L28: Alternation
The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: \[NP \ ? = \ co-NP = \ \{ \overline{A} \mid A \in NP \} \]

If one could really build an \(NP \) machine, then one could, with a single gate to invert its answer, also build a \(co-NP \) machine.

From a practical point of view, the complexity of a problem \(A \) and its complement, \(\overline{A} \) are identical.
Nondeterminism

Value\((\text{ID})\) := Value(LeftChild(ID)) ∨ Value(RightChild(ID))

L28: Alternation
CS501: Formal Language Theory
The States of an Alternating TM are split into:

Existential states (\(\exists\)) and **Universal states** (\(\forall\)).

Def: An alternating TM in \(ID_0\) **accepts** iff

1. \(ID_0\) is in a final accepting state, or
2. \(ID_0\) is in \(\exists\) state and some next \(ID'\) accepts, or
3. \(ID_0\) is in \(\forall\) state, exists at least one next ID, and all next ID’s accept.
Alternating TM’s have random-access read-only input.

The index tape can be written on and read. When the value h in binary is on the index tape, the read head automatically scans bit h of the input.
Def: \(\text{ASPACE}[s(n)] \) and \(\text{ATIME}[t(n)] \): the sets of problems accepted by alternating TM's using \(O(s(n)) \) tape cells and \(O(t(n)) \) time, respectively.

Main Alternation Thm: For \(s(n) \geq \log n \), and for \(t(n) \geq n \),

\[
\bigcup_{k=1}^{\infty} \text{ATIME}[(t(n))^k] = \bigcup_{k=1}^{\infty} \text{DSPACE}[(t(n))^k]
\]

\[
\text{ASPACE}[s(n)] = \bigcup_{k=1}^{\infty} \text{DTIME}[k^{s(n)}]
\]

Cor:

\[
\text{ASPACE}[\log n] = \mathbb{P}
\]

\[
\text{ATIME}[n^{O(1)}] = \text{PSPACE}
\]
Def: Circuit Value Problem: \(\text{CVP} = \{ C \mid \text{eval}(C) = 1 \} \)

Prop: \(\text{CVP} \in \mathbb{P} \).
Def: the monotone, circuit value problem (MCVP) is the subset of CVP in which no negation gates occur.

Prop: MCVP is recognizable in ASPACE[log n].

Proof: Let G be a monotone boolean circuit. For $a \in V^G$, define “EVAL(a),

1. if (InputOn(a)) then Accept
2. if (InputOff(a)) then Reject
3. if ($G_\land(a)$) then universally choose child b of a
4. if ($G_\lor(a)$) then existentially choose child b of a
5. Return(EVAL(b))

A calls EVAL(r). EVAL(a) returns “Accept” iff gate a evaluates to one.

Space used for naming vertices a, b: $O(\log n)$.
L28: Alternation

CS501: Formal Language Theory
Def: The quantified satisfiability problem: QSAT = set of true formulas of form: \(\psi = Q_1 x_1 \ Q_2 x_2 \ \cdots \ Q_r x_r (\varphi) \).

For any boolean formula \(\varphi \) on variables \(\bar{x} \),

\[
\varphi \in \text{SAT} \iff \exists \bar{x} (\varphi) \in \text{QSAT}
\]

\[
\varphi \in \overline{\text{SAT}} \iff \forall \bar{x} (\neg \varphi) \in \text{QSAT}
\]

Thus QSAT logically contains SAT and \(\overline{\text{SAT}} \).
Prop: QSAT is recognizable in ATIME\([n]\).

Proof: Construct ATM, \(A\), on input, \(\Phi \equiv \exists x_1 \forall x_2 \ldots \exists x_{2k-1} \forall x_{2k} \bigwedge_{i=1}^{r} \bigvee_{j=1}^{s} \ell_{ij} \bigwedge_{i=1}^{b_1} \bigvee_{j=1}^{b_2} \ell_{ij}(b_1, \ldots, b_{2k})\)

Quantifiers:
- in \(\exists\) state, \(A\) writes a bit \(b_1\) for \(x_1\),
- in \(\forall\) state, \(A\) writes a bit \(b_2\) for \(x_2\), and so on.

Boolean operators:
- in \(\forall\) state, \(A\) chooses \(i\),
- in \(\exists\) state, \(A\) chooses \(j\)

Final state: accept iff \(\ell_{ij}(b_1, \ldots, b_{2k})\) is true.

\[A\ accepts \Phi \iff \Phi\ is\ true.\]
Thm: For any $s(n) \geq \log n$,

$$\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2] \subseteq \text{DSPACE}[s(n)^2]$$

Proof: $\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2]$:

Let N be an $\text{NSPACE}[s(n)]$ Turing machine.

Let w be an input to N, $n = |w|$.

$$w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH}$$
\(w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH} \)

\[
P(d, x, y) \equiv \text{"In \text{CompGraph}(N, w), dist}(x, y) \leq 2^d \"
\]

\[
P(d, x, y) \equiv \exists z \left(P(d - 1, x, z) \land P(d - 1, z, y) \right)
\]

1. **Existentially**: choose middle ID \(z \).
2. **Universally**: \((x, y) \equiv (x, z) \text{ AND } (z, y)\)
3. Return\((P(d - 1, x, y)) \)

\[
T(d) = O(s(n)) + T(d - 1) = O(d \cdot s(n))
\]

\[
d = O(s(n))
\]

\[
T(d) = O((s(n))^2)
\]
Let A be an ATIME[$t(n)$] machine, input w, $n = |w|$.

CompGraph(A, w) has depth $c(t(n))$ and size $2^{c(t(n))}$, for some constant c.

Search this and/or graph systematically using $c(t(n))$ extra bits of space.

\[\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \]
Evaluate computation graph of $\text{ATIME}[t(n)]$ machine using $t(n)$ space to cycle through all possible computations of A on input w.
Example: \[\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \]
Thm: \(\text{ASPACE}[s(n)] = \text{DTIME}[2^{O(s(n))}] \)

Proof: \(\text{ASPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}] \):
Let \(A \) be an \(\text{ASPACE}[s(n)] \) machine, \(w \) an input, \(n = |w| \). \(\text{CompGraph}(A(w)) \) has size \(\leq 2^{O(s(n))} \)
Marking algorithm evaluates this in \(\text{DTIME}[2^{O(s(n))}] \).
Let M be $\text{DTIME}[2^{k(s(n))}]$ TM, w an input, $n = |w|$.

alternating procedure $C(t, p, a)$ accepts iff contents of cell p at time t in M’s computation on input w is symbol a.

$C(t + 1, p, b)$ holds iff the three symbols a_{-1}, a_0, a_1 in tape positions $p - 1, p, p + 1$ lead to a “b” in position p in one step of M’s computation.

$$C(t + 1, p, b) \equiv \bigvee_{(a_{-1}, a_0, a_1) \xrightarrow{M} b} \bigwedge_{i \in \{-1, 0, 1\}} C(t, p + i, a_i)$$

Space needed is $O(\log 2^{k(s(n))}) = O(s(n))$.

Note that M accepts w iff $C(2^{k(s(n))}, 1, \langle q_f, 1 \rangle)$
This completes the proof of the Alternation Thm. □
L28: Alternation

CS501: Formal Language Theory