Comp. Sci. 501 Syllabus Spring, 2020

CMPSCI 501: Office Hours, Spring 2020
Neil Immerman, CS 374, immerman@cs.umass.edu M 3 - 4 pm: Zoom ID: 819-988-962
Nicholas WilliamsTBA

Handouts:

Please Check this Syllabus Frequently: I will post handouts here.

Date Lecture Sections of text to be Read BEFORE CLASS
W, 1/22 1. Introduction 0.1 - 0.4
F, 1/24 2. Deterministic Finite Automata (DFA) 1.1
M, 1/27 3. Nondeterministic Finite Automata (NFA) 1.2
W, 1/29 4. Regular Expressions and Kleene's Theorem 1.3
F, 1/31 5. The Pumping Lemma: Proving Languages not Regular 1.4
M, 2/3 6. Context-Free Grammars (CFG) 2.1
Tu, 2/4 HW 1 due
W, 2/5 7. Pushdown Automata (PDA) 2.2
F, 2/7 8. Equivalence of CFG's and PDA's
M, 2/10 9. CFL Pumping Lemma: Proving Languages not CFLs 2.3
Tu, 2/11 HW 2 due
W, 2/12 10. Turing Machines (TM) 3.1
F, 2/14 11. Multi-tape and Nondeterministic TMs 3.2
Tu, 2/18 12. Decidable Languages 4.1, HW 3 due
W, 2/19 13.Undecidablity 4.2
F, 2/21 14. Undecidable Problems from Language Theory 5.1
M, 2/24 15. Post's Correspondence Problem (PCP) 5.2
Tu, 2/25 HW 4 due
W, 2/26 16. Reductions 5.3
F, 2/28 17. r.e. Complete Problems 5.3
M, 3/2 18. Church Turing Thesis 3.3
W, 3/4 19. Review
Th, 3/5, 7-9 pm Midterm Evening Exam: Goessman 64
F, 3/6 20. Computational Complexity 7.1
M, 3/9 21. Polynomial Time (P) 7.2
W, 3/11 22. Nondeterministic Polynomial Time (NP) 7.3
F, 3/13 23. Fagin and Cook Theorems 7.4
3/16 -- 3/20 Spring Break
M, 3/23 24. More NP Complete Problems 7.5
Tu, 3/24 HW 5 due
W, 3/25 25. Hierarchy Theorems 9.1
F, 3/27 26. L and NL 8.4, 8.5
M, 3/30 27. Savitch and Immerman-Szelepcsenyi Theorems 8.1, 8.6
W, 4/1 28. Alternation 10.3
F, 4/3 29. More Alternation
M, 4/6 30. P and PSPACE 8.2, 8.3 and 10.5
Tu, 4/7 HW 6 due
W, 4/8 31. Circuit Complexity 9.3
F, 4/10 no class
M, 4/13 32. Circuit Complexity, Continued 9.3
W, 4/15 33. Barrington's Theorem
F, 4/17 34. Parallel Computation 10.5
W, 4/22 35. 10.2
F, 4/24 36. Probabilistic Algorithms: BPL and BPP 10.4
M, 4/27 37. Ladner's Theorem 10.4
Tu, 4/28 HW 7 due
W, 4/29 38. Arthur-Merlin Games and Shamir's Theorem