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Abstract—Ecological inference (EI) is a classical problem from
political science to model voting behavior of individuals given only
aggregate election results. Flaxman et al. recently formulated
EI as machine learning problem using distribution regression,
and applied it to analyze US presidential elections. However,
distribution regression unnecessarily aggregates individual-level
covariates available from census microdata, and ignores known
structure of the aggregation mechanism. We instead formulate
the problem as learning with label proportions (LLP), and develop
a new, probabilistic, LLP method to solve it. Our model is the
straightforward one where individual votes are latent variables.
We use cardinality potentials to efficiently perform exact inference
over latent variables during learning, and introduce a novel
message-passing algorithm to extend cardinality potentials to
multivariate probability models for use within multiclass LLP
problems. We show experimentally that LLP outperforms distri-
bution regression for predicting individual-level attributes, and
that our method is as good as or better than existing state-of-
the-art LLP methods.

I. INTRODUCTION

Ecological inference (EI) is the problem of making inferences
about individuals from aggregate data [13]. EI originates in po-
litical science, where its history is closely intertwined with the
specific application of inferring voting behavior of individuals
or demographic groups from vote totals for different regions.
EI maps onto a growing number of problem settings within
machine learning—including distribution regression [7], [27],
optimal transport [17], learning with label proportions [14],
[18], [29], multiple-instance learning [4], [10], and collective
graphical models [23], [24], [26]—where one wishes to perform
supervised learning, but supervision is only available at an
aggregate level, e.g., as summary statistics for “bags” of
instances.

We consider the classical EI problem of analyzing voting
behavior, motivated in particular by US presidential elections.
Although there has been vigorous historical debate about
the inherent limitations of EI [8], [12], [13], [22], work in
machine learning makes it clear that, if one is careful to state
assumptions and goals clearly, it is indeed possible to learn
individual-level models from aggregate data [2], [18], [27], at
least asymptotically. One must still be careful to map these
results back to the application at hand; for example, a typical
result may be that it is possible to consistently estimate the
parameters of an individual-level model given enough group-
level observations. This would not imply the ability to infer
the outcome or behavior of a single individual.

We will focus on the EI voting problem formulated in [6], [7],
where a collection of individual-level demographic covariates is
available for each geographical region in addition to the region-
level voting totals. In the US, individual-level demographic
data for different regions is readily available from the Census
Bureau [1]. In [6], [7], the EI problem is then formulated
as distribution regression, where a function is learned to
map directly from the distribution of covariates within each
region to voting proportions. This is accomplished by creating
kernel mean embedding vectors for each region, and learning
a standard regression model to map mean embedding vectors
to voting proprortions. Theoretical results about distribution
regression support the ability of such an approach to correctly
learn a model to make region-level predictions for new regions,
assuming they are distributed in the same way as the regions
used to train the regression model [27].

We argue that EI is more naturally modeled as a learning
with label proportions (LLP) problem. Distribution regression
treats voting proportions as generic labels associated with
the covariate distributions for each region, which ignores a
great deal of information about the problem. First, we know
the precise aggregation mechanism: there is one vote per
individual and these votes are added to get the totals. Second,
in solving the problem, distribution regression unnecessarily
aggregates the information we do know about individuals (the
covariates) by constructing a mean embedding. In contrast, LLP
acknowledges that the voting proportions come from counting
the number of times each label appears in a bag of instances.
It is able to use individual covariates and reason relative to the
actual aggregation mechanism.

We posit a simple and natural probabilistic latent variable
model for EI that places it within an LLP framework. In
our model, each individual possesses an observed covariate
vector xi and an unobserved label yi (the candidate they voted
for), and, within each region, the total number of votes for
each candidate is obtained by aggregating the yi values. We
then learn a logistic regression model mapping directly from
covariates to individual-level labels. Because the individual
labels are unobserved at training time, we use expectation
maximization (EM) for learning. The key computational
challenge is therefore to perform inference over the yi values
given the totals. We show that techniques for graphical models
with counting potentials [9], [28] solve this problem exactly
and efficiently. Furthermore, we develop a novel message-



passing algorithm to extend counting potentials to multivariate
probability models, and thus multiclass classifiction. The result
is the the first direct maximum-likelihood approach to LLP
based on the “obvious” latent variable model.

To evaluate different EI methods, we design a realistic
testbed for designing synthetic problems that mimic the
voting prediction problem. We use geographic boundaries and
individual-level covariates that match those used in analysis
of the US presidential elections. We then design a variety of
synthetic tasks where we withhold one covariate and treat
this as the variable to be predicted. At training time, only
aggregated per-region counts are provided for the withheld
variable. Within this framework we control factors such as the
number of individuals per region and the number of classes to
obtain a variety of realistic EI tasks. For the task of learning
models to make individual-level predictions, we show that LLP
methods significantly outperform distribution regression, and
that our fully probabilistic approach to LLP outperforms other
existing state-of-the-art methods. We also assess the ability of
different LLP methods as well as distribution regression to
predict the voting behavior of different demographic groups in
the 2016 US Presidential Election by making predictions using
EI and then comparing the results with exit poll data. We find
that EI methods do better on qualitative tasks, such as ordering
subgroups by their level of support for Hillary Clinton, than
they do in predicting precise voting percentages.

II. RELATED WORK

LLP has been applied to many practical applications such
as object recognition [14], ice-water classification [16], fraud
detection [21], and embryo selection [11].

Early approaches to LLP do not atempt to infer individual
labels: the Mean Map approach of [19] directly estimates
the sufficient statistics of each bag (i.e., region) by solving a
linear system of equations. The sufficient statistics summarize
the information from each bag that is relevant for estimating
model parameters. The Inverse Calibration method of [21]
treats the mean of each bag as a “super-instance” (similar to
the kernel mean embedding used in the distribution regression
approach to EI [7]) and treats label proportions for each bag as
target variables within a variant of Support Vector Regression.
In contrast, our work explicitly models individual labels and
the structural dependency between individual labels and their
aggregate class counts.

Several recent LLP approaches reason explicitly about
individual labels, but not in a fully probabilistic manner. [25]
first clusters training data given label proportions, and classifies
new instance using either the closest cluster label, or a new
classifier trained from cluster-predicted training data labels.
Alter-∝SVM [29] poses a joint large-margin optimization
problem over individual labels and model parameters, and
solves it using alternating optimization. One step in the
alternating optimization imputes individual labels. The Alter-
CNN [16] and Alternating Mean Map (AMM) [18] methods
also alternate between inferring individual lables and updating
model parameters. However, all of these approaches infer

“hard” labels for each instance (either 0 or 1). Alter-CNN is
formulated probabilistically, but uses “Hard”-EM for learning,
which is a heuristic approximate version of EM. In contrast,
our method is conventional maximum-likelihood estimation in
the straightforward probability model, and we conduct marginal
inference instead of MAP inference over missing individual
labels.

Several other papers formulate probabilistic models for LLP,
but, unlike our method, resort to some form of approximate
inference, such as “hard”-EM [16] or MCMC [11], [14]. The
authors of [11] also propose an EM approach with exact
probability calculations in the E step, but using brute-force
algorithms that do not scale beyond very small problems; for
larger problems they instead resort to approximate inference.
In contrast to all previous work, we apply exact and efficient
inference algorithms using counting potentials [9], [28] to
directly maximize the likelihood in the natural probability
model.

III. BACKGROUND AND PROBLEM STATEMENT

We now formally introduce the ecological inference problem
and describe how it fits within an LLP context. Recall that
we assume the availability of individual-level covariates and
region-level voting totals for each voting region. In this section,
we restrict our attention to binary prediction problems, i.e.,
we assume there are only two voting options (e.g., candidates
from the two major US political parties). We will generalize
to multiclass problems in Section IV-C.

Within a single voting region, let xi denote a vector of
demographic features for the ith individual, and let yi ∈ {0, 1}
denote that individual’s vote, e.g., yi = 1 if the individual votes
for the Purple party. Note that we never observe yi, and we
obtain a sample of xi values from the Public Use Microdata
Sample [1]. We also observe z, the total number of votes for
the Purple party, and n, the total number of voters in the region.

Assume there are B regions in total, and, following LLP
terminology, refer to regions as “bags” of instances. The
underlying data for bag b is {(xi, yi)}i∈Ib where Ib is the
index set for bag b. In the training data, instead of observing
individual yi values, we observe zb =

∑
i∈Ib yi, the number

of positive instance in the bag. The overall training data is(
{xi}i∈I1 , z1

)
, . . . ,

(
{xi}i∈IB , zB

)
,

where each example consists of a bag of feature vectors and
total number of positive votes for the bag. The goal is to learn
a model to do one of two tasks. The first task is individual-
level prediction: predict yi given a new xi. The second task
is bag-level prediction: predict zb given a new bag {xi}i∈Ib
without any labels.

A. Comparison Between LLP and Distribution Regression

The generative model for LLP is illustrated in Figure 1a.
The figure shows a single bag, for which the feature vectors xi

and vote total z are observed, but the individual labels yi are
unobserved. The conditional distribution of z is specified by
the deterministic relationship z =

∑
i yi. In a probabilistic LLP
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Fig. 1. LLP and distribution regression models for EI. (a) In LLP, there is a
latent variable yi for each individual, and z =

∑
i yi is the number of positive

instances. (b) In distribution regression, yi is ignored; µ is an aggregated
summary of the xi’s, and a regression model is learned to map directly from
µ to z.

model, p(yi | xi) is Bernoulli, and the modeler may choose any
regression model for the success probability, such as logistic
regression, as we do below, or a CNN [16].

For comparison, Figure 1b illustrates the mean embedding
approach to distribution regression [7], [27]. Here, the yi
variables are ignored, as is the known relationship between
the yi variables and z. Instead, the (empirical) distribution of
the xi values in the bag is summarized by a mean embedding
into a reproducing kernel Hilbert space. In practice, this
means computing the average µ = 1

n

∑n
i=1 φ(xi) of expanded

features vectors φ(xi) for each individual. Then, a standard
regression model is learned to predict z directy from µ.
Distribution regression introduces a tradeoff between the ability
to preserve information about the individual-level covariates and
complexity of the model. A feature expansion corresponding
to a characteristic kernel preserves information about the
distribution of the covariates, but is necessarily infinite and
must be approximated; a very high-dimensional approximation
will likely lead to increased variance in the following regression
problem. If a simple feature expansion, such as a linear one, is
used, it is clear the approach discards significant information
about the individual-level covariates by simply computing their
mean. LLP avoids this tradeoff by leveraging known structure
about the problem.

IV. OUR APPROACH

We now present our approach, which is based on the
generative model in Figure 1a and the EM algorithm. We
adopt the logistic regression model p(yi = 1 | xi; θ) = σ(xT

i θ)
where σ(u) = 1/(1 + e−u). It is straightforward to consider
more complex regression models for p(yi = 1 | xi; θ) without
changing the overall approach. This completes the specification
of the probability model

We now turn to learning. A standard approach is to find θ
to maximize the conditional likelihood:

p(y, z | x; θ) =
B∏

b=1

(
nb∏
i=1

p(yi | xi; θ)

)
p(zb | yb).

In this equation, let yb = {yi}
nb
i=1 denote the set of labels in

bag b, let xb = {xi}nb
i=1 denote the set of feature vectors, and

let y, z, and x denote the concatenation of the yb, zb, and xb

variables from all bags. Also recall that p(zb | yb) = 1[zb =∑nb

i=1 yi]. The obvious challenge to this learning problem is
that the y variables are unobserved.

A. EM

EM is a classical approach to address the problem of missing
variables within maximum-likelihood estimation [3]. A detailed
derivation of EM for our model is given in Appendix A. In
the tth iteration, we will select θ to maximize the following
function, which is a constant plus a lower bound of the log-
likelihood:

Qt(θ) = Ey|z,x[log p(y, z | x; θ)]

=
∑
b

Eyb|zb,xb

(
log p(zb | yb) +

∑
i

log p(yi | xi; θ)

)
=
∑
b

∑
i

Eyi|zb,xb
log p(yi | xi; θ) + const (1)

The expectation is taken with respect to the distribution
parameterized by θt. The term log p(zb | yb) is constant with
respect to θ and is ignored during the optimization. Specializing
to our logistic regression model, the lower bound simplifies to:

Q(θ)=
∑
b

∑
i

qi log σ(x
T
i θ) + (1−qi) log(1−σ(xTi θ)) (2)

where qi := p(yi = 1 | zb,xb; θt), and we have dropped an
additional constant term from Equation (1).

The M step, which requires maximizing Q(θ) given the
qi values, is straightforward. Equation (2) is the same cross-
entropy loss function that appears in standard logistic regression,
but the with “soft” labels qi appearing in place of the standard
0-1 labels. It can be optimized with standard solvers.

The E step, however, is challenging. It requires computing
the posterior distribution p(yi | xb, zb; θt) over a single yi value
given the observed data xb and zb and the current parameters
θt. This corresponds exactly to inference in the graphical model
shown in Figure 1a. Note that all variables are coupled by
the hard constraint 1[zb =

∑nb

i=1 yi], and that this is a factor
involving nb +1 variables, so it is not clear based on standard
graphical model principles that efficient inference is possible.

B. Efficient Exact Inference with Cardinality Potentials

Tarlow et al. [28] showed how to perform efficient marginal
inference for a set of n binary random variables y1, . . . , yn
described by a probability model of the form:

q(y1, . . . , yn) ∝
∏
i

ψi(yi)φ
(∑

i

yi
)
, (3)

where each variable has a unary potential ψi(yi), and there
is a single cardinality potential φ(

∑
i yi), which couples all

of the variables but depends only on the number that take a
positive value. Our model fits in this form. Consider the model
for a single bag, and dispense with the bag index, so that the
variables are x = {xi}, y = {yi} and z. Our model for the
bag has unary potentials ψi(yi) = p(yi | xi; θ) and counting



potential φ
(∑

i yi
)
= 1[z =

∑
yi]. The method of [28] can

compute the marginal probability q(yi) for all i in O(n log2 n)
time. In our model q(yi) = p(yi | x, z; θ) is exactly what we
wish to compute during the E step, so this yields an E step
that runs efficiently, in O(n log2 n) time.

We now give details of the inference approach, but present
them in the context of a novel generalization to the case when
y1, . . . , yn ∈ {0, 1}k are binary vectors of length k. Such a
generalization is necessary for the most direct extension of our
LLP approach to multiclass classification, in which p(yi | xi; θ)
is a categorical distribution over three or more alternatives. In
Section IV-C, we describe this approach in more detail as well
as a different and faster approach to multiclass LLP.

Henceforth, assume that y1, . . . , yn are binary vectors that
follow a joint distribution in the same form as Equation (3). To
preview the meaning of the multivariate model, the binary
vector yi will be the “one-hot” encoding of the class for
individual i, the unary potential is ψi(yi) = p(yi | xi; θ),1

and the counting potential φ
(∑

i yi
)
= 1[

∑
i yi = z] will

encode the constraint that the total number of instances in each
class matches the observed total, where z is now a vector of
counts for each class. The description of the multivariate model
is symbolically nearly identical to the scalar case.

The key observation of [28] is that it is possible to introduce
auxiliary variables that are sums of hierarchically nested subsets
of the yi variables, and arrange the auxiliary variables in a
binary tree with z =

∑
i yi at the root. Then, inference is

performed by message-passing in this binary tree.

z1

y1 y2

z2

y3 y4

z3

φ

Fig. 2. Illustration auxiliary variables arranged in a binary tree factor graph
for inference with a cardinality potential. Each non-leaf node is a deterministic
sum of its children. The root node z is equal to

∑
i yi.

Figure 2 illustrates the construction as a factor graph for
an example with n = 4. The nodes are arranged in a binary
tree. Each internal node zp is connected to two children, which
we will denote zl and zr (for left and right), by a factor
which encodes that zp is deterministically equal to the sum
of zl and zp, i.e., ψ(zp, zl, zr) = 1[zp = zl + zr]. The unary
factors at each leaf are the original unary potentials ψi(yi).
The auxiliary nodes and factors enforce that the root node z
satisfies z =

∑
i yi. Then, the factor attached to the root node

1Note: this factor has 2k entries indexed by the binary values yi1, . . . , yik .
In this particular model, the binary vector is a one-hot vector, so
ψi(yi1, . . . , yik) is nonzero if and only if there is a single nonzero yij .
The inference technique also applies to arbitrary distributions over binary
vectors, for which potentials would not have this structure.

is the cardinality potential φ(z) = 1[z = zobs], where zobs is
the observed total.

This model is a tree-structured factor graph. Hence, exact
inference can be performed by message passing using a leaf-
to-root pass followed by a root-to-leaf pass. Although there are
only O(n) messages, the support of the variables grows with
height in the tree. A node zl at height i is a sum over 2i of the
yi values, so it is a vector with entries in {0, 1, . . . , 2i}. We will
write this as zl ∈ [m]k where m = 2i and [m] = {0, 1, . . . ,m}.
Note that m is never more than n.

zp

zl zr

ψ

αp(zp)

αl(zl) αr(zr)

zp

zl zr

ψ

βp(zp)

βl(zl) αr(zr)

(a) (b)

Fig. 3. Illustration of messages from the factor ψ = 1[zp = zl + zr]. (a)
The upward message αp(zp) is computed from αl(zl) and αr(zr); (b) The
downward message βl(zl) is computed from βp(zp) and αr(zr), similarly
for βr(zr). See text for details.

The message passing scheme is illustrated in Figure 3.
For any internal node zu, let αu(zu) denote the incoming
factor-to-variable message from the factor immediately below
it. Similarly, let βu(zu) be the incoming factor-to-variable
message from the factor immediately above it. Because each
internal variable is connected to exactly two factors, the
variables will simply “forward” their incoming messages as
outgoing messages, and we do not need separate notation for
variable-to-factor messages.

The message operation for the upward pass is illustrated in
Figure 3(a). The factor ψ connects children zl and zr to parent
zp. We assume that zl, zr ∈ [m]k for some m, and therefore
zp ∈ [2m]k. The upward message from ψ to zp is

αp(zp) =
∑

zl∈[m]k

∑
zr∈[m]k

αl(zl)αr(zr)1[zp = zl + zr]

=
∑

zl∈[m]k

αl(zl)αr(zp − zl). (4)

Upward message computation:

αp(zp) =
∑

zl∈[m]k

αl(zl)αr(zp − zl)

Downward message computation:

βl(zl) =
∑

zp∈[2m]k

βp(zp)αr(zp − zl)

βl(zr) =
∑

zp∈[2m]k

βp(zp)αl(zp − zr)

Fig. 4. Summary of message passing for cardinality potentials. Each
message operation is a convolution; the entire message can be computed
in O(mk logm) time by the multidimensional FFT. The overall running time
to compute all messages is O(nk log2 n).



Similarly, the downward message to zl, illustrated in Fig-
ure 3(b), has the form

βl(zl) =
∑

zp∈[2m]k

∑
zr∈[m]k

βp(zp)αr(zr)1[zp = zl + zr]

=
∑

zp∈[2m]k

βp(zp)αr(zp − zl). (5)

Note that the upward and downward message operations
in Equations (4) and (5) both have the form of a con-
volution. Specifically, if we let ∗ denote the convolution
operation, then αp = αl ∗ αr, and βl = βp ∗ α̂r, where
α̂r(zr1, . . . , zrk) = αr(m − zr1, . . . ,m − zrk) is the factor
with the ordering of entries in every dimension reversed. While
a direct iterative convolution implementation can compute
each message in O(m2k) time, a more efficient convolution
using multidimensional fast Fourier transform (FFT) takes only
O(mk logm) time.

The maximum computation time for a single message is
O(nk log n), for the messages to and from the root. It can be
shown that the total amount of time to compute all messages for
each level of the tree is O(nk log n), so that the overall running
time is O(nk log2 n). The upward and downward message-
passing operations are summarized in Figure 4.

C. Multiclass Classification

We explore two different methods to extend our LLP
approach to multi-class classification: softmax or multinomial
regression and one-vs-rest logistic regression. Consider the
case when there are C ≥ 3 classes. It is convenient to assume
yi is encoded using the “one-hot” encoding, i.e., as a binary
vector of length C with yic = 1 if and only if the label is c.
For each bag, we now observe the vector z =

∑
i yi; the entry

zc is the total number of instances of class c in the bag.
a) Softmax regression: The obvious generalization of

our logistic regression model to multiclass classification is
multinomial or softmax regression. In this case, p(yi | xi; θ)
is a categorical distribution with probability vector µi = E[yi]
obtained through a regression model. The entry µic is the
probability that yi encodes class c, and is given by:

γic = exp(θTc xi), µic = γic/
(∑

c′

γic′
)
.

The parameters θ of the model now include a separate parameter
vector θc for each class c.

Our EM approach generalizes easily to this model. The
M step remains a standard softmax regression problem. The
E step requires computing the posterior probability vector
qi = E[yi | x, z; θ] for every instance in the bag. This is
exactly the problem we solved in the previous section for
cardinality potentials over binary vectors. Since each yi, µi,
and qi vector sums to one, we may drop one entry prior to
performing inference, and complete the E step for a bag with
n instances in O(nC−1 log2 n) time.

This approach is appealing because it is follows a widely
used multiclass classification model, which is the natural
generalization of logistic regression. However, a drawback

is that the running time of the E step grows exponentially with
the number of classes, which may be too slow in practice when
the numbers of instances or classes grows large.

b) One-vs-Rest Classification: An obvious alternative to
softmax regression is one-vs-rest logistic regression, in which
a separate logistic regression model is learned for each class c
by training on the binary task of whether or not an instance
belongs to class c. At test time, the class that predicts the
highest probability is selected. This model has been observed
to work well in many settings [20]. For our LLP model, it
has a significant running-time advantage: each classifier can
be trained in the binary prediction setting, so the E step will
always run in O(n log2 n) time, regardless of the number of
classes.

V. EXPERIMENTS

A. Overview

Our approach is designed for the setting where the learner has
access to individual-level covariates, but the outcome variable
has been aggregated at the bag level. We apply our model to
the problem of inferring how demographic subgroups voted
in an election—from voting results and Census demographic
data, we would like to, for example, infer what proportion of
a particular minority group voted for a particular candidate. In
this setting,

• The outcome is aggregated at the bag-level: voting is
anonymous, and proportions of how people voted are
known only at coarse aggregations by geographic region,
from officially released precinct-level vote totals.

• Demographics are individual-level: the U.S. Census re-
leases anonymized “microdata,” which consists of covari-
ate vectors of demographic attributes of individuals. It is
not known how individuals voted, of course.

Flaxman et al. [6], [7] apply distribution regression for this
problem, performing aggregation on microdata demographics
as a preprocessing step. In order to test our hypothesis that
individual-level modeling can improve these inferences, we
conduct a series of experiments:

• (§V-B): Synthetic experiments. We follow [30] and hide
a known attribute from the individual-level data, and at
training time our model accesses it only as aggregated
proportions per region. We evaluate models in their ability
to accurately predict the hidden attribute for individuals.

• (§V-C): 2016 presidential elections. Here, we look at the
same task as in [6]: trying to infer the individual-level
conditional probability p(vote Dem | f) for any arbitrary
feature f(x) of an individual’s covariates x (e.g., “person
is Hispanic/Latino and lives in Illinois”). We train the
model with official per-geography voting tallies for the
outcome, and a large set of Census demographic covariates
for individuals, and perform custom aggregations of the
model’s inferences to analyze f(x) selections. Quantitative
performance is evaluated by comparing to separate survey
evidence (exit polls) for the same election.



Individual-level census data (x) is obtained from American
Community Survey’s Public Use Microdata Sample (PUMS),
which covers all of the United States (including D.C. and
Puerto Rico).2 Its millions of records each represents a single
person or demographically typical person, along with a survey
weight representing how many people are represented by that
record, based on the Census’ statistical inferences to correct
for oversampling, non-response, and to help preserve privacy.
We use Flaxman et al.’s open-source preprocessor (used for
[6])3 to select and process the Census data. It merges PUMS
data from 2012–2015, resulting in 9,222,638 records, with an
average survey weight of 24.2.

PUMS is coded and partitioned geographically by several
hundred Public Use Microdata Areas (PUMAs), which are
contiguous geographic units with at least 100,000 people
each. Since PUMAs do not exactly coincide with counties for
which official electoral statistics are reported, the processing
scripts merge them with overlapping counties (taking connected
components of the bipartite PUMA-county overlap graph),
resulting in 979 geographical regions. On average each region
contains 9,420 PUMS records, representing on average 228,342
(stdev 357,204) individuals per region, when accounting for
survey weights.

Each raw individual record x is comprised of 23 continuous
covariates such as income and age, and 97 categorical covariates
such as race, education, and spoken language. [7] used
FastFood [15] to approximate a kernel map φ(x), then averaged
φ(x) vectors to produce per-region mean embeddings for
distribution regression. Materials posted for later work [6]
suggest that linear embeddings may perform similarly as
nonlinear, random Fourier-based embeddings. To simplify our
current investigation, we only consider linear embeddings in
this work.

We use the same preprocessing routine to further process
the covariates; it standardizes continuous covariates to z-scores,
binarizes categorical covariates, and adds regions’ geographical
centroids, resulting in 3,881 dimensions for x in the model.

For reference, descriptions of several covariates are shown
in Table I, including ones inferred for the synthetic prediction
experiments as well as exit poll analysis.4 In some cases,
the number of categories results from coarsening the original
Census categories (e.g. SCHL has 25 categories in the original
data, but is coarsened to 4 for prediction purposes), using
the same preprocessing rules as in previous work. (The
3,881 dimensions for modeling use the original non-coarsened
covariates.)

Finally, for computational convenience, we perform two
final reductions on the x data before model fitting. First, for
most experiments we subsample a fixed number of individuals
per region, sampling them with replacement according to the
PUMS survey weights. Second, we use PCA to reduce the

2https://www.census.gov/programs-surveys/acs/data/pums.html
3https://github.com/dougalsutherland/pummeler
4Details of all variables are available at: https://www2.census.gov/

programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict15.txt

TABLE I
COVARIATES

Num.
Classes

Covariate Description

2 SEX Gender
2 DIS With or without disability

3 WKL When last worked

4 SCHL Educational attainment (high school or less, some
college/assoc degree, college graduate, postgraduate
study)

5 RAC1P Race (White, Black, Asian, Hispanic/Latino, Other)

covariates to 50 dimensions, which preserves approximately
80% of the variance in x.

B. Synthetic experiments

1) Partial synthetic data: We create partial synthetic data
following the same procedure as [30]: we hide a known discrete
variable from x and try to predict it from the other variables. At
training time, we supply it as supervision only as an aggregated
count by region (zb =

∑
i∈Ib yi). We evaluate models in their

ability to predict the hidden variable for individuals in held-out
data.

The training data is prepared by sub-sampling either 10
or 100 individual records per region (as described in §V-A);
we test both settings since prior literature has occasionally
examined performance as a function of bag size. The test set is
constructed to include 10,000 records sampled from all regions
(by survey weight), from records that that were never selected
for the training set.

For certain hidden response variables, some covariates are
duplicates or near-duplicates, which makes the prediction
problem too easy. We make the problem harder by removing
attributes in x that have at least one value with Pearson
correlation higher than 0.7 with the response (hidden attribute).
For example, if NATIVITY (native or foreign born) was the
response variable, it has high absolute correlations to two
different values of CIT (citizenship status): binarized values
CIT_4 (US citizen by naturalization) and CIT_1 (born in the
US) have Pearson correlations of 1 and 0.85, respectively.
Furthermore, DECADE_nan (Decade of entry is N/A, meaning
born in the US), and WAOB_1 (world area of birth is US state)
also have high absolute correlations (both 0.85). Thus all CIT,
DECADE, and WAOB attributes are removed. Depending on
which hidden attribute is used as response and how many
covariates are highly correlated, the number of covariates
(out of 3,881) we removed ranges from 0 for HICOV (health
insurance available) to 965 for WKL (when last worked).

2) Models: We test a series of logistic regression models,
all of which can make predictions for individuals.

• individual: an oracle directly trained on the indi-
vidual labels. This is expected to outperform all other
methods, which can only access aggregated counts.

• mean-emb: logistic regression trained with mean
embedding vectors and label proportions for each

https://www.census.gov/programs-surveys/acs/data/pums.html
https://github.com/dougalsutherland/pummeler
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict15.txt
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict15.txt
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Fig. 5. Predictive accuracies of trained models for 2, 3, or 4 labels classification tasks. The hidden attributes we chosen are Disability (DIS), When last
worked (WKL), and Ancestry recode (ANC). We consider a small bag and a larger bag (10 or 100 instances per bag)) for each hidden attribute. Shaded error
bars are 95% confidence intervals computed from 10 repeated trials.

region. (Since the sampling already accounts for survey
weights, the mean embedding vector for one region is
the simple average µ̂b =

1
n

∑
i∈Ib xi.)

• AMM: logistic regression trained on bags of instances
and label proportions. For multiclass problems, we use
a one-vs-rest (ovr) approach [18].

• cardinality: our method, trained on bags of
instances and label proportions, for binary labels
(§IV-A,IV-B).

• card-exact: our method for multiclass problems,
with exact inference (§IV-C).

• card-ovr: our method for multiclass problems, with
an alternative one-vs-rest formulation, using binary
cardinality inference.

Following [18], we initialize the LLP methods (AMM, car-
dinality, card-exact, card-ovr) from mean-emb’s learned
parameters.

3) Results: Figure 5 shows predictive accuracies of all
trained models on the test set, for several hidden attributes
(with 2, 3, and 4 categories each), with the mean and standard
deviation of performance across 10 different trials. Each trial
consists of one sampled training set, shared between all models
(all trials use the same test set). Results are broadly similar for
other hidden attributes (omitted for space). The results show:

1) LLP outperforms mean embeddings: AMM and the
cardinality models substantially improve on mean-emb,

presumably because they can exploit individual-level
covariate information and the structure of the aggregation
mechanism.

2) Our cardinality method is the most accurate LLP method:
It outperforms AMM, the previous state-of-the-art for
LLP with statistically significant differences for most
sample sizes of regions and individuals. The cardinality
method is a little slower than AMM, though the difference
is minimal in the larger bag setting. Asymptotically, the
running time for the “E”-steps of AMM and card-ovr
are nearly the same: O(kn log n) and O(kn log2 n),
respectively.

3) For multiclass, card-ovr is performs similarly as
card-exact, and is computationally advantageous:
card-ovr takes O(kn log2 n) in runtime and only re-
quires a 1D FFT, versus card-exact’s O(nk−1 log2 n)
runtime and additional memory usage for a multidimen-
sional FFT. The exact method also has some precision
issues (numerical underflow of downward messages) when
running message passing in larger binary trees. Future
work could pursue improvements to exact multiclass
cardinality inference; in the meantime, we recommend
one-vs-rest as an effective practical solution.

4) General observations: as expected, the oracle individual
model outperforms all others. Also note that the larger per-
bag samples (100) result in a harder problem than smaller



(10) per-bag samples, since the training-time aggregation
hides more information when bags are larger.

C. 2016 US Presidential Election Analysis
For real-world experiments, our goal is to infer an individual-

level conditional probability p(vote Dem | f) for any arbitrary
feature f(x) of an individual’s covariates x. We will compare
our predictions for such subgroups to an alternative, well-
established source of information, exit polls at state and national
levels.

1) Experiment: This experiment requires exit polls for
validation, and voting data for model training. Exit polls are
surveys conducted on a sample of people at polling stations,
right after they finish voting; we use the widely reported 2016
exit poll data collected by Edison Research.5

Voting data (z) is based on county-level official results,6

aggregated to the 979 regions. This results in a tuple of vote
totals (vD, vR, voth) for each region: how many people voted
for Clinton (D), Trump (R), or another candidate. Since the
PUMS data includes information on all people—including
nonvoters—we add in nonvoters to the third category, resulting
in the following count vector for each region:

z = (vD, vR, S − vD − vR)

where S is the PUMS estimate of the number of persons in the
region (sum of survey weights). This is a somewhat challenging
setting for the model, requiring it to learn what type of people
vote, as well as their voting preference.

We test the mean embedding model, AMM, and the one-
vs-rest cardinality model, using all 3,881 covariates. Unlike
the previous section, we give the mean embedding model
additional access to all instances in the data (mean embeddings
are constructed from a weighted average of all PUMS records
per region), following previous work. By contrast, for the LLP
models we sample 1000 individuals per region. PCA is again
applied for all models in the same manner as before, and the
LLP models are again initialized with mean-emb’s learned
parameters.

For evaluation, we prepare a held-out dataset with a 1%
subsample from all regions in the 28 exit poll states. After
training each model, we make predictions on held-out records
and aggregate them to state-level and nation-level statistics, so
they can be compared against exit polls. We specifically infer
fraction of the two-party vote

p(vote D | vote D or R, f(x)) =
nD,f

nD,f + nR,f

where nD,f and nR,f are counts of the model’s (hard)
predictions for individuals in the test set with property f(x): for
example, nD,f (and nR,f ) might be the number of Clinton (and
Trump) voters among Hispanics in Illinois. These quantities
are calculated from exit polls as well for comparison.

5This questionnaire was completed by 24,537 voters at 350 voting places
throughout the US on Election Day, from 28 states intended to be representative
of the U.S. We use data scraped from the CNN website, available at: https:
//github.com/Prooffreader/election_2016_data.

6We use [6]’s version of the data, scraped from NBC.com the day after the
election: https://github.com/flaxter/us2016

2) Results: The scatter plots in Figure 6 show predictions
made by different methods vs. the exit poll results. The columns
correspond to methods, and the rows correspond to the feature
used to define subgroups. Each data point represents the
subgroup for one feature value (e.g., males) in one state. There
are up to 28 points per feature value; there may be fewer due
to missing statistics in some state-level exit polls. For example,
only 1% of respondents in Iowa exit polls were Asian, and the
Iowa exit polls do not report the voting breakdown for Asians.

The scatter plots show that EI methods are indeed able to
make correct inferences, but also make certain mistakes. For
most methods and feature values (e.g., mean-emb, males),
the state-level predictions are strongly linearly correlated with
the exit polls—that is, the method correctly orders the states
by how much males in the state supported Clinton. However,
subgroups are often clustered at different locations away from
the 1:1 line, indicating systematic error for that group—this
is especially prominent for SCHL, where all methods tend to
overestimate support for Clinton among college graduates, and
underestimate support among individuals with high school or
less education or with some college. In other examples, such
as mean-emb for ETHNICITY=white, the overall positioning
of the subgroup is correct and the state-level predictions are
well correlated with the exit polls, but the slope is wrong. This
suggests that the model has not correctly learned the magnitude
of other features that vary by state. Overall, the LLP methods
appear qualitatively better (predictions more clustered around
the 1:1 line) for SEX and ETHNICITY, while there is no clear
“winner” for SCHL.

It is also interesting to aggregate the state-level predictions
to national-level predictions. Table II shows national-level
predictions as well exit polls for subgroups defined by gender
(SEX), race (RAC1P), and educational attainment (SCHL).
We see here that the models make mostly correct qualitative
comparisons, such as: Which subgroup has a higher-level of
support for Clinton? Does the majority of a subgroup support
Clinton or Trump? However, the models make notable errors
predicting the majority among men and women. Moreover, the
models have a difficult time predicting the exact percentages
even when the qualitative comparisons are correct.

To quantify these issues further and to gain a better
comparison between the methods, Table III evaluates the
methods based on national-level predictions according to three
different metrics for each feature:

1) Binary prediction is the number of subgroups for which
the method correctly predicts which candidate receives
the majority (e.g., “a majority of males supported Trump”,
“a majority of women supported Clinton”).

2) AUC measures the ability of the methods to order
subgroups by their level of support for Clinton (e.g.,
“females showed higher support for Clinton than males”).
It is measured by ordering the groups by predicted
support for Clinton, and then measuring the fraction
of pairs of groups that are in the correct order relative to
the exit polls; this is related to the area under the ROC
curve [5].

https://github.com/Prooffreader/election_2016_data
https://github.com/Prooffreader/election_2016_data
https://github.com/flaxter/us2016
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Fig. 6. Model predictions versus exit polls, by demographic group and state.
Each color (demographic category) has up to 28 points for its subpopulation
per state (for subgroups large enough such that the exit poll results show
voting numbers).

3) Weighted RMSE measures the numerical accuracy of
the predictions. It is the square root of the weighted
mean-squared error between the predicted and exit poll
percentages, with weights given by the size of each
subgroup.

The results show that the models are indeed generally good at
the comparison tasks, as shown by the binary prediction and
AUC metrics. However, they have considerable error (RMSE
more than 5% in all cases) predicting percentages. There is
no clear winner among the methods across all metrics. The
mean embedding model has the lowest AUC for two out of
three variables, and is tied on the third variable.

TABLE II
NATIONAL-LEVEL VOTING PREDICTIONS FOR CLINTON PER DEMOGRAPHIC

GROUP

mean-emb AMM card exit

SEX
M 0.57 0.51 0.41 0.44
F 0.44 0.47 0.45 0.57

RAC1P

Latino/Hispanic 0.63 0.69 0.77 0.70
White 0.42 0.38 0.31 0.39
Black 0.74 0.93 0.99 0.92
Asian 0.58 0.91 1.00 0.71
Others 0.77 0.83 0.94 0.61

SCHL

High school or less 0.44 0.32 0.18 0.47
Some college 0.34 0.34 0.26 0.46

College graduate 0.71 0.73 0.71 0.53
Postgraduate 0.60 0.68 0.68 0.61

TABLE III
DEMOGRAPHIC-LEVEL MODEL ACCURACY IN PREDICTING VOTING

PROPORTIONS, COMPARED TO EXIT POLLS.

Binary
prediction

AUC Weighted
RMSE

SEX
embed 0/2 0 0.13
AMM 0/2 0 0.09
card 1/2 1 0.09

RAC1P

embed 5/5 0.7 0.08
AMM 5/5 0.9 0.06
card 5/5 0.8 0.11

SCHL
embed 4/4 0.83 0.12
AMM 4/4 0.83 0.15
card 4/4 0.83 0.20

VI. CONCLUSION

In this paper we formulated the ecological inference problem,
motivated by analysis of US presidential elections, in the
framework of learning with label proportions. Compared
with previous approaches, this allows us to use more known
structure of the problem, and preserve information in individual-
level covariates available to us from Census microdata. We
contributed a novel, fully probabilistic, LLP method that
outperforms distribution regression and a state-of-the-art LLP
method on a range of synthetic tasks. Our probabilistic approach
is enabled by adapting message-passing inference algorithms
for counting potentials to a natural latent-variable model for
LLP. We also applied several methods to analyze the 2016 US
presidential election, and found that models frequently make
correct comparisons among different choices or groups, but
may not predict percentages accurately. Here, no method was a
clear winner, but state-level results suggest that LLP methods
are in closer agreement with exit polls.

A direction for further exploration is the potential of non-
linear methods to improve performance. Previous work used
non-linear feature embeddings, and, to a lesser extent, non-
linear kernels for classification [7]. In this work we have
focused on linear embeddings and linear classifiers. However,
our method can support arbitrary non-linear regression models,
e.g., neural networks, for the individual-level model to predict
yi from xi. Exploration of such models is a worthwhile avenue
for future research.
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APPENDIX

A. EM Derivation

The model is:

p(y, z | x; θ) =
B∏

b=1

(
p(zb | yb)

nb∏
i=1

p(yi | xi; θ)

)
(6)

where p(zb | yb) = 1[zb =
∑nb

i=1 yi].
We wish to maximize the marginal log-likelihood of the

observed data z conditioned on x, i.e., maximize

`(θ) = log p(z | x; θ) = log
∏
b

p(zb | xb; θ)

=
∑
b

log
∑
yb

p(zb,yb | xb; θ)

We may introduce a variational distribution µb(yb) and apply
Jensen’s inequality to obtain a lower bound Q(θ) for `(θ):

`(θ) =
∑
b

log
∑
yb

µb(yb)
p(zb,yb | xb; θ)

µb(yb)

≥
∑
b

∑
yb

µb(yb) log
p(zb,yb | xb; θ)

µb(yb)
:= Q(θ)

It is well known that, for a particular value θt, this
lower bound is maximized when µb(yb) = p(yb |
zb,xb; θt). After making this substitution and dropping the term∑

b

∑
yb
−µb(yb) logµb(yb),which is constant with respect to

θ, we may rewrite Q(θ) as:

Q(θ) =
∑
b

Eyb|zb,xb
log p(zb,yb | xb; θ)

=
∑
b

Eyb|zb,xb

[
log p(zb | yb) +

∑
i

log p(yi | xi; θ)
]

=
∑
b

∑
i

Eyi|zb,xb
log p(yi | xi; θ) + const

In these equations, the expectation is with respect to the
distribution p(yb | zb,xb; θt) parameterized by the fixed value
θt. In the last line, log p(zb | yb) is constant with respect to
θ and is ignored. Specializing now to our logistic regression
model, we have:

Q(θ)=
∑
b

∑
i

Eyi|zb,xb

[
yi log σ(x

T
i θ) + (1−yi) log

(
1−σ(xT

i θ)
)]

=
∑
b

∑
i

qi log σ(x
T
i θ) + (1− qi) log

(
1− σ(xT

i θ)
)

where qi := p(yi = 1 | zb,xb; θt) is the posterior probability of
yi given the observed data, and Q(θ) remains a cross-entropy
loss with the “soft” labels qi taking the place of yi.


