2011
2010
Maximizing the Spread of Cascades Using Network Design by
Daniel Sheldon, Bistra Dilkina, Adam Elmachtoub, Ryan Finseth, Ashish Sabharwal, Jon Conrad, Carla Gomes, David Shmoys, Will Allen, Ole Amundsen and Buck Vaughan,
Conference on Uncertainty in Artificial Intelligence (UAI), 2010.
Spatiotemoral Exploratory Models for Broad-scale Survey Data by
Daniel Fink, Wesley M. Hochachka, Benjamin Zuckerberg, David W. Winkler, Ben Shaby, M. Arthur Munson, Giles Hooker, Mirek Riedewald, Daniel Sheldon and Steve Kelling,
Ecological Applications, 2010.
2009
The eBird Reference Dataset by
M. Arthur Munson, Kevin Webb, Daniel Sheldon, Daniel Fink, Wesley M. Hochachka, Marshall Iliff, Mirek Riedewald, Daria Sorokina, Brian Sullivan, Christopher Wood, and Steve Kelling.
Cornell Lab of Ornithology and National Audubon Society, Ithaca, NY, June 2009.
2008
Network Reputation Games by
John Hopcroft and Daniel Sheldon.
Cornell University Technical Report http://hdl.handle.net/1813/11579, 2008.
2007 and earlier
Green's Functions on Fractals
by Jun Kigami, Daniel Sheldon and Robert Strichartz.
Fractals, 2000.
Abstracts
Inferring moth emergence from abundance data: A novel mathematical approach using birth-death contingency tables
by Daniel Sheldon, Evan Goldman, Erin Childs, Olivia Poblacion, Jefftey C. Miller, Julia A. Jones and Thomas G. Dietterich.
Ecological Society of America Annual Meeting: Session on Ecological Applications of Machine Learning, 2011.