L25: Hierarchy Theorems
Hierarchy Theorems

If \(f(n) \) is a \(C \)-constructible function;

\(C \) is \(\text{DSPACE}, \text{NSPACE}, \text{DTIME}, \) or \(\text{NTIME} \); and,

if \(g(n) \) is sufficiently smaller than \(f(n) \)

Then \(C[g(n)] \subsetneq C[f(n)] \).

\(g(n) \) sufficiently smaller

than \(f(n) \) means:

\[
\lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0
\]

\[
\lim_{n \to \infty} \left(\frac{g(n) \log(g(n))}{f(n)} \right) = 0
\]

\(C = \text{DSPACE}, \text{NSPACE}, \text{NTIME} \)

\(C = \text{DTIME} \)

Corollaries:

\(\text{DSPACE}[n] \subsetneq \text{DSPACE}[n \log \log n] \)

\(\text{DTIME}[n] \subsetneq \text{DTIME}[n \log n]^{1.01} \)
Definition:

Function \(f : \mathbb{N} \rightarrow \mathbb{N} \) is **C-constructible** if the map

\[
1^n \mapsto f(n)
\]

is computable in the complexity class \(\mathbb{C}[f(n)] \).

For example a function \(f(n) \) is **DSPACE-constructible** if the function \(f(n) \) can be deterministically computed from the input \(1^n \), using space at most \(O[f(n)] \).

Fact: All reasonable functions greater than or equal to \(\log n \) are **DSPACE-constructible**, and all reasonable functions greater than or equal to \(n \) are **DTIME-constructible**.
Space Hierarchy Thm: If $f \geq \log n$ is space constructible and

$$\lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0,$$

Then $\text{DSPACE}[g(n)] \subsetneq \text{DSPACE}[f(n)]$.

Proof: Build $\text{DSPACE}[f(n)]$ machine, D, on input: w, $n = |w|$

1. Mark off $6f(n)$ tape cells, (f space constructible)
2. Simulate $M_w(w)$ using space $3f(n)$, time $\leq 2^{3f(n)}$
3. if ($M_w(w)$ needs more space or time): return (17)
4. else if ($M_w(w) = \text{accept}$): reject
5. else accept // ($M_w(w) = \text{reject}$)

<table>
<thead>
<tr>
<th>space to simulate $M_w(w)$</th>
<th>counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3f(n)$</td>
<td>$3f(n)$</td>
</tr>
</tbody>
</table>
Claim: \(L(D) \in \text{DSPACE}[f(n)] - \text{DSPACE}[g(n)] \)

Proof: \(L(D) \in \text{DSPACE}[f(n)] \) by construction.

Suppose \(L(D) \in \text{DSPACE}[g(n)] \).

Let \(L(M_w) = L(D) \), \(M_w \) uses \(cg(n) \) space.

Choose \(N \) s.t. \(\forall n > N \left(cg(n) < f(n) \right) \).

Choose \(w' \), \(M_{w'}(\cdot) = M_w(\cdot) \), \(|w'| > N \)

On input \(w' \), \(D \) successfully simulates \(M_{w'}(w') \) in \(3f(n) \) space and \(2^{3f(n)} \) time.

\[
\begin{align*}
w' \in L(D) &\iff w' \not\in L(M_{w'}) \iff w' \not\in L(M_w) \iff w' \not\in L(D) \\
&\iff \square
\end{align*}
\]
Hierarchy Theorems

If $f(n)$ is a \mathbf{C}-constructible function;

\mathbf{C} is DSPACE, NSPACE, DTIME, or NTIME; and,

if $g(n)$ is sufficiently smaller than $f(n)$

Then $\mathbf{C}[g(n)] \subsetneq \mathbf{C}[f(n)]$.

$g(n)$ **sufficiently smaller** than $f(n)$ means:

$$\lim_{n \to \infty} \left(\frac{g(n)}{f(n)} \right) = 0$$

$$\lim_{n \to \infty} \left(\frac{g(n) \log(g(n))}{f(n)} \right) = 0$$

$\mathbf{C} = \text{DSPACE}$, NSPACE, NTIME

$\mathbf{C} = \text{DTIME}$

Corollaries:

$\text{DSPACE}[n] \subsetneq \text{DSPACE}[n \log \log n]$

$\text{DTIME}[n] \subsetneq \text{DTIME}[n(\log n)^{1.01}]$