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Abstract

This paper addresses adaptive conservation
planning, where the objective is to maximize
the population spread of a species by allo-
cating limited resources over time to con-
serve land parcels. This problem is char-
acterized by having highly stochastic exoge-
nous events (population spread), a large ac-
tion branching factor (number of allocation
options) and state space, and the need to
reason about numeric resources. Together
these characteristics render most existing AI
planning techniques ineffective. The main
contribution of this paper is to design and
evaluate an online planner for this problem
based on Hindsight Optimization (HOP), a
technique that has shown promise in other
stochastic planning problems. Unfortunately,
standard implementations of HOP scale lin-
early with the number of actions in a domain,
which is not feasible for conservation prob-
lems such as ours. Thus, we develop a new
approach for computing HOP policies based
on mixed-integer programming and dual de-
composition. Our experiments on synthetic
and real-world scenarios show that this ap-
proach is effective and scalable compared to
existing alternatives.

1 INTRODUCTION

This paper addresses adaptive conservation planning,
where the goal is to maximize the population growth
of a species by purchasing and reserving land parcels
to best support population spread. This optimization
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problem is challenging as it requires reasoning about
the stochastic population spread on a large network,
uncertain future budgets, and a combinatorial action
space (the set of possible investment combinations).

Generic off-the-shelf, model-based planners typically
are unable to compactly encode such problems (e.g.
due to numeric budgets and/or exogenous events) and
scalability is also quite limited. Other simulation-
based approaches such as Monte-Carlo tree search have
difficulty due to the large branching factors and hori-
zons. In this paper, we develop an online planning al-
gorithm for the adaptive conservation problem, which
requires deciding, at each decision epoch, the set of
parcels to purchase in order to maximize the long-term
population growth. While this work focuses on a par-
ticular population diffusion process, it is important to
note that the principles are applicable to a wider class
of diffusion-control problems that pose similar chal-
lenges to existing methods.

Prior work has considered simplified versions of the
above problem. Sheldon et al. [2010] studies the non-
adaptive, upfront planning problem, where it is as-
sumed that the budget is known and purchases are
made only at the first time step. This simplification
ignores the reality that budgets often arrives over time
and that delaying some allocation decisions until more
information is available can be beneficial. In followup
work Xue et al. [2012] studies a middle ground between
upfront and fully adaptive planning. Their algorithm
schedules the purchases of an upfront solution over
time in order to get a (non-adaptive) multi-stage con-
servation plan with maximum flexibility. An approach
for two-stage adaptive conservation plans is given by
Ahmadizadeh et al. [2010], but scalability to more
stages poses many challenges. The only prior work
on fully adaptive conservation planning is by Golovin
et al. [2011]. They make a crucial assumption that the
species does not spread across land parcels and then
replan at each time step using a greedy, myopic ap-
proach. While approximation bounds are shown under
the assumption, the myopic nature of the approach can
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make it short-sighted when populations can spread,
such as in our motivating application involving birds.
Indeed our experiments confirm this shortsightedness
is apparent on realistic problems.

Above we have seen several non-adaptive approaches
that reason about population dynamics and an adap-
tive approach that assumes populations do not spread.
Here we fill the research gap in conservation plan-
ning with an adaptive approach for highly spreading
species. We take both the future population dynam-
ics, the future budget, and the future actions into
account. Our approach is based on hindsight opti-
mization (HOP), an online planning approach that
has been successfully applied to a variety of difficult
stochastic planning problems, e.g. Chang et al. [2011],
Chong et al. [2000], Wu et al. [2002], Yoon et al.
[2010], Hubbe et al. [2012]. HOP reasons about pos-
sible stochastic futures to compute an upper bound
on action values and selects the action that has the
maximum upper bound. Unfortunately, standard im-
plementations of HOP scale linearly in the number of
actions available at any time, which is prohibitive for
our exponential action space. Thus, our main contri-
bution is to develop an efficient algorithm for comput-
ing HOP policies for such exponentially large, factored
action spaces. We accomplish this by representing the
HOP policy via a large Mixed Integer Program (MIP)
and then applying the Dual Decomposition schema to
make its solution more practical. Our experiments
show that HOP can significantly outperform more my-
opic alternatives while also showing scalability to large
problems.

2 Problem Setup

Population Model. Typically, a conservation prob-
lem is associated with a land map that is divided into
many habitat patches, which at any time can either
be occupied by the species or not. For management
convenience, multiple nearby patches are grouped into
land parcels and assign each parcel p a cost c(l) that
can be seen as the expense to conserve all the patches
in p. We assume only patches in purchased parcels can
be occupied as they are conserved to be accessible and
suitable for the species.

The population dynamics are such that at any time
step, any patch v becomes occupied via a population
spread from patch u with a probability of puv (here
1−pvv is the extinction probability for patch v). Here
we use a standard spread model puv where the spread
probability decreases with the distance between u and
v. In addition, there is a stochastic budget process,
where new funds arrive each year according to some
distribution. Parcels can only be purchased when

Figure 1: Visualization of An Example Future. Sup-
pose there are totally 3 patches: u, v, and w, then
each patch repeats at each time step. The edge indi-
cates the colonization from one patch to the other at
a certain time step.

enough funds are available and hence must be pur-
chased incrementally. Since the population can only
spread to patches in conserved parcels, the population
diffusion is strongly influenced by parcel purchases.

Adaptive Planning Problem. We consider a finite-
horizon setting, where the goal is to optimize the total
population across patches at the specified horizon H.
Decision epochs occur every Tr years and at each a
decision is made about the set of parcels to purchase,
limited by the current budget. Thus, our planning
problem is to produce a policy π that is given the cur-
rent problem state at a decision epoch and outputs a
set of parcels to purchase with cost no more than the
current budget B(t). Here the problem state is com-
posed of the time-to-horizon, the species occupancy at
each patch, the current budget, and knowledge of pre-
vious purchases. We follow a model-based approach,
where π can be computed using provided stochastic
models of the population dynamics and budget.

It will be useful to define the notion of a future F ,
which is a random variable encoding the random out-
comes that dictate the future population spread and
budget over the horizonH. In our setting, a realization
f of F deterministically dictates whether a population
can spread between two patches at any particular time
and the budget at each future year. Such a future can
be visualized as a deterministic network as in Figure
1. In the network, all the patches repeat at every time
step and an edge between patch u at time t and v at
time t + 1 indicates that if the species is at u at time
t then it will spread to v at time t+ 1.

For a fixed realization f , we effectively get a deter-
ministic problem, for which any policy can be eval-
uated against. We say a policy π is feasible for a
future f iff at any time step the total cost of par-
cel purchases of π is within the budget limit of f .
For a future f , a feasible policy π, and initial state
s0 we denote the total population/reward achieved
at the horizon H by R(s0, f, π). The optimal solu-
tion to our problem can then be expressed as finding
a policy π∗ that maximizes the expected reward, i.e.
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π∗ = arg maxπ E[R(s0, F, π)].

An exact solution for π∗ is beyond the capabilities of
existing planners. To address this, prior work Golovin
et al. [2011] used a simple policy based on myopic,
greedy action selection. The main contribution was to
give approximation bounds for the policy under strong
assumption of no diffusion across parcels. Rather,
here we develop a non-myopic action selection heuris-
tic, hindsight optimization, that has shown success in
various other areas of planning. While hindsight op-
timization also requires strong assumption to provide
performance guarantees, our experiments demonstrate
that its non-myopic nature can lead to significant im-
provements over Golovin et al. [2011].

3 Hindsight Optimization for
Conservation Planning

Hindsight Optimization. The main idea behind
hindsight optimization (HOP) is to drive action se-
lection by computing upper bounds on the values of
states. Given a state s, the hindsight value of the
state Vhs(s) is an optimistic estimate of the true value
obtained by interchanging expectation and maximiza-
tion, i.e. Vhs(s) = E [maxπ R(s, F, π)]. This clearly
gives an upper bound on the value since it allows for
inconsistent policies to optimize each future.

The key computational advantage of working with Vhs
rather than directly with the value function V is that
it can be approximated by solving a set of determin-
istic planning problems for individual futures. That
is, given a set of sampled futures {f1, f2, . . . , fN} we
estimate the hindsight value as:

V̂hs(s) =
∑
k

[
max
π

R(s, fk, π)
]

where the internal maximization problem for each fk
can often be solved with existing solvers. The hind-
sight Q-function Qhs(s, a) is accordingly defined as the
expected hindsight value achieved for states reached by
taking action a in state s and is also an upper bound on
the true Q-value of a state-action pair. The HOP pol-
icy for a state s is then defined as arg maxaQhs(s, a).
Under certain assumptions performance guarantees
can be made for the HOP policy (Mercier and Hen-
tenryck [2007], Yoon et al. [2008]). However, in gen-
eral, no guarantees can be made and examples of arbi-
trarily poor performance compared to optimal can be
constructed. Fortunately such examples are often not
reflective of real problems and the HOP policy is often
an effective way to select action non-myopically.

The traditional way to compute the HOP policy is to
estimate Qhs(s, a) by sampling a set of states result-
ing from taking a in s, computing the hindsight value

for each state, and averaging. Unfortunately, this tra-
ditional approach scales linearly with the size of the
action space and hence is not feasible for the combi-
natorial action space in our conservation problem and
many others with factored actions.

HOP for Large Action Spaces. The traditional
computation of the HOP policy estimates Q-values for
each action for the purpose of maximizing over them.
However, this is not strictly necessary if we can directly
compute the optimizing HOP action at a state with-
out explicitly estimating each Q-value. Thus, the main
idea behind our approach is to encode the problem of
computing the optimizing HOP action (Q-values) as
a mixed integer program (MIP) and then apply de-
composition techniques to solve it, which avoids the
explicit enumeration over actions.

Our MIP for HOP is defined relative to a set of sam-
pled futures {f1, f2, . . . , fN} and a current state s.
Similar to the formulation of Sheldon et al. [2010],
for each future fk, we can define a MIP, denoted as
MIPk, which encodes the problem of finding a policy
that maximizes the reward of fk. That is, MIPk solves
the problem maxπk R(s, fk, πk), where πk is viewed as
a binary vector that specifies for each parcel and time,
whether to buy the parcel at that time in future fk.
We will denote by π1

k the parcel purchases specified
for the first time step in MIPk. We also let OBJk and
CONk denote the objective and constraints of MIPk
respectively and let Vk be all variables in MIPk exclud-
ing πk. Due to space constraints we do not provide the
full details of MIPk, which is similar to that in Sheldon
et al. [2010] and not crucial to our main contribution.
Since we have separate decision variables for each fu-
ture, the maximization and summation in the Q-value
function can be interchanged, which results in a MIP
that encodes the HOP policy:

HOP Policy MIP:

min
{πk,Vk}

− 1

N

∑
k

OBJk, s.t.

π1
1 = π1

2 = . . . = π1
N and

⋃
k

CONk

That is, we can compute the HOP policy by maxi-
mizing the sum (minimizing the negative sum) of ob-
jectives across the futures, subject to the constraint
that the solutions for each future agree on the first ac-
tion. This MIP can then in concept be given to any
MIP solver and then the returned value of π1

1 can be
returned as the HOP action.

While in our experience, it is generally feasible to
use existing MIP solvers to solve the individual MIPk
problems for realistic scenarios, when the number of
futures increases, solving the combined MIP can be-
come prohibitive. This is an important limitation since
the variance of the HOP policy reduces with more fu-

1035



Dynamic Resource Allocation for Optimizing Population Diffusion

tures. Fortunately, this issue can be largely overcome
via the use of dual decomposition techniques as the
HOP policy MIP reveals a separable structure.

4 Dual Decomposition for HOP

In the HOP policy MIP, the individual MIPk problems
are only coupled via the policy constraints on the first
action. If the constraints are removed then the com-
bined MIP can be solved by solving each MIPk inde-
pendently. This structure motivates the application of
Lagrangian dual decomposition, which we formulate
below and follows a similar structure as prior work on
upfront conservation planning by Kumar et al. [2012].

We start by rewriting the coupling constraint π1
1 =

π1
2 = . . . = π1

N of MIPk as the set of constraints
{π1

k = d : k = 1, . . . , N} where d is a new vec-
tor of binary variables that represents the HOP policy
action at the first time step. We let π1

k,l and dl de-

note component l of π1
k and d, indicating whether l

was purchased or not at time step 1. We can now re-
lax these coupling constraints to get the Lagrangian of
the HOP MIP by introducing Lagrangian multipliers
λk,l for each constraint.

L({Vk, πk},d,λ) =− 1

N

N∑
k=1

OBJk +
∑
l,k

λk,l(π
1
k,l − dl)

s.t.
⋃
k

CONk

The dual is then given by

q(λ) = min
{Vk,πk},d

L({Vk, πk},d,λ)

= min
{Vk,πk},d

− 1

N

N∑
k=1

OBJk +
∑
l,k

λk,l(π
1
k,l − dl)

= min
{Vk,πk},d

N∑
k=1

− 1

N
OBJk +

∑
l,k

λk,lπ
1
k,l

−
∑
l

dl
∑
k

λk,l, s.t.
⋃
k

CONk

Intuitively, the relaxed constraints in the dual act as
a penalty for violating the consistency requirement
that all policies across futures agree on the first ac-
tion. Since the dual minimizes over d, in order to
ensure that q(λ) > −∞ we require the constraint∑N
k=1 λk,l = 0,∀l. To simplify notation, we denote

the space of Langrange multipliers that satisfy this
constraint as:

Λ = {{λk,l} |
N∑
k=1

λk,l = 0, ∀l}

Under this constraint the last term in the dual vanishes
and we finally get the dual which consists of indepen-
dent subproblems for any fixed λ:

q(λ) = min
{Vk,πk}

− 1

N

N∑
k=1

OBJk +
∑
l,k

λk,lπ
1
k,l

s.t.
⋃
k

CONk and {λk,l} ∈ Λ

One important characteristic of the dual is that q(λ)
for any feasible λ is a lower bound on the optimal pri-
mal MIP objective value, which motivates attempting
to make the bound as tight as possible by maximizing
q(λ) over λ. Since q(λ) is not continuous and the dual
includes constraints over λ we use projected subgradi-
ent descent for this purpose, iterating as follows:

λ
(i+1)
k = [λ

(i)
k + αi+1gk(λ

(i)
k )]Λ (1)

where i is the iteration number, gk(·) is a subgradient
of q(λ) with respect to λk, αi is the step size, and [z]Λ
is the projection of z onto constraint space Λ.

For our objective, one subgradient of q(λ) with respect
to λk is π̄1

k such that

π̄k = arg min
Vk,πk

− 1

N
OBJk +

∑
l

λk,lπ
1
k,l

which can be found by solving a minimization problem
involving a single future fk and hence is much more
tractable than the full MIP. Note that this minimiza-
tion problem is simply the original objective of MIPk
with an added term involving the current Langrange
multiplier values that can be viewed as assigning a
penalty or reward for purchasing particular parcels
at the first time step. Finally, given the subgradi-
ent, the projection onto Λ (with Euclidean norm) is
well known, requiring only that we subtract from each
component of the subgradient the average component

value. Letting π̄
1,(i)
k denote the subgradient at itera-

tion i we get the following:

λ
(i+1)
k = λ

(i)
k + αi+1

[
π̄

1,(i)
k −

∑N
k′=1 π̄

1,(i)

k′

N

]
(2)

This shows that the gradient steps for dual optimiza-
tion can be computed by optimizing independent sub-
problems for each future (i.e. solving for each π̄k),
which avoids solving a single MIP involving all futures.
Putting everything together, the complete dual opti-
mization algorithm is given in Algorithm 1.

Algorithm 1 Dual Decomposition Algorithm
1: Given: initial vector λ ∈ Λ
2: while convergence is not reached do
3: Optimize subproblems independently:

solve each subproblem and get {π̄1,(i)
k }

4: Compute average value of π̄
1,(i)
k over N subproblems:

d̂
(i)

=

∑N
k′=1

π̄
1,(i)

k′
N

5: Update λ:

λ
(i+1)
k = λ

(i)
k + αi+1[π̄

1,(i)
k − d̂(i)

]

6: end while
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At a high level, the final algorithm involves optimiz-
ing the dual via iterations. Each iteration involves
solving multiple modified MIPi problems, which are
different from the originals in that the costs of cer-
tain purchases at the first time step are modified in
order to encourage the subproblems to agree on the
first actions. Specifically costs are increased for parcels
that are not currently purchased by most futures and
decreased for parcels that are purchased by many fu-
tures. The iteration ends when either the subproblems
all agree on the first action, in which case we get the
optimal HOP action, or the maximum number of iter-
ations is reached, in which case we extract a solution
as described below.

Feasible Solution Extraction. The above algo-
rithm optimizes the dual and does not explicitly pro-
vide a primal solution, which in our case is the action
of the HOP policy. After optimizing the dual it is often
the case that the solutions to the independent subprob-
lems (i.e. the π1

k) are consistent and hence represent
a feasible primal solution. In these cases, any of the
π1
k are optimal primal solutions and we output the re-

sulting action as the HOP action. However, in general
there can be a duality gap and we are not guaranteed
that optimizing the dual will produce feasible primal
solutions. Thus, as is typical in Langrangian relax-
ation techniques we must define a strategy for heuris-
tically selecting a feasible primal solution guided by
the information obtained during the optimization.

Our approach is a heuristic based on the consistency
requirement. As in the algorithm, we let d̂l denote the
average value of π1

k,l over different futures, which is
1 if parcel l is purchased in all futures and 0 if it is
not purchases in any futures, and otherwise d̂l ∈ (0, 1)
indicating the percentage of futures in which parcel l
was purchased. To extract a HOP action d where dl
indicates whether to purchase l, we first set dl = 0
whenever d̂l = 0, since purchasing l was not preferred
in any future. Next, we cycle through each patch l with
d̂l = 1 and purchase the patch (set dl = 1). If there
is remaining budget after processing all parcels with
d̂l = 1, we sort all remaining parcels with d̂l ∈ (0, 1) in
descending order. Then for each parcel, if purchasing
it does not violate the budget constraint we set dl = 1
and otherwise set dl = 0.

Step Size Control. Correctly controlling the step
size αi can have a large impact on efficiency, since each
iteration involves solving N MIP problems (one per
future). We follow the same, relatively standard, step
size control as Kumar et al. [2012], where the step size
is computed according to the gap between the feasible
primal solution quality and the dual solution quality.
In particular, after extracting a feasible solution for
the primal, let APXi be the sum of rewards on every

future and DUALi be the dual objective value, we set

αi =
APXi −DUALi∑

l,t,k(π̄
t,(i)
k,l )2

5 Dual Decomposition for Baselines

There are multiple alternative heuristics that can be
formulated within the same dual decomposition frame-
work described above for HOP. These heuristics differ
in terms of the horizon over which they consider fu-
ture population spread and whether or not they con-
sider the possibility of selecting actions in the future
when selecting actions at the current moment. Below
we describe two baselines within this framework that
are included in our experiments.

GreedyZero Policy. The GreedyZero policy is our
most near-sighted baseline as it selects the action that
looks best assuming the population growth and avail-
able budget after the next decision epoch is zero. In
particular, the futures for GreedyZero are simulated
for only Tr years instead of until time H. Correspond-
ingly, its MIP is exactly the same as the HOP MIP
except that the horizon H is always replaced by Tr
and no purchases are allowed after the first year.

HNoop Policy. The HNoop policy is unlike
GreedyZero as it considers the population spread until
the real horizon H. However, unlike HOP and similar
to GreedyZero, it does not consider the possibility of
selecting actions after the first time step. Thus, it eval-
uates purchasing actions according to how much long-
term population spread they will facilitate assuming
that the noop action is taken thereafter. The compu-
tation of HNoop is similar to our approach for HOP,
except that we simply remove all “action variables”
from each MIPk after the first time step, which pre-
vents the consideration of future actions. This myopic
policy will often work well, when the consideration of
future actions is unimportant. However, when this is
not the case, we might expect HOP to have an ad-
vantage. For example, in some conservation situations
it is important to consider building longer term paths
for population spread in order to encourage spread to
a particularly good habitat. Such paths will often not
result from purely myopic reasoning.

Interestingly, the conceptual definition of the HNoop
policy corresponds exactly to the myopic policy pro-
posed in the only prior work on adaptive conservation
planning in Golovin et al. [2011]. However, their com-
putation of HNoop was carried out via a greedy al-
gorithm that considered greedily adding parcels into
the purchased set one at a time until the budget was
exhausted. Given certain submodularity assumptions
that greedy algorithm came with approximation guar-
antees. Our framework provides an alternative ap-
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proach to computing HNoop that is not purely greedy,
instead relying on decomposition for efficiency.

6 Experimental Results

Our evaluation uses a real dataset of the Red-cockaded
Woodpecker (RCW) recovery project from Sheldon
et al. [2010] along with some hand-designed synthetic
maps. The various problems differ in terms of the spa-
tial layout of available parcels, the initial population
of birds, and the set of parcels that are already re-
served (i.e. free parcels). The real RCW map is from
a large land region of the southeastern United States
that was of interest to The Conservation Fund. The
region was divided into 443 non-overlapping parcels
(each with area at least 125 acres) and 2500 patches
serving as potential habitat sites. Parcel costs were
based on estimated land prices.

Throughout the experiments, we use a reliable MIP
solver, IBM CPLEX, to directly solve MIPs if needed.
Our experiments are performed on a single core ma-
chine with a memory limit of 6GB. We do not set time
limit for the computation.

Performance of Dual Decomposition. Here we
compare the use of Dual Decomposition (DD) for com-
puting the HOP policy compared to directly applying
CPLEX to the full HOP policy MIP, which includes
all futures into a single MIP. This provides an indica-
tion of the optimality of DD, when CPLEX can solve
the problems, and also the efficiency/scalability of the
approach. We use the large RCW map and run DD
until either the step size α ≤ 0.001 or a maximum of
50 iterations is reached.

Table 1 shows the HOP value computed by CPLEX
and DD as well as the timing results for time horizon
H = 20. When a method fails to return a solution,
no value is shown in the table. From the table, we see
that the objective value of DD is very close or equal to
that of CPLEX, meaning that DD is providing an ex-
tremely close approximation to the HOP policy. When
the number of future scenarios is small, the MIP in-
stances seen by CPLEX are relatively small and can
be solved quickly by CPLEX. As the number of fu-
tures increases, CPLEX takes a much longer time to
find solutions compared to DD or even fails to solve
the problem within a reasonable amount of time and
memory. To make the problem more challenging, we
increase the time horizon to H = 40 where the prob-
lem size is much larger. Table 2 shows the results.
We see similar results, but they are more pronounced
since the problems seen by CPLEX are now signifi-
cantly larger. The expensive computation and failures
of CPLEX indicate that the full MIP approach is not
practical to solve real-world problems.

Table 1: Solution Quality and Run Time(H=20)
N CPLEX-OBJ DD-OBJ CPLEX-Time(s) DD-Time(s)
5 -393.0 -392.4 26.8 112.0
10 -389.6 -388.0 41.9 100.3
15 -354.5 -353.2 71.2 79.0
20 -382.6 -381.4 102.5 210.8
25 -383.2 -381.2 368.7 159.8
30 -378.6 -375.0 650.8 187.1
35 -380.7 -377.9 430.1 205.6
40 -394.2 -392.8 1201.3 247.6
45 -391.3 280.3

Table 2: Solution Quality and Run Time(H=40)
N CPLEX-OBJ DD-OBJ CPLEX-Time(s) DD-Time(s)
5 -502.4 -502.4 61.8 94.4
10 -480.8 -480.4 196.9 181.4
15 -505.7 -501.7 1039.7 294.2
20 -504.6 -504.6 1417.2 358.2
25 -500.8 -499.7 4091.1 487.0
30 -502.3 568.5

It is important to note that DD can be easily paral-
lelized to achieve significant speedup in terms of the
number of processors. In particular, if we use one
processor per future, the wall clock time per iteration
would be equal to the maximum time required to solve
an individual future. If those times are nearly uniform
then this would result in nearly linear speedup.

Adaptive Planning Results on Synthetic Maps.
We now evaluate the quality of the HOP policies and
compare it with the GreedyZero and HNoop policies.
The results reported for each algorithm are averaged
over 10 runs to account for randomness of the envi-
ronment and sample futures. We note that we have
attempted to apply other planning formalisms to this
problem, such as Monte-Carlo Tree Search, but with-
out success due to the extreme action and stochastic
branching factors of our problems.

We created two simple grid maps (Figure 2) to illus-
trate the advantage of the non-myopic HOP policy
over the more myopic baselines. In the maps, each
grid represents one parcel and the patches are marked
using their indexes. The cost of each parcel is 1 and
the annual budget is also 1. In other words, only one
parcel can be purchased each year. In the first grid
map, most parcels contain only one patch, but there
are many parcels with two patches in the south of the
initial population. Generally speaking, there are two
possible directions of purchasing: to either the North-
west or the Southeast. Presumably, purchasing the
Northwest part would lead the population to the most
promising free area as long as the time horizon is large
enough for the population to spread there, while the
Southeast provides more instant benefit as each year
two patches would be available instead of only one. It
is obvious that the optimal policy would follows the
first strategy in order to maximize the long-term re-
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Figure 2: (Left) Grid Map 1. (Right) Grid Map 2. For both maps, the number marks the index of patches
and each grid represents one parcel. The initially occupied patches are numbered in red and the free parcels are
shaded in green.

ward. The results shown in Table 3 illustrate that
HOP recognizes the potential benefit of the free parcels
and purchases parcels towards the correct direction,
while GreedyZero and HNoop are easily distracted by
the Southeast purchasing due to their myopia.

Grid map 2 is similar to grid map 1, but the purchas-
ing is not limited to only two directions so a plan-
ner would have more choices of purchasing, which also
means more distractions from the far-away free area.
Again, HOP recognizes the potential benefit of the
free parcels and purchases parcels towards that direc-
tion, while GreedyZero and HNoop expand the reserve
around the initial population uniformly. This leads
HOP to achieve a higher reward as shown in Table 3.

Table 3: Rewards on Different Maps
Map HOP HNoop GreedyZero
Grid map 1 85.2 35.0 70.2
Grid map 2 32 25.1 23.2
Real map 248.75 220.6 198.8

Adaptive Planning Results on Real Map. The
real map (Figure 3) shows, via red + marks, where the
initial bird population is, and free parcels are shaded
in dark gray. Parcels shaded in pink are expensive
yet affordable ones. The right map gives the natural
population spread that would result if all parcel were
conserved. We see that the free area in the Northeast
corner is promising for optimal reward, therefore the
optimal solution prefers to build a path from the initial
population to it as long as there is enough budget and
time for diffusion. However, many parcels on such a
path are comparatively more expensive, adding more
distractions for myopic decision makers.

We present the reward data for the three policies in Ta-
ble 3, showing that HOP gains more reward than oth-
ers. To further check their strategies, we plot the pur-
chased parcels and corresponding population spread of
the HOP and HNoop policies in Figures 4 and 5. While

not shown, the GreedyZero policy gradually purchases
parcels around the initial population. Compared to
GreedyZero, HNoop finds the Southwest part more
beneficial for longer term population spread, so more
parcels are bought in that direction. However, HNoop
fails to recognize the most promising free area in the
Northeast, which requires consideration of future ac-
tions. HOP rather recognizes the Northeast area and
purchases expensive parcels to build a path to the free
parcels. In addition, HOP also buys parcels around
the initial population if the reward gain is justified.

7 Summary and Future Work

We presented an action selection approach for adaptive
conservation planning where it is necessary to dynam-
ically reason about an extremely large set of resource
management decisions and how they will impact the
stochastic population spread. Our algorithm, based on
hindsight optimization (HOP), is the first non-myopic
approach for this problem and was shown to be effec-
tive compared to natural baselines. The main tech-
nical contribution was to show how to compute HOP
policies for huge factor action spaces, for which prior
HOP algorithms were inapplicable.

In future work, we plan to consider more broadly de-
fined problem classes that involve the adaptive con-
trol of stochastic diffusion processes and other types of
stochastic exogenous events. Such problems expose se-
rious limitations of most AI planning techniques, mak-
ing them an interesting sub-class from an AI research
perspective. It is also of interest to understand addi-
tional conditions under which HOP policies can pro-
vide theoretical guarantees, and also tractable modifi-
cations to HOP that might support such guarantees.
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Figure 3: (Left) Initial state of the real map. (Right) The population distribution after 20 years on the real map.

t = 5 t=10 t=15 t=20

Figure 4: Purchases and population spread of HNoop. Parcels shaded in green are purchased with a probability
of ≥ 0.5. Yellow is used for parcels with purchase probability of < 0.5. Patches are colored by the probability of
being occupied (lighter color indicates lower probability).

t = 5 t=10 t=15 t=20

Figure 5: Purchases and population spread of the HOP policy. The color setting is the same as Figure 4.
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