
Approximate Inference Using DC Programming For Collective
Graphical Models

Duc Thien Nguyen† Akshat Kumar† Hoong Chuin Lau† Daniel Sheldon‡
†Singapore Management University, ‡University of Massachusetts Amherst

†{dtnguyen.2014, akshatkumar, hclau}@smu.edu.sg, ‡ sheldon@cs.umass.edu

Abstract

Collective graphical models (CGMs) provide
a framework for reasoning about a population
of independent and identically distributed in-
dividuals when only noisy and aggregate ob-
servations are given. Previous approaches for
inference in CGMs work on a junction-tree
representation, thereby highly limiting their
scalability. To remedy this, we show how the
Bethe entropy approximation naturally arises
for the inference problem in CGMs. We refor-
mulate the resulting optimization problem as
a difference-of-convex functions program that
can capture different types of CGM noise
models. Using the concave-convex proce-
dure, we then develop a scalable message-
passing algorithm. Empirically, we show
our approach is highly scalable and accu-
rate for large graphs, more than an order-
of-magnitude faster than a generic optimiza-
tion solver, and is guaranteed to converge un-
like the previous message-passing approach
NLBP that fails in several loopy graphs.

1 Introduction

Collective graphical models (CGMs) are a recently in-
troduced formalism for inference and learning about a
population of independent and identically distributed
individuals when only noisy and aggregate observa-
tions are given (Sheldon and Dietterich, 2011). In
many settings, such as in ecology, social sciences and
transportation, data about each individual is rarely
available due to privacy concerns or the difficulty of
tracking each individual over time. As an example,

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

the eBird database1 contains observations about the
count of birds at different locations and time across
the North American region (Sheldon et al., 2007). The
data released by Census Bureau may contain count-
based aggregate information for privacy reasons. Sim-
ilarly, the traffic data typically contains noisy aggre-
gate count of vehicles at different locations (Morimura
et al., 2013; Kumar et al., 2013). In such scenarios,
CGMs can be used to model the individual-level be-
havior by doing inference and learning based on the
available noisy and aggregate data.

A number of approaches have been proposed for infer-
ence in CGMs (Sheldon and Dietterich, 2011; Sheldon
et al., 2013; Liu et al., 2014; Sun et al., 2015). Shel-
don et al. develop a continuous convex relaxation
of the MAP inference problem formulated over the
junction tree derived from the individual model, and
solve it using a generic optimization solver. Liu et al.
develop a Gaussian approximation for CGMs and
use Expectation-Propagation for inference. Sun et al.
generalize the well known belief propagation algo-
rithm (Pearl, 1988) to nonlinear belief propagation
(NLBP) for CGMs. All such previous approaches re-
quire a junction tree representation for their correct-
ness and convergence analysis. However, for large
graphs, the tree-width can be high, which makes pre-
vious approaches computationally intractable.

In our work, we address this key shortcoming of pre-
vious approaches. We address the MAP inference for
CGMs, which is also used as a sub-step for param-
eters learning (Sheldon et al., 2013) within the EM
framework (Dempster et al., 1977). We show how the
Bethe entropy approximation naturally arises for the
MAP inference in CGMs similar to standard graph-
ical models (Yedidia et al., 2005). A key difference
for CGMs from standard graphical models is the pres-
ence of noise terms (i.e., the observed counts can be
corrupted by some noise). The resulting optimiza-
tion problem for CGM MAP inference is non-convex.

1http://ebird.org/

685

Approximate Inference Using DC Programming For Collective Graphical Models

We show how this problem can be reformulated as a
difference-of-convex functions (DC) program. As the
DC representation of a given problem is not unique, we
use additional variables and constraints such that the
resulting DC program can address different types of
noise models commonly used in the CGM framework
(such as the Gaussian or Poisson noise). We use the
concave-convex procedure (CCCP) (Yuille and Ran-
garajan, 2001; Yuille, 2002) to solve the resulting DC
program using message-passing. The CCCP message-
passing is over the individual model and does not re-
quire a junction tree. Thereby, it is highly scalable,
and also guaranteed to converge.

Empirically, we test our approach on several (cyclic)
graphs including a more realistic bird migration
model (Sun et al., 2015) that takes into account the
fact that destinations of different migratory birds can
be different, and random and Ising grid graphs. We
compare CCCP against a generic optimization solver
to solve the DC program and the message passing ap-
proach NLBP (Sun et al., 2015). Even though NLBP
is not guaranteed to converge on cyclic graphs, it is still
well defined (like the standard BP), and converges for
smaller cyclic graphs. Our results show that CCCP
is more than an order-of-magnitude faster than the
generic solver, and provides significantly more accu-
rate results than NLBP. While NLBP fails to converge
in several instances, CCCP is guaranteed to converge
exhibiting better theoretical properties.

2 Collective Graphical Models

Collective graphical models (CGMs) describe the dis-
tribution of the aggregate statistics of a population of
individuals sampled from a discrete graphical model
(also known as the individual model). Let G= (V,E)
denote a pairwise Markov random field describing the
individual model. Let X = (X1, . . . , X|V |) denote the
random variables associated with each node in G. The
joint-probability is:

p(x;θ)=Pr(X=x;θ)=
1

Z(θ)

∏

(i,j)∈E
φij(xi, xj ;θ) (1)

where φij(·, ·;θ) is the potential function for the edge
(i, j) in G defined as per the parameters θ; Z(θ) de-
notes the partition function. Let the domain of each
variable be denoted using X .

Consider i.i.d. samples {x1, . . . ,xM} drawn from the
model G representing a population of M individuals.
We can define the counts or contingency tables for this
population as follows. Let ni= (ni(xi) :xi∈X) repre-
sent the node counts, and nij=

(
nij(xi, xj) :xi, xj ∈X

)

represent the edge counts for different edges. The
counts ni(xi) and nij(xi, xj) are defined as:

ni(xi)=

M∑

m=1

I
(
Xm
i =xi

)
(2)

nij(xi, xj)=

M∑

m=1

I
(
Xm
i =xi, X

m
j =xj

)
(3)

where I(·) denotes the indicator function. In CGMs,
noisy observations yi(xi), yij(xi, xj) about some sub-
set of counts n can be provided. The probability
p
(
y(·)|n(·)

)
is referred to as the noise model for the

CGMs. The typical noise model used for CGMs in-
clude the Poisson and the Gaussian noise. We assume
that p(y|n) is log-concave in n, which makes the neg-
ative log-likelihood convex in n.

CGM Distribution We first describe the structure
of the CGM distribution p(n;θ). The CGM distribu-
tion is defined over the junction tree T corresponding
to the graph G. Each node t of this tree is associ-
ated with a clique Ct ⊆ V . Let C denote the set of
all the cliques for the tree T . If C and C ′ denote two
adjacent cliques in T , then S=C ∩ C ′ denotes a sep-
arator. Let S denote the set of all the separators for
this junction tree. For any subset C ⊆ V , and a par-
ticular assignment xC ∈X |C|, we can define the counts
nC(xC) analogous to the node and edge counts as:

nC(xC) =

M∑

m=1

I
(
Xm
C =xC

)
(4)

Using counts nC(xC), we can define the contingency
table nC similar to tables ni, nij for nodes and edges
of G. Let n = {nA : A ∈ C ∪ S} denote the com-
bined vector of clique and separator counts. The vec-
tor n is sufficient statistic of the population (Liu et al.,
2014). The distribution over this vector is denoted as
the CGM distribution.

As shown in (Liu et al., 2014), the CGM distribution
is given as p(n;θ)=f(n;θ)g(n) where we have:

f(n;θ)=
1

Z(θ)M

∏

(i,j)∈E

∏

xi,xj

φij(xi, xj ;θ)nij(xi,xj) (5)

g(n)=M !

∏
S∈S

∏
xS∈X |S|

(
nS(xS)!

)ν(S)
∏
C∈C

∏
xC∈X |C| nC(xC)!

(6)

where ν(S) denotes the number of times S appears
as a separator or the number of junction tree edges
(t, t′) for which S=Ct ∩ Ct′ . The distribution p(n;θ)
is defined over the following set of constraints:

∑

xC∈X |C|
nC(xC) = M ∀C ∈ C (7)

nS(xS) =
∑

xC\S

nC(xS , xC\S) ∀xS ; ∀S ∼ C ∈ T (8)

686

Duc Thien Nguyen†, Akshat Kumar†, Hoong Chuin Lau†, Daniel Sheldon‡

where S∼C∈T implies that S is adjacent to C in the
junction tree T . We also have the constraint that n
must be integer valued. Notice that the above two sets
of constraints are similar to the constraints defining
the marginal polytope for a graphical model (Wain-
wright and Jordan, 2008). The only difference be-
ing that the counts must sum to M instead of 1, and
counts must be integers.

3 Bethe Approximation for CGMs

We now show how the Bethe entropy approxima-
tion (Yedidia et al., 2005) can be used for MAP in-
ference in cyclic CGMs. In the MAP inference, we
are given noisy observations y about some subset of
sufficient statistic n. Our goal in this work is to find
the best count vector n that maximizes p(n|y;θ) ∝
p(n;θ)p(y|n). That is:

n?=arg max
n

[
log p(n;θ) + log p(y|n)

]
(9)

To solve the above optimization problem, we first ana-
lyze the structure of log p(n;θ)=log f(n;θ)+log g(n),
where p(·) is the CGM distribution. Using defini-
tions (5), (6), we have:

log f(n;θ) ∝
∑

(i,j)

∑

xi,xj

nij(xi, xj) log φij(xi, xj) (10)

where we have ignored terms that are independent of
n such as M logZ(θ). We further have:

log g(n)∝
∑

S∈S

∑

xS

ν(S) log
(
nS(xS)!

)
−
∑

C∈C

∑

xC

log
(
nC(xC)!

)

As addressing integer counts n is challenging within
an optimization framework directly, we make an ap-
proximation by making counts n continuous, as also
used previously (Sheldon et al., 2013). For continuous
n, we can further use the Stirling’s approximation as
log n! ≈ n lnn − n. Using these approximations, we
can simplify log g(n) further as:

log g(n) ∝
∑

S∈S

∑

xS

ν(S)
[
nS(xS) lognS(xS)− nS(xS)

]
−

∑

C∈C

∑

xC

[
nC(xC) lognC(xC)− nC(xC)

]

=
∑

S∈S

∑

xS

ν(S)nS(xS) lognS(xS)−
∑

S∈S

∑

xS

ν(S)nS(xS)

−
∑

C∈C

∑

xC

nC(xC) lognC(xC) +
∑

C∈C

∑

xC

nC(xC)

We can simplify the above expression by observing
that as per constraints (7) we have

∑
xC
nC(xC) =

M , and from constraints (8), we have
∑
S nS(xS) =∑

xC
nC(xC) =M . Thus, we have the final simplified

expression for log g(n) after ignoring terms indepen-
dent of n as below:

∑

S∈S

∑

xS

ν(S)nS(xS) lognS(xS)−
∑

C∈C

∑

xC

nC(xC) lognC(xC)

Notice that the above expression subject to the con-
straints (7) and (8) is analogous to the entropy of a
graphical model, the only difference being that counts
sum up toM , rather than 1. We can now use the Bethe
entropy to approximate this term, which is nicely de-
composable along the nodes and edges of the individ-
ual model G. We have the following approximation:

log g(n) ∝∼
∑

i∈V

∑

xi∈X

(
ν(i)− 1

)
ni(xi) logni(xi)−

∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) lognij(xi, xj) (11)

where ν(i) denotes the degree of the node i in the
graph G. The above approximation represents a signif-
icantly more tractable form of log g(n) as all the terms
are defined over the pairwise graph G, rather than the
junction tree. Finally combining (10) and (11), we
have:

log p(n;θ) ∝∼
∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) log φij(xi, xj)+

∑

(i,j)∈E
Hij +

∑

i∈V
(1− ν(i))Hi (12)

where Hij = −∑xi,xj
nij(xi, xj) log nij(xi, xj) and

Hi =−∑xi
ni(xi)log ni(xi). The constraint set that

each valid n must satisfy is given as:

ni(xi) =
∑

xj

nij(xi, xj) ∀j∈Nbi, ∀xi,∀i∈V (13)

∑

xi

ni(xi) = M,∀i ∈ V (14)

The above set of constraints for CGMs are similar
to the constraints that define the local polytope for
graphical models (Wainwright and Jordan, 2008).

4 Approximate MAP Inference

For the approximate CGM MAP inference, our goal is
to solve the optimization problem:

max
n

[
log p̃(n;θ) + log p(y|n)

]
(15)

subject to constraints (13) and (14), and log p̃(n)
is the approximate CGM distribution in (12). Ad-
dressing the expression log p(y|n) is relatively easier as
the assumption in CGMs is that different counts are
corrupted independently by a univariate noise model
p(y|n). We assume that the noise model is log-concave
in n, which is satisfied for different noise models such
as Poisson and Gaussian use previously (Sheldon et al.,

687

Approximate Inference Using DC Programming For Collective Graphical Models

2013; Liu et al., 2014). For example, the noise model
for corrupted node contingency tables is given as:

pnode(y|n)=
∏

i

∏

xi

p
(
yi(xi)|ni(xi)

)

log pnode(y|n)=
∑

i,xi

log p
(
yi(xi)|ni(xi)

)
=
∑

i,xi

li(ni(xi))

(16)

where we have used li(ni(xi)) to denote the log of the
noise model without being tied to any specific model.
The noise model for edge counts nij(·, ·) can be defined
analogously. We now write the approximate MAP ob-
jective function (15) using expressions (12) and (16)

min
{ni,nij ,zi}

−
∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) log φij(xi, xj)−
∑

(i,j)∈E
Hij

−
∑

i∈V
(1− ν(i))Hi −

∑

i∈V

∑

xi∈X
li(zi(xi)) (17)

Subject to: constraints (13) and (14) (18)

zi(xi)=ni(xi) ∀xi, ∀i ∈ V (19)

where we have included additional (redundant) vari-
ables zi(·) for node counts, and included the constraint
zi(·) = ni(·) to make them equal to ni. These redun-
dant variables and constraints would help later when
we derive the CCCP algorithm to solve the above pro-
gram, and make sure that resulting updates can in-
corporate different types of CGM noise models. For
ease of exposition, we show our derivations for the
noise added to node contingency tables; edge noise can
be addressed analogously by creating such additional
zij(·, ·) variables.

4.1 DC Programming for MAP Inference

The problem (17) can be solved using a generic nonlin-
ear optimization solver. However, as we show empir-
ically, such a strategy is not scalable to large graphs.
Therefore, our goal is solve the problem (17) using
message-passing. To achieve this, we first reinter-
pret (17) as a difference of convex functions (DC) pro-
gram. Consider the optimization problem: min{h(x) :
x ∈ Ω}, where h(x)=u(x)−v(x) is an arbitrary func-
tion with u, v being real-valued, differentiable convex
functions and Ω being a convex constraint set. Such a
program is called a DC program. We decompose (17)
as a difference of two convex functions u and v below:

u(n, z)=−
∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) log φij(xi, xj)−
∑

(i,j)∈E
Hij

−
∑

i∈V
Hi −

∑

i∈V

∑

xi∈X
li(zi(xi)) (20)

v(n, z)=−
∑

i∈V
ν(i)Hi (21)

We next show how the CCCP framework can be used
to solve the above DC program using message-passing.

4.2 CCCP For MAP Inference

The CCCP method provides an iterative procedure to
solve the DC problem min{h(x)=u(x)−v(x) : x ∈ Ω}
by generating a sequence of points xk by solving the
following convex program:

xk+1 = arg min
x
{u(x)− xT∇v(xk) : x ∈ Ω} (22)

Each iteration of CCCP decreases the objective func-
tion h(x) and converges to a stationary point (Sripe-
rumbudur and Lanckriet, 2009). The optimization
problem that CCCP solves iteratively for the CGM
MAP inference is:

min
n,z
−
∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) log φij(xi, xj)−
∑

(i,j)∈E
Hij−

∑

i∈V
Hi

−
∑

i∈V

∑

xi∈X
li(zi(xi))−

∑

i∈V

∑

xi

ni(xi)∇ni(xi)v (23)

subject to constraints (13), (14) and (19); ∇ni(xi)v
represents the gradient of the function v(n, z) w.r.t.
ni(xi) from previous iteration’s solution. Notice
that (23) is a convex optimization problem, and con-
straints are linear resulting in zero duality gap. There-
fore, we solve the Lagrangian dual of this problem,
which has a simpler structure amenable for solving by
message-passing.

We start by writing the Lagrangian function of the
problem (23). We use dual variables λij(xi) for
marginalization constraints (13), λi for normaliza-
tion constraints (14), and λi(xi) for the equality con-
straints (19). The Lagrangian function is given as:

L(n, z, λ)=−
∑

(i,j)∈E

∑

xi,xj

nij(xi, xj) log φij(xi, xj)−
∑

(i,j)∈E
Hij

−
∑

i∈V
Hi −

∑

i∈V

∑

xi∈X
li(zi(xi))−

∑

i∈V

∑

xi

ni(xi)∇ni(xi)v

−
∑

i∈V

∑

j∈Nbi

∑

xi∈X
λij(xi)

[
ni(xi)−

∑

xj

nij(xi, xj)
]

−
∑

i∈V
λi
[∑

xi

ni(xi)−M
]
−
∑

i∈V

∑

xi

λi(xi)
[
zi(xi)− ni(xi)

]

The next step is compute the dual function q(λ) =
minn,z L(n, z, λ). This is another optimization prob-
lem. However, it is an easier unconstrained optimiza-
tion problem, and can be solved by setting partial
derivatives of L(·) to zero w.r.t. different variables.
Solving for n, we get:

nij(xi, xj)=φi,j(xi, xj)e
−λij(xi)−λji(xj)−1 (24)

ni(xi)=e
λi+

∑
j∈Nbi

λij(xi)+∇ni(xi)v−λi(xi)−1
(25)

Notice that the above two equations are independent
of the noise model used for the CGM. Such a decou-
pling was possible by the introduction of z(·) variables.

688

Duc Thien Nguyen†, Akshat Kumar†, Hoong Chuin Lau†, Daniel Sheldon‡

Algorithm 1: CGM MAP Inference

1 Algorithm CCCP Message Passing()

2 Initialize: λij(xi)← 0 ∀(i, j) ∈ E
∇ni(xi)v = 0, λi, λi(xi)← 0 ∀i ∈ V, xi ∈ X

3 repeat

4 repeat

5 for each edge (i, j) ∈ E do

6 UpdateEdgeVars(i, j)

7 UpdateEdgeVars(j, i)

8 for each node i ∈ V do

9 UpdateNodeVars(i)

10 until inner loop converges

11 ni(xi)←e
λi+

∑
j∈Nbi

λij(xi)+∇ni(xi)v−λi(xi)−1

12 ni,j(xi, xj)←φi,j(xi, xj)e
−λij(xi)−λji(xj)−1

13 ∇ni(xi)v ← ν(i)
[
1 + logni(xi)

]
∀xi, ∀i ∈ V

14 until outer loop converges

15 return Count table n

16 Procedure UpdateEdgeVars(i, j)

17 λij(xi)← 1
2
[log

(∑
xj
φi,j(xi, xj)e

−λji(xj))− λi −∑
k∈Nbi\{j} λik(xi)−∇ni(xi)v + λi(xi)] ∀xi ∈ X

18

19 Procedure UpdateNodeVars(i)

20 λi←
logM− log

∑
xi
e
∑
j∈Nbi

λij(xi)+∇ni(xi)v−λi(xi)−1

21 Poisson noise model: λi(xi)←αi(xi)−
W
(
yi(xi)e

−λi−
∑
j∈Nbi

λij(xi)−∇ni(xi)v+1+αi(xi)
)
∀xi

22 Gaussian noise model: λi(xi)←− yi(xi)

σ2
i (xi)

+

23 W
(

1
σ2
i (xi)

e
λi+

∑
j∈Nbi

λij(xi)+∇ni(xi)v−1+
yi(xi)

σ2
i
(xi)

)
∀xi

When we set partial derivative of L w.r.t. zi(xi) to
zero, we get the following condition:

−∇zi(xi)li(zi(xi))− λi(xi) = 0 (26)

For solving the above equation, we need to know the
structure of the noise model. We show below how to
solve it for two commonly used noise models—Poisson
and Gaussian.

Poisson Noise The Poisson noise in the count of
zi(xi) with detection rate αi(xi) is given as:

p(yi(xi)|zi(xi))=
αi(xi)zi(xi)

yi(xi)e−αi(xi)zi(xi)

yi(xi)!

Substituting the value of∇ log p(yi(xi)|zi(xi)) to (26),
we get the value of zi(xi) as follows:

zi(xi) =
yi(xi)

αi(xi)− λi(xi)
(27)

Gaussian Noise The Gaussian noise in the count
of zi(xi) with mean zi(xi) and variance σ2

i (xi) is:

p(yi(xi)|zi(xi))=
1

σi(xi)
√

2π
e
− (yi(xi)−zi(xi))2

2σ2
i
(xi)

Substituting the value of∇ log p(yi(xi)|zi(xi)) to (26),
we get the value of zi(xi) as follows:

zi(xi) = yi(xi) + σ2
i (xi)λi(xi) (28)

In a similar way as above, we can derive the updates
for any other log-concave and differentiable CGM noise
function.

Optimizing the Dual Function Once we substitute
the values of ni(·), nij(·, ·) and zi(·) from (24), (25)
and (27) or (28) to the Lagrangian function L, we get
the dual function q(λ). The dual optimization prob-
lem is maxλ q(λ). We can solve this iteratively by using
the block-coordinate ascent strategy (Bertsekas, 1999),
wherein we fix all the dual variables except one, and
then optimize the function q(λ) w.r.t. the one dual
variable. Such a strategy is guaranteed to converge to
the optimal primal solution as the dual is differentiable
and concave for each λ variable, and there is a unique
solution for each block-coordinate ascent step (Bert-
sekas, 1999). We show the final updates for different
dual variables in algorithm 1.

The CCCP message passing for CGMs takes the form
of a double loop algorithm (as shown in alg. 1). The
inner loop runs from line 4 till line 10. The inner
loop performs the block coordinate ascent step for
each node and edge dual variable for a fixed gradi-
ent ∇v from the previous iteration’s parameters n.
The update equation for edge dual variables (that
enforce the marginalization constraints (13)) λij(·) is
provided in the function UpdateEdgeVars(·). The func-
tion UpdateNodeVars(·) updates the dual variables λi
that enforce the normalization constraints (14). No-
tice that both these updates do not depend on the
CGM noise model. Finally, the update equations
for λi(xi) that enforce the equality constraints (19)
are provided in function UpdateNodeVars for Gaussian
and Poisson models. The function W (·) is the Lam-
bert’s W function (or the productLog function) (Cor-
less et al., 1996), which is used to solve the equation
xex = k, where k is some positive constant. The solu-
tion for such a equation is given as x=W (k).

The inner loop convergence of CCCP is detected when
the constraint violation falls below a certain threshold.
The convergence of the outer loop is detected when the
quality improvement over iterations is below a thresh-
old. The runtime and the space complexity of each
CCCP inner loop increases linearly with the number
of edges in the graph. Empirically, we show that in-
ner loop converges within 10 iterations even for large
graphs. Thus, our approach is highly scalable.

689

Approximate Inference Using DC Programming For Collective Graphical Models

0

500

1000

1500

2000

2500

3000

3500

16 36 64 100 144 196

R
u

n
-t

im
e

 (
s)

Domain size

CCCP

NLBP

Generic

(a) Runtime for generic solver

0

20

40

60

80

100

120

140

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 25 36 49 64 81 100 121 144 169 196 225

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Domain size

CCCP node NLBP node CCCP edge NLBP edge CCCP Runtime NLBP Runtime

(b) Error and Run-time of CCCP and NLBP

Figure 1: Bird Migration results

5 Experiments

We evaluate our CCCP based message passing on
three sets of instances (1) bird migration benchmarks
from (Liu et al., 2014; Sun et al., 2015), (2) random
grid graphs of varying sizes and (3) Ising grid graphs.
We compare CCCP against the Matlab’s generic opti-
mization solver to directly solve the DC program and
the message passing approach NLBP from (Sun et al.,
2015). The NLBP algorithm, like the standard BP,
may not converge for cyclic graphs, but it is still well
defined. Sun et al. (2015) show that when NLBP con-
verges, it converges to a local optimum of the prob-
lem (17). The NLBP is also a double loop algorithm
where each inner loop runs the standard BP, and the
outer loop computes the gradient of the nonlinear free
energy of CGMs (Sun et al., 2015).

Observation Model: In our experiments, we use
Gibb’s sampling procedure to generate values of indi-
viduals in the population from cyclic graphical model.
Only noisy observations for node counts are given as
input to solver, edge counts are hidden. Given the
noisy observation of node counts, we consider the in-
ference task to infer underlying node and edge counts.

We focus in the experiments on the following aspects of
the CCCP approach. First, we empirically show that
CCCP is highly scalable for large graphs. The Mat-
lab’s generic solver’s runtime increases significantly
with the problem size, and is more than an order-of-
magnitude slower than CCCP for larger bird migration
problems. CCCP is also faster than NLBP on several
grid graphs as NLBP takes many iterations to find
a feasible solution, whereas CCCP’s inner loop con-
verges much faster leading to speedups over NLBP.
Second, we show that CCCP finds accurate results.
The relative error, ||nCCCP−nTrue||1/||nTrue||1, is about
10% for most instances. This shows that the Bethe
entropy approximation and the CCCP message pass-
ing are effective even in the presence of high number
of cycles in the graph.

Bird Migration Benchmark We evaluate the speed
and the accuracy of CCCP on bird migration bench-

marks generated in a similar manner as (Liu et al.,
2014; Sun et al., 2015). The previous work generates
data from a T -step chain-structured CGM to simulate
the migration of a population of M =1000 birds from
the bottom-left corner to the top-right corner of an
L×L grid map for a total of T time steps. Let xt
denote the location of a bird at time t in the L×L
map. The transition probability between cells xt and
xt+1 comes from a logistic regression formula that has
several covariates such as the distance among loca-
tions, consistency of the wind direction with transi-
tion movement among others. We adopt such features
and their weights from the implementation provided
by Sun et al.

We make such a chain-structured CGM more realis-
tic by removing the implicit assumption in previous
models that all the birds migrate to the same desti-
nation. This results in a cyclic CGM, rather than a
chain structure. We assume that each bird can choose
any destination within a specified group of cells in the
top-right map region with some probability. To simu-
late this dependence on different destinations, we cre-
ate an edge between every node xt∀t=1 to T −1 to
xT . We set the potential φt,T (xt, xT)∝ 1

d(xt,xT)
U(xT),

where d(xt, xT) denotes the distance between locations
xt and xT , and U(xT)∈ [0, 1] is a unary function that
specifies the relative preference among different desti-
nations xT . For experiments, we assume that U(xT)
follows a uniform distribution.

Figure 1(b) shows the accuracy of CCCP and NLBP
for different map sizes (‘16’=4×4 to ‘225’=15×15)
and horizon T = 15 on the primary y-axis. We used

0

0.2

0.4

0.6

0.8

1

1.2

16 25 36 49 64 81 100 121 144 169 196 225

Fr
ac

ti
o

n
 o

f
fe

as
ib

le
 r

u
n

s

Domain size

NLBP

(a) Bird migration domain

0

0.2

0.4

0.6

0.8

1

1.2

10x10 20x20 30x30 40x40 50x50

Fr
ac

ti
o

n
 o

f
fe

as
ib

le
 r

u
n

s

Grid size

NLBLP

(b) Random grid

Figure 2: Fraction of total NLBP runs that resulted in a
feasible solution for the bird migration domain, and ran-
dom grids with β=3

690

Duc Thien Nguyen†, Akshat Kumar†, Hoong Chuin Lau†, Daniel Sheldon‡

0

50

100

150

200

250

300

350

0.00

0.02

0.04

0.06

0.08

0.10

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(a) β = 1

0

200

400

600

800

1000

1200

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(b) β = 2

0

1000

2000

3000

4000

0.0

0.2

0.4

0.6

0.8

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(c) β = 3

Figure 3: Quality and runtime comparisons for random grid graphs

0

200

400

600

800

1000

1 3 5 7 9 111315171921232527293133

C
o

n
st

ra
in

t
vi

o
la

ti
o

n

Inner loop iteration

CCCP NLBP

(a) β = 1

0

200

400

600

800

1 2 3 4 5 6 7 8

C
o

n
st

ra
in

t
vi

o
la

ti
o

n

Inner loop iteration

CCCP NLBP

(b) β = 2

0

200

400

600

800

1000

1 3 5 7 9 111315171921232527293133

C
o

n
st

ra
in

t
vi

o
la

ti
o

n

Inner loop iteration

CCCP NLBP

(c) β = 3

Figure 4: Average constraint violation for CCCP and NLBP inner loops for random grid graphs

Gibb’s sampling to sample a population of M = 1000
birds. After generating the node and edge count ta-
bles, we generated noisy observations for node counts
yi∼Pois(αni) with detection rate α=1.

The accuracy of Matlab’s solver was very close to that
of CCCP for each instance and thus, is not plotted.
The x-axis shows the map size and y-axis shows the rel-
ative error, ||nalg− nTrue||1/||nTrue||1, between the true
counts and the final solution of each algorithm. We
show both the error in node counts (‘node error’) and
edge counts (‘edge error’). Each data point is an aver-
age of 10 runs. In each run, the destination preference
U(·) was sampled randomly.

From figure 1(b), we can clearly see that for small map
sizes (until ‘49’ or 7×7 map), both CCCP and NLBP
have similar accuracy. However, as the map size in-
creases from 8×8 to 15×15, the accuracy of NLBP goes
down significantly. For the map size 15 × 15, NLBP
error was very high, more than 60% for both nodes
and edges. In contrast, CCCP provides highly accu-
rate results. The average relative node error across all
the map sizes for CCCP is ≈ 6% and the average rel-
ative edge error is ≈ 19%. The node error is smaller
than the edge error as noisy observations are provided
for nodes, whereas no observations are provided for
the edges. These sets of results show that CCCP was
highly accurate even for larger instances.

There were several bird migration instances for which
NLBP failed to find a single feasible solution (that sat-
isfied all the marginalization and normalization con-
straints on n up to a specified threshold). Figure 2(a)
shows the failure rate of NLBP for different map sizes

on the x-axis. The y-axis shows the total fraction of
instances for which NLBP found at least one feasible
solution. We can see that for larger maps (from ‘81’ or
9×9 onwards), NLBP failed to find a feasible solution
for more than 20% of instances. These results clearly
show that for larger problems, CCCP provides a signif-
icantly better alternative than NLBP with much bet-
ter convergence guarantees and stability.

Figure 1(a) shows the runtime comparisons between
Matlab’s generic solver and CCCP. Even though the
accuracy of matlab’s solver was similar to CCCP, the
runtime for the generic solver increases significantly
with the increasing problem size. CCCP is more than
an order-of-magnitude faster than the generic solver,
and is thus much more scalable.

Random Grid graphs We also compare NLBP and
CCCP on random grid graphs. We generated grids of
varying sizes from the smaller 10 × 10 grids to large
50 × 50 grids. The domain size of each variable is
4. The log-potential for each setting of edge variables
was sampled uniformly from [−β, β]. We used three
settings of β ∈ {1, 2, 3}. The population size was
M=1000, and the noise model settings were the same
as for bird migration benchmarks. All data points are
an average over 10 runs. Such grid graphs have signifi-
cantly higher number of cycles than the bird migration
instances, thereby rigorously testing the accuracy of
Bethe approximation and the CCCP message passing.

Figures 3(a-c) show the accuracy of CCCP and NLBP
for varying grid sizes and β values, and also the run-
time on the secondary y-axis. For smaller values of
β ∈ {1, 2} in figures 3(a-b), both NLBP and CCCP

691

Approximate Inference Using DC Programming For Collective Graphical Models

0

1000

2000

3000

4000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(a) β = 1

0

100

200

300

400

500

600

0.00

0.20

0.40

0.60

0.80

1.00

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(b) β = 2

0

200

400

600

800

1000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

10x10 20x20 30x30 40x40 50x50

R
u

n
-t

im
e

 (
s)

R
e

la
ti

ve
 e

rr
o

r

Grid size

CCCP node NLBP node CCCP edge
NLBP edge CCCP time NLBP time

(c) β = 3

Figure 5: Quality and runtime comparisons for Ising grid graphs

were reasonably accurate. The relative edge error for
CCCP and NLBP both for these settings was< 10%.
However, for β = 3, NLBP’s performance degrades
significantly, with relative error becoming quite high
(≈ 50%) for larger grid sizes (40 × 40 and 50 × 50).
In contrast, CCCP had similar accurate performance
as for the other settings of β. We noticed that with
a higher value of β, the sparsity of the sampled data
increases, which may have caused NLBP to become
unstable for higher β values.

Figure 2(b) shows the failure rate for NLBP for dif-
ferent grid sizes for β= 3. We can see clearly that as
the grid size increases, the failure rate of NLBP also
increases significantly (more than 60% for 40× 40 and
50 × 50 grids). Thus, for such random graphs also
CCCP provided highly accurate results and proved to
be more stable than NLBP for a range of problem sizes.

In terms of the runtime (secondary y-axis), figures 3(a-
c) show that the runtime of NLBP increases signifi-
cantly with the increasing value of β (e.g., for 50× 50
grid in figure 3(c), NLBP is significantly slower than
CCCP). Figures 4(a-c) provide further insight to this
observation. In these figures, we show the average
number of inner loops required per outer loop itera-
tion for both CCCP and NLBP. The x-axis denotes
the inner loop iteration number, and y-axis denotes
the average constraint violation over all the instances
for NLBP and CCCP. We can observe that for higher
values of β, NLBP requires higher number of inner
loops (per outer loop iteration) to reach a constraint
violation threshold close to zero. Such higher number
of inner loops lead to a large increase in the runtime
for NLBP. In contrast, CCCP requires far fewer inner
loops, typically less than 6, to reach a solution within
the violation threshold.

Ising Grid graphs We also compared CCCP and
NLBP on Ising grid graphs. For these graphs, each
variables xi can take two values {1,−1}. The log-
potential for the variable setting (xi, xj) is set to
xixjβij , where each βij is sampled uniformly from the
interval [−β, β]. The population size and the noise
model is the same as for random graphs.

Figures 5(a-c) show the accuracy and the runtime com-

parisons between CCCP and NLBP for a range of grid
sizes. For these instances too, the higher values of
β ∈ {2, 3} lead to instability in NLBP resulting in high
relative error (> 50%) as shown in Figures 5(b-c). The
CCCP on the other hand proves to be accurate across
a range of settings with the relative error about 10%.
For Ising graphs, NLBP finds feasible solutions and
converges for all the instances. However, the solution
at convergence may not be accurate enough as shown
in figures 5(b-c).

As per the runtime comparisons, NLBP can sometimes
converge faster than CCCP (as shown in Figure 5(c),
for grid size 40×40 and 50×50). However, the accuracy
of NLBP is much worse than CCCP.

6 Conclusion

In this work, we addressed the problem of MAP infer-
ence in collective graphical models, which are a frame-
work for reasoning with noisy aggregate data. Pre-
vious approaches for inference in CGMs work on a
junction-tree representation, thereby highly limiting
their scalability. We addressed this key bottleneck in
our work by introducing the Bethe entropy approxima-
tion for the CGM MAP inference problem. We showed
how to interpret the resulting optimization problem as
a DC program, and derived the CCCP algorithm to
solve it using message passing. Our extensive empir-
ical evaluations on multiple benchmarks showed that
CCCP was much faster than a generic optimization
solver. The CCCP approach was also highly accurate
as compared to the previous message passing approach
NLBP across different benchmarks, and guaranteed to
converge unlike NLBP which failed to converge on sev-
eral instances. Thus, our work advances the applicabil-
ity of CGMs to large graphs by providing an effective
and accurate method for inference.

Acknowledgements

This research is funded by the National Research
Foundation Singapore under its Corp Lab@University
scheme; Daniel Sheldon is supported by the National
Science Foundation under Grant No. 1125228.

692

Duc Thien Nguyen†, Akshat Kumar†, Hoong Chuin Lau†, Daniel Sheldon‡

References

Bertsekas, D. P. (1999). Nonlinear Programming.
Athena Scientific, Cambridge, MA, USA.

Corless, R. M., Gonnet, G. H., Hare, D. G., Jeffrey,
D. J., and Knuth, D. E. (1996). On the Lambert W
function. In Advances in Computational Mathemat-
ics, pages 329–359.

Dempster, A. P., Laird, N. M., and Rubin, D. B.
(1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statis-
tical society, Series B, 39(1):1–38.

Kumar, A., Sheldon, D., and Srivastava, B. (2013).
Collective diffusion over networks: Models and in-
ference. In International Conference on Uncertainty
in Artificial Intelligence, pages 351–359.

Liu, L., Sheldon, D., and Dietterich, T. (2014). Gaus-
sian approximation of collective graphical models.
In International Conference on Machine Learning,
pages 1602–1610.

Morimura, T., Osogami, T., and Idé, T. (2013). Solv-
ing inverse problem of markov chain with partial
observations. In Advances in Neural Information
processing Systems, pages 1655–1663.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers Inc.

Sheldon, D., Elmohamed, M. A. S., and Kozen, D.
(2007). Collective inference on markov models for
modeling bird migration. In Advances in Neural In-
formation Processing Systems, pages 1321–1328.

Sheldon, D., Sun, T., Kumar, A., and Dietterich, T. G.
(2013). Approximate inference in collective graphi-
cal models. In International Conference on Machine
Learning, pages 1004–1012.

Sheldon, D. R. and Dietterich, T. G. (2011). Collective
graphical models. In Advances in Neural Informa-
tion Processing Systems, pages 1161–1169.

Sriperumbudur, B. and Lanckriet, G. (2009). On the
convergence of the concave-convex procedure. In Ad-
vances in Neural Information Processing Systems,
pages 1759–1767.

Sun, T., Sheldon, D., and Kumar, A. (2015). Mes-
sage passing for collective graphical models. In In-
ternational Conference on Machine Learning, pages
853–861.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical
models, exponential families, and variational infer-
ence. Foundations and Trends R© in Machine Learn-
ing, 1(1-2):1–305.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005).
Constructing free-energy approximations and gener-
alized belief propagation algorithms. IEEE Trans-
actions on Information Theory, 51(7):2282–2312.

Yuille, A. L. (2002). CCCP algorithms to minimize the
bethe and kikuchi free energies: Convergent alter-
natives to belief propagation. Neural Computation,
14(7):1691–1722.

Yuille, A. L. and Rangarajan, A. (2001). The concave-
convex procedure (CCCP). In Advances in Neural
Information Processing Systems, pages 1033–1040.

693

