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Abstract

Population sizes and demographic rates are commonly estimated by fit-

ting probabilistic population models to observational data. However,

these models expose a gap in our probabilistic inference toolkit. They

often contain count variables to represent unknown population sizes,

and, until recently there was no known algorithm to exactly compute
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the likelihood in models with latent count variables. This chapter sum-

marizes recent advances in the AI research area of probabilistic inference

motivated by this gap. We describe how a standard probabilistic infer-

ence algorithm, the forward algorithm, can be adapted to use probability

generating functions as its internal representation of probability distri-

butions. This leads to the first exact and efficient algorithms for these

models. The new algorithms apply to a broad class of population models,

are faster than existing approximate algorithms, and lead to improved

behavior for estimating parameters of animal populations.

1.1 Introduction

Estimating the size and demographic parameters of animal populations

is key to effective conservation. This is commonly done by using counts

of animals made by human observers to estimate the parameters of a

population model. When some variables from the population model are

not directly observed—for example, the number of animals that are not

detected by the observer, or the number of animals that leave a habi-

tat patch between two consecutive surveys—an inference algorithm is

required to reason about hidden events while fitting the model.

Probabilistic inference is a challenging computational problem, and a
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great deal of AI research over the last 20 years has been devoted to de-

veloping efficient and general probabilistic inference algorithms. Despite

great advances, models can still be “hard” for several reasons. One reason

is model size and complexity, for example, as measured by the number of

variables and the number, structure, and type of functional relationships

among variables. There is a natural trend toward more complex models

in ecology as we collect large and diverse data sets through efforts such

as citizen science [Sullivan et al., 2009]. Developing efficient probabilis-

tic inference algorithms to reason about complex ecological models from

growing data resources is an important research direction.

This chapter will focus on a second property of population models

that can make inference difficult: the presence of count variables to rep-

resent the unknown population size. A simple example is the N-mixture

model [Royle, 2004] illustrated in Figure 1.1. Here, the variable n is an

integer representing the unknown number of animals in a patch of habi-

tat; because this number is not directly observed, it is a latent variable.

An observer visits the patch K times, and the variable yk represents the

number of animals she is able to detect during the the kth survey; these

are the observed variables. This model very simple by typical measures

of complexity, but, surprisingly, until very recently there was no known
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exact inference algorithm for this model. The computational challenge

arises because the algorithm must reason about the infinite number of

possible values (any non-negative integer) for the latent variable. Widely

used estimation procedures for population models with latent count vari-

ables all resort to some form of approximation, usually by assuming an

a priori upper bound on the population size. This has several draw-

backs. First, it places a burden on the modeler, when we would like to

let the data speak for itself. Second, it interacts poorly with estimation

of the detection probability, which determines the approximate “mul-

tiplier” between the observed counts and the true population size; we

demonstrate pathologies related to this later in the chapter. Finally, this

method is slow, especially when reasoning about populations over time.

We desire fast algorithms for basic building blocks like the N-mixture

model, so that we may use our growing data resources to design and fit

more complex models of populations over time and space.

This chapter will summarize recent AI advances that provide the first

exact and efficient algorithms for models with latent count variables.

The key idea is to express probability distributions over count variables

using probability generating functions (PGFs), and then to implement

traditional inference algorithms using this novel representation. PGFs
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n

y1 y2 yK...

n 2 {0, 1, 2, 3, . . .}n 2 {0, 1, 2, 3, . . .}

n ∼ Poisson(λ)

yk | n ∼ Binomial(n, p)

Figure 1.1 The N-mixture model [Royle, 2004]. The latent variable

n represents the unknown number of animals in a habitat patch. The

observed (shaded) variables y1, . . . , yK represent the number detected

by an observer during repeated surveys of the habitat patch. During

each survey, each animal is detected with probability p.

allow us to compactly represent distributions of interest even though

they have an infinite number of possible values. The resulting algorithms

are exact, substantially faster than existing approximate approaches,

and they avoid misleading statistical inferences caused by a priori upper

bounds on the population size.

The goal of the chapter is to present an overview of the main ideas and

illustrate their impact on ecological models. The readers are referred to

the papers by Winner and Sheldon [2016] and Winner et al. [2017] for

additional details.
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1.2 Population Models and Estimation

We will introduce the ecological and computational problem in more

depth using Royle’s N-mixture model. Recall that n is the unobserved

population size, and y1, . . . , yK are the counts conducted by the observer.

We encode uncertainty about these values, as well as some beliefs about

the mechanisms that generated them, through a probabilistic model. The

model is shown in Figure 1.1. The variables y1, . . . , yK are shaded to in-

dicate that they are observed. The arrows represent the dependencies of

the model: the observed counts depend on the unobserved population

size. The population size n is assumed to be a Poisson random vari-

able with (unknown) mean λ. The Poisson distribution is selected as

a canonical distribution for count variables; our methods are not tied

to this particular choice nor do we make any particular mechanistic in-

terpretation of it. For the observations, we assume the observer detects

each animal independently with probability p, so that yk is distributed

according to the Binomial distribution with n trials (the number of ani-

mals) and success probability p (the probability of detecting each one).

The scientist wishes to answer questions like: “How many animals

were present?” or “What is the probability of detecting an animal that

is present?” Often, the model will be simultaneously applied to many
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different habitat patches, where the mean number of animals λ is either

shared across patches, or modeled as λ = f(x), where x is a vector of

covariates that describe the habitat and other features of the patch. In

this case the probability distribution over n is used to model variability

among patches. The scientist can then answer questions such as: “What

is the typical population size of patches in my district?” or “How does

population size relate to measures of habitat quality?”. For examples,

see [Royle, 2004]. We will focus on the single-patch model because the

computational considerations are the same across all of these modeling

variations.

A key to answering each of the above questions is probabilistic in-

ference in the model: answering queries about the probability of some

variables in the model given some other variables that are observed.

Suppose the observer visits the patch three times and observes y1 =

2, y2 = 5, y3 = 3 (these are the number of animals detected in each

visit). If λ = 20 and p = 0.25, the probability of observing these val-

ues is 0.0034; if λ = 10 and p = 0.25, the probability is 0.0025. Based

on this, we believe the first setting of parameters is more likely. The

principle of maximum likelihood is to set the unknown model parame-

ters to the ones that maximize the probability of the observed variables.
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So, we can see that calculating the likelihood p(y1, . . . yK) := p(y1:K)—

the probability of all observed values—is a key computational problem.

Solving this problem will allow us to use numerical optimization routines

to find the parameters λ and p that maximize the likelihood, and it is

also a basic building block of posterior queries about the model, such

as “What is the probability there were 5 animals in the patch given my

observations?”.

So, let us focus on the problem of computing the likelihood p(y1:k)

for fixed λ and p. Since our model was specified in terms of the joint

probability of all the variables, we must apply the rules of probability

to sum over all possible values of n:

Likelihood : p(y1:K) =

∞∑
n=0

p(n, y1:K)

Each term of the sum on the right-hand side is easily computed from

the model specification. The nth term is the joint probability p(n, y1:K),

which, according to the model we have defined is equal to p(n)
∏K
k=1 p(yk |

n), where p(n) = λne−λ

n! is Poisson prior probability that there are n an-

imals present, and p(yk | n) =
(
n
yk

)
pyk(1− p)n−yk is the probability that

yk animals are observed on the kth visit given that there are actually n

animals present. However, even though we can compute each term eas-

ily, we can’t compute the likelihood directly because there are an infinite
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number of terms! More generally, we lack general computational tools

to efficiently manipulate distributions over an infinite number of terms,

and this prevents us from applying well known probabilistic inference

algorithms.

1.3 A Change of Representation: Probability

Generating Functions

The main idea of our approach is to work instead using a different rep-

resentation of the probability distribution: a probability generating func-

tion, or PGF. The PGF is a transformation of a probability distribution

q(n) over non-negative integers defined as follows:

{q(n) : n = 0, 1, 2, . . .} =⇒ F (s) =
∑∞
n=0 q(n)sn

Probability distribution Probability generating function

The PGF uses the probability values as coefficients of a power series

(i.e., a polynomial with an infinite number of terms) in the new variable

s, and it is a function that maps s to another real number whenever

the series converges. It is well known that this transformation preserves

all the information about the probability distribution. That is, if we

know F (s), we can recover all of the original probability values.1 At

1 Specifically, we do this using the derivatives of F at zero: q(n) = F (n)(0)/n!
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first glance, it is not clear what this buys us. We have switched from an

infinite sequence of probability values to a power series with an infinite

number of terms. The important observation is that it may be possible

to find a compact representation of the probability generating function.

For example, for the Poisson distribution, for any value of s, the infinite

sum on the right-hand side converges and we have:

{
p(n) =

λne−λ

n!
: n = 0, 1, 2, . . .

}
=⇒ F (s) =

∞∑
n=0

λne−λ

n!
sn = eλ(s−1)

This is now a simple, compact representation of the entire probability

distribution. It should not be a surprise that we can do this for the

Poisson distribution, since we already had a compact formula for the

probability values.

We will show that it is possible to compute compact representations

of PGFs for probability distributions that arise during inference algo-

rithms. Returning to the previous N-mixture model example, consider

the distribution p(n, y1 = 2, y2 = 5, y3 = 3). We will describe how to

algorithmically compute a formula for the PGF, which in this example
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is:

F (s) =

∞∑
n=0

p(n, y1 = 2, y2 = 5, y3 = 3)sn

=
(
0.0061s5 + 0.1034s6 + 0.5126s7

+ 1.0000s8 + 0.8023s9 + 0.2184s10
)

(1.1)

× exp(8.4375s− 15.4101)

Although this expression appears somewhat complex — it is a polyno-

mial of degree ten times an exponential function — it is a tractable and

exact representation of the distribution p(n, y1:K).

Importantly, given the PGF it is easy to solve our original problem of

computing the likelihood — we simply evaluate the PGF at s = 1. From

the series representation, we know that F (1) =
∑∞
n=0 p(n, y1:K)1n is the

sum over all terms in the series, which is equal to the likelihood p(y1:K).

We can compute F (1) efficiently by substituting s = 1 in the compact

representation. For example, we find that p(y1 = 2, y2 = 5, y3 = 3) =

0.0025 by substituting s = 1 in the right-hand side of Equation (1.1).

We have now seen the main elements of our new approach for proba-

bilistic inference. Given a probability model, we will devise an algorithm

to compute a compact representation of the PGF for the distribution

p(n, y1:K) where n is a single latent variable and y1:K are all of the
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observed variables. Then we will compute the likelihood by evaluating

F (1) using our compact representation. What remains is to describe the

mathematical and computational operations needed to find the com-

pact representation of the probability generating function for models of

interest. We summarize these steps in the following sections.

1.4 The PGF Forward Algorithm

Our goal is to algorithmically manipulate PGFs to compute the like-

lihood of population models. We would like to do this for a reason-

ably broad class of models that includes the N-mixture model and other

models that are used in practice by ecologists. To this end, we will de-

scribe a class of models called integer hidden Markov models (HMMs)

for partially observed populations that change over time through pro-

cesses such as immigration, mortality, and reproduction. Integer HMMs

map closely onto open metapopulation models from statistical popula-

tion ecology [Dail and Madsen, 2011] and (latent) branching processes

from applied mathematics and epidemiology [Watson and Galton, 1875,

Heathcote, 1965].
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n1

y1 y2

n2

yK

nK...
nk =

nk−1∑
i=1

zk,i +mk

yk ∼ Binomial(nk, p)

Figure 1.2 The integer HMM model. The variable nk represents the

size of the population in the kth time period. The variable yk repre-

sents the number of individuals counted by an observer during that

time period. The population changes over time through immigration

and emigration, mortality, and reproduction.

The Integer HMM Figure 1.2 illustrates the model. This extends the

N-mixture model so the number of animals in the patch can change over

time. The variable nk is the size of the population at time k, which,

again, is not observed. The variable yk is the number detected by the

observer. As before, we assume that each individual is detected with with

probability p. The population size nk now depends probabilistically on

the population size from the previous time step as follows. First, for all i,

the ith individual from the previous time step contributes zk,i individu-

als to the present time step, where zk,i ∼ PZ is an independent random

variable drawn from the common offspring distribution PZ . Here, the

“offspring” can include the individual itself, to model the event that it

survives from one generation to the next and remains in the patch; they
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can also include true offspring, to model reproduction. In this way, the

modeler can model emigration, mortality, and reproduction by the ap-

propriate choice of offspring distribution. In practice, the modeler would

model these processes separately and then follow standard procedures

to determine the offspring distribution PZ . We assume only that the

PGF F (s) of the offspring distribution is available. In addition to the

“offspring” from previous time steps, mk new individuals enter the popu-

lation, where mk is a random variable from the immigration distribution.

The modeler is free to select any count-valued immigration distribution;

we assume only that that the PGF G(s) is specified. The model can

easily be extended to allow these distributions to vary over time.

The Forward Algorithm The forward algorithm is a classical algo-

rithm to compute the likelihood in a hidden Markov model [Rabiner,

1989]. We will adapt it to use PGFs in its internal representation to

compute the likelihood in integer HMMs. The algorithm is illustrated

schematically in Figure 1.3. It proceeds in steps that model the joint dis-

tributions of different subsets of the variables. In the figure, the shaded

boxes indicate which variables are modeled at each step. The funda-

mental distributions of interest are those of the form p(nk, y1:k)—of the

hidden variable nk and the observations y1:k up to and including the
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p(nk−1, y1:k−1)︸ ︷︷ ︸
αk−1(nk−1)

p(nk, y1:k−1)︸ ︷︷ ︸
γk(nk)

p(nk, y1:k)︸ ︷︷ ︸
αk(nk)

Figure 1.3 Illustration of the forward algorithm. The algorithm uti-

lizes a recurrence to compute the current message αk(nk) (right)

starting from the message αk−1(nk−1) at the previous time step (left).

Each message represents the joint distribution of a subset of vari-

ables that includes one hidden variable and a prefix of the observed

variables—the shaded boxes show the subset corresponding to each

message. The recurrence utilizes an intermediate prediction step that

creates the message γk(nk) (middle).

corresponding time step—which we denote as αk(nk) and are called the

messages. The left-most figure shows the message αk−1(nk−1) for the

k− 1st time step, and the right-most plot shows the message αk(nk) for

the kth time step. A recurrence is used to compute the message for the

current time step from the previous one. We have split the recurrence

into two steps: (1) the prediction step, where the observations up until

time k− 1 are used to predict nk, resulting in the intermediate quantity

γk(nk) := p(nk, y1:k−1) (illustrated in the middle figure), and (2) the
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evidence step, where the observation at time k is used to update the

distribution and obtain αk(nk). The two steps are defined formally as

follows:

Predict : γk(nk) =
∑
nk−1

αk−1(nk−1)p(nk | nk−1),

Evidence : αk(nk) = γk(nk)p(yk | nk).

Starting from a base case, all α messages can be computed in a single for-

ward pass using this recurrence. The likelihood is obtained by summing

over all values of the final message.

The PGF Forward Algorithm The forward algorithm recurrence is

mathematically correct even for integer HMMs, but the limits of the

summation in the prediction step are infinite, and there are an infinite

number of terms in each message, so it cannot be implemented directly.

Instead, we will modify the algorithm to work with the PGFs of the

α and γ messages, which are defined (using the corresponding capital

letters) as Ak(sk) =
∑∞
nk=0 αk(nk)snkk and Γk(uk) =

∑∞
nk=0 γk(nk)unkk .

An equivalent recurrence for the PGFs is derived in [Winner et al., 2017]:

Predict : Γk(uk) = Ak−1
(
F (uk)

)
·G(uk)

Evidence : Ak(sk) =
(skρk)yk

yk!
· Γ(yk)

k

(
sk(1− ρk)

)
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We do not provide details of how these formulas are derived. The formula

in the prediction step follows from the model definition (see Figure 1.2)

by fairly standard and elementary manipulations of PGFs, and is well

known in the literature on branching processes [Heathcote, 1965]. The

formula in the evidence step may appear surprising. It includes the ykth

derivative of the function Γk from the prediction step. This formula was

derived in [Winner and Sheldon, 2016]. The derivatives are related to the

selection of particular terms in the joint PGF of nk and yk corresponding

to the observed value of yk.

The likelihood is recovered by evaluating the final PGF at the input

value one:

Likelihood: p(y1:K) = AK(1).

It remains to discuss how to efficiently implement the PGF recurrence.

1.5 Implementing the Recurrence: Computation

with PGFs

We provide a high-level overview of the techniques to algorithmically

manipulate PGFs.
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F (s) =
(
0.0061s5 + 0.1034s6 + 0.5126s7

+ 1.0000s8 + 0.8023s9 + 0.2184s10
)

× exp(8.4375s− 15.4101)

(a) Symbolic representation
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(b) Circuit representation

Figure 1.4 Algorithmic manipulation of PGFs. Winner and Sheldon

[2016] showed how to compute compact symbolic representations of

PGFs that appear in the forward algorithm for a restricted class of

models with Poisson latent variables. Winner et al. [2017] showed

how to use a circuit representation and automatic differentiation to

evaluate the final PGF to compute the likelihood.

Symbolic manipulation of PGFs An obvious approach to try first

is to write down the mathematical formula for the first PGF, A1(s1),

which will always have a simple form, and then observe how this formula
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changes when the prediction and evidence steps are repeatedly applied.

In the best case, one will be able to simplify each successive PGF into a

tractable mathematical expression. In [Winner and Sheldon, 2016], we

successfully followed this symbolic approach for a restricted class of mod-

els called Poisson HMMs. In Poisson HMMs, the immigration distribu-

tion is Poisson and the offspring distribution is Bernoulli, which models

survival but is not able to model reproduction. In this case we showed

that each PGF has a form similar to the one shown in Figure 1.4(a).

Specifically, each PGF can be written in the form f(s) exp(as+b) where

f is a bounded degree polynomial. Thus, it can be represented compactly

by the polynomial coefficients and the scalars a and b, and these can be

computed efficiently from the representation of the PGF in the previous

time step.

Circuit representation Although the symbolic representation is effi-

cient, it does not seem to extend to a broader class of models, including

variations commonly used by ecologists [Dail and Madsen, 2011]. For

example, it is common to model immigration using the negative bino-

mial distribution instead of the Poisson. In this and other cases, the

mathematical expressions for PGFs grow rapidly more complex in each

iteration and do not appear to simplify to a tractable form. In [Winner
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et al., 2017], we developed a much more general approach that does not

attempt to represent PGFs symbolically, but instead models them us-

ing a circuit or computation graph. Since each PGF recursively calls the

previous one in the recurrence, this circuit consists of recursively nested

circuits; see Figure 1.4(b). Because the recurrence involves derivatives

of prior PGFs, the circuit cannot be evaluated using simple arithmetic

operations alone. In [Winner et al., 2017] we developed novel techniques

based on automatic differentiation [Griewank and Walther, 2008] to com-

pute the nested, higher-order, derivatives required to evaluate AK(1).

1.6 Demonstration and Experiments

So far we have given an overview of the PGF forward algorithm, a novel

algorithm that leads to the first exact inference algorithms for ecological

models with latent count variables. In this section, we will examine the

practical capabilities of the algorithm by comparing it to the previously

available approximate algorithms, and through two case studies.

Running time Our new exact algorithms are substantially faster than

existing approximate algorithms. Figure 1.5(a) shows the running time of

the symbolic version of the PGF forward algorithm for Poisson HMMs [Win-
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Figure 1.5 Experimental evaluation of the PGF forward algorithm:

(a) Running time PGF forward (PGFFA) versus two versions of the

truncated forward algorithm (FA - Oracle, FA - Poiss) for a Poisson

HMM (see text), (b) Parameter recovery via maximum-likelihood

using the PGF forward algorithm avoids a pathology that affects

the corresponding procedure using the truncated forward algorithm,

(c) Illustration of inferences from a fitted model for the Northern

Dusky Salamander. The horizontal axis represents months since the

beginning of the study period; surveys are conducted only in June and

July so time steps are not consecutive. The vertical axis represents the

number of individuals, with crosses showing the posterior mean, and

shading intensity illustrating the posterior probability. The diamonds

represent a coarse estimate made by dividng the observed count by

the detection probability.
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ner and Sheldon, 2016] compared with two versions of an approximate

algorithm that is used currently in practice [Royle, 2004, Dail and Mad-

sen, 2011, Fiske and Chandler, 2011]. The approximate algorithm places

an a priori upper bound Nmax on the population size, and then uses the

standard forward algorithm [Rabiner, 1989] to compute the approximate

likelihood. We refer to this as the truncated forward algorithm, denoted

FA in the figure. Our algorithm is denoted PGFFA. The running time

of PGFFA grows with the magnitude of the observed counts. The run-

ning time of the truncated forward algorithm grows with the truncation

parameter Nmax: smaller values are faster, but may underestimate the

likelihood. Selecting Nmax large enough to yield correct likelihoods but

small enough to be fast is known to be difficult [Couturier et al., 2013,

Dennis et al., 2015]. We evaluated two strategies to selectNmax: an oracle

strategy that runs prior experiments to find an optimal setting of Nmax

(“FA – Oracle”), and a heuristic based on the prior Poisson distribution

(“FA – Poiss”). We simulated data from a Poisson HMM parameterized

based on a model for insect populations [Zonneveld, 1991], and then

measured the time for each algorithm to compute the likelihood in this

model. We varied two parameters over a range of different values: the

parameter Λ controls the overall population size, and the parameter ρ is
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the detection probability. (For further details, see [Winner and Sheldon,

2016].) The running time is plotted relative to Λρ, which is the expected

total number of individuals observed, on a log-log scale. We can see

that the PGFFA running time indeed scales with the magnitude of the

observations, and is 2–3 orders of magnitude faster than the truncated

algorithms.

Avoiding Pathologies in Parameter Estimation The next experi-

ment highlights a pathology of the truncated algorithm that is avoided

by our exact algorithms. We simulated data from the N-mixture model

and attempted to recover the parameter values λ (population size) and ρ

(detection probability) by numerically maximizing the likelihood, using

both the PGF forward algorithm and the truncated forward algorithm

as subroutines to compute the likelihood. For the truncated algorithm,

the modeler must select Nmax without knowing the true values of the

parameters—we assume she heuristically sets Nmax to be approximately

5 times the average observed count based on her belief that the detection

probability is not too small and this will capture most of the probability

mass. We varied λ and ρ inversely proportionally to each other so that

their product λρ, which is the expected number of observed animals, is
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held constant at 10. We therefore fixed Nmax = 50 to be five times this

observed number.

Figure 1.5(b) shows that as the true λ approaches and surpasses

Nmax = 50, the truncated method cuts off significant portions of the

probability mass and severely underestimates λ. This artificially rein-

forces the modeler’s prior belief that the true detection probability is

“not too small”, even when the true detection probability approaches

zero! In contrast, estimation with the exact likelihood does not show

this bias. It does show significantly increased variance as λ increases

and ρ→ 0. In fact, this variance is a property of the true likelihood, but

is artificially suppressed by the truncated algorithm. It is well-known in

this and related models that, without enough data, it is difficult to tease

apart the population size and detection probability, especially as the

true detection probability goes to zero (e.g., see [Dennis et al., 2015]).

The variance seen here is a byproduct of the fact that the parameters

are actually poorly determined as ρ→ 0. The truncated algorithm arti-

ficially stabilizes the estimation procedure by expressing a hidden bias

toward smaller population sizes.

Dusky Salamander Case Study Figure 1.5(c) shows the results from

a case study to model the abundance of Northern Dusky Salamanders at
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21 sites in the mid-Atlantic US using data from [Zipkin et al., 2014]. The

data consists of 14 counts at each site, conducted in June and July over

7 years. Six sites were excluded because no salamanders were observed.

We first fit a Poisson HMM by numerically maximizing the likelihood

as computed by the PGF forward algorithm. Arrivals are modeled as

a homogeneous Poisson process, and survival is modeled by assuming

individual lifetimes are exponentially distributed. The fitted parameters

indicated an arrival rate of 0.32 individuals per month, a mean lifetime

of 14.25 months, and detection probability of 0.58.

We then investigate the posterior distribution over the number of an-

imals at each time step. We may wish to use the model to make fine

grained inferences about the population status at individual sites over

time. In the figure, the horizontal axis represents time (in months) and

the vertical axis is the population size. The cross represents the pos-

terior mean for the population size at the given time step (given all

observations), and the shading intensity represents the posterior proba-

bility of different values; the “spread” of this posterior distribution helps

quantify our posterior uncertainty under the modeling assumptions we

have made. The diamonds represent a coarse estimate of the population

size at each time step made by dividing the observed count by the es-
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timated detection probability. In contrast to the coarse estimates, the

posterior distribution varies more smoothly over time, because it models

the counts as being coupled through time by the processes of survival

and immigration.

Computationally, querying the posterior distribution in this way re-

quires computation of the posterior marginals, which are the distribu-

tions p(nk | y1:K) of each latent variable given all of the observed data

(both preceding and following the focal time period). A variant of the

PGF forward algorithm can also compute these marginals [Winner and

Sheldon, 2016].

The Model Zoo A major advance of [Winner et al., 2017] was the

ability to perform inference in a much wider class of models by using

circuits and automatic differentiation to evaluate the PGFs. To demon-

strate the advantages of this flexibility, we used this version of the algo-

rithm within an optimization routine to compute maximum likelihood

estimates (MLEs) for a variety of models with different immigration and

offspring distributions. In each experiment, we generated a data set of

independent samples from each model and then used a numerical opti-

mization procedure to find the parameters that maximize the likelihood

of the observations. We varied the immigration and offspring distribu-
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Figure 1.6 Accuracy of estimates for the mean R of the offspring

distribution in different models. Rows, from top to bottom: Bernoulli

offspring, Poisson offspring, geometric offspring. Columns, from left

to right: Poisson immigration, negative binomial immigration. For

each model combination and true value of R, box plots summarize

the estimated values from 50 independent trials.

tions as well as the mean R of the offspring distribution. We fixed the

mean of the immigration distribution to λ = 6 across all models, and the

detection probability to p = 0.6. The quantity R is known as the “ba-

sic reproduction number”, or the average number of offspring produced
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by a single individual, which is a key measure of population viability

and hence important to estimate. Each panel in Figure 1.6 shows the

distribution of the 50 maximum-likelihood estimates for R vs the true

values of R for a different model. The estimated values closely track the

true values. This shows that the PGF forward algorithm can be applied

within likelihood maximization routines to successfully fit the parame-

ters of a wide class of models.

1.7 Conclusion

Effective conservation requires effective assessment and monitoring of

animal populations. Population sizes and demographic rates are com-

monly estimated by fitting probabilistic population models to observa-

tional data. However, these models expose a gap in our probabilistic

inference toolkit. They often contain latent count variables to represent

unknown population sizes, and, despite many years of research in the

area of probabilistic inference, until recently there was no known algo-

rithm to exactly compute the likelihood in models with latent count

variables.

This chapter summarizes recent advances in the AI research area of

probabilistic inference motivated by this gap. We described how the
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forward algorithm, a standard inference algorithm for hidden Markov

models, can be adapted to use probability generating functions as its

internal representation of probability distributions, which then leads to

the first efficient and exact inference algorithms for this class of models.

We recommend several directions forward. From a technical stand-

point, the forward algorithm is an example of a message passing infer-

ence algorithm [Pearl, 1986, Lauritzen and Spiegelhalter, 1988, Jensen

et al., 1990, Shenoy and Shafer, 1990]. We have shown how to extend

the forward algorithm to a broad class of models with latent count vari-

ables by using PGFs to represent messages. Extending this idea to more

structurally complex models by doing the analogous thing for general-

purpose message passing algorithms, and, more generally, exploring the

potential uses of PGFs for probabilistic inference, is an interesting tech-

nical research direction. Developing techniques to compute the gradient

of the log-likelihood in addition to the likelihood, which would facili-

tate learning and parameter estimation in ecological models, is another

promising research direction.

From the application standpoint, we envision extending models such

as the N-mixture model and the integer HMM, which assume indepen-

dence across sites, by using them as the basic building blocks of spatio-
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temporal models that also model the interdependence among sites. Our

hypothesis is that increasing volumes of data available from citizen sci-

ence projects and other technological advances provide evidence about

spatio-temporal patterns and interactions among populations. These

models will have many more variables and interactions, and will present

increasingly difficult challenges in the area of probabilistic inference. We

recommend continued interactions among ecologists and AI researchers

to design these models together with efficient algorithms to reason about

them.
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