CS501: Formal Language Theory

L28: Alternation
The concept of a nondeterministic acceptor of a boolean query has a long and rich history, going back to various kinds of nondeterministic automata.

It is important to remember that these are fictitious machines: we suspect that they cannot be built.

Open question: \(\text{NP} \ ? = \text{co-NP} = \{ \overline{A} \mid A \in \text{NP} \} \)

If one could really build an NP machine, then one could, with a single gate to invert its answer, also build a co-NP machine.

From a practical point of view, the complexity of a problem \(A \) and its complement, \(\overline{A} \) are identical.
Nondeterminism

Value(ID) := Value(LeftChild(ID)) \lor Value(RightChild(ID))

weak communication pattern
The States of an Alternating TM are split into:

Existential states (\exists) and **Universal states** (\forall).

Def: An alternating TM in ID_0 accepts iff
1. ID_0 is in a final accepting state, or
2. ID_0 is in \exists state and some next ID' accepts, or
3. ID_0 is in \forall state, exists at least one next ID, and all next ID’s accept.
Alternating TM’s have **random-access** read-only input.

The **index tape** can be written on and read. When the value h in binary is on the index tape, the read head automatically scans bit h of the input.
Def: \(\text{ASPACE}[s(n)] \) and \(\text{ATIME}[t(n)] \): the sets of problems accepted by alternating TM's using \(O(s(n)) \) tape cells and \(O(t(n)) \) time, respectively.

Main Alternation Thm: For \(s(n) \geq \log n \), and for \(t(n) \geq n \),

1. \(\text{ATIME}[(t(n))^{O(1)}] = \text{DSPACE}[(t(n))^{O(1)}] \)
2. \(\text{ASPACE}[s(n)] = \text{DTIME}[2^{O(s(n))}] \)

Cor: \(\text{ASPACE}[\log n] = \mathbb{P} \)

\(\text{ATIME}[n^{O(1)}] = \mathbb{PSPACE} \)
Def: Circuit Value Problem: \[\text{CVP} = \{ C \mid \text{eval}(C) = 1 \} \]

Prop: \(\text{CVP} \in \mathbb{P} \).
Def: the monotone, circuit value problem (MCVP) is the subset of CVP in which no negation gates occur.

Prop: MCVP is recognizable in ASPACE[log n].

Proof: Let G be a monotone boolean circuit. For $a \in V^G$, define “EVAL(a),

1. if (InputOn(a)) then **Accept**
2. if (InputOff(a)) then **Reject**
3. if ($G \wedge (a)$) then universally choose child b of a
4. if ($G \vee (a)$) then existentially choose child b of a
5. Return(EVAL(b))

A calls EVAL(r). EVAL(a) returns “**Accept** ” iff gate a evaluates to one.

Space used for naming vertices a, b: $O(\log n)$. □
Def: The quantified satisfiability problem: QSAT = set of true formulas of form: $\psi = Q_1 x_1 Q_2 x_2 \cdots Q_r x_r \varphi$.

For any boolean formula φ on variables \overline{x},

$\varphi \in \text{SAT} \iff \exists \overline{x} (\varphi) \in \text{QSAT}$

$\varphi \in \overline{\text{SAT}} \iff \forall \overline{x} (\neg \varphi) \in \text{QSAT}$

Thus QSAT logically contains SAT and $\overline{\text{SAT}}$.
Prop: QSAT is recognizable in ATIME[n].

Proof: Construct ATM, A, on input, \(\Phi \equiv \)

\[\exists x_1 \forall x_2 \ldots \exists x_{2k-1} \forall x_{2k} \bigwedge_{i=1}^{r} \bigvee_{j=1}^{s} \ell_{ij} \]

\[b_1 b_2 \ldots b_{2k-1} b_{2k} i j \ell_{ij}(b_1, \ldots, b_{2k}) \]

Quantifiers:

- in \(\exists \) state, A writes a bit \(b_1 \) for \(x_1 \),
- in \(\forall \) state, A writes a bit \(b_2 \) for \(x_2 \), and so on.

Boolean operators:

- in \(\forall \) state, A chooses \(i \),
- in \(\exists \) state, A chooses \(j \)

Final state: accept iff \(\ell_{ij}(b_1, \ldots, b_{2k}) \) is true.

\[A \text{ accepts } \Phi \iff \Phi \text{ is true.} \]
Thm: For any $s(n) \geq \log n$,

\[
\text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2] \subseteq \text{DSPACE}[s(n)^2]
\]

Proof: \text{NSPACE}[s(n)] \subseteq \text{ATIME}[s(n)^2]:

Let N be an \text{NSPACE}[s(n)] Turing machine.

Let w be an input to N, $n = |w|$.

\[
w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH}
\]
\(w \in \mathcal{L}(N) \iff \text{CompGraph}(N, w) \in \text{REACH} \)

\[
P(d, x, y) \equiv \text{“In } \text{CompGraph}(N, w), \text{ dist}(x, y) \leq 2^d \text{”}
\]

\[
P(0, x, y) \equiv x = y \lor E(x, y)
\]

\[
P(d, x, y) \equiv \exists z \left(P(d - 1, x, z) \land P(d - 1, z, y) \right)
\]

1. **Existentially:** choose middle ID \(z \).
2. **Universally:** \((x, y) := (x, z) \text{ AND } (z, y)\)
3. Return(\(P(d - 1, x, y)\))

\[
T(d) = O(s(n)) + T(d - 1) = O(d \cdot s(n))
\]

\[
d = O(s(n))
\]

\[
T(d) = O((s(n))^2)
\]
Let A be an ATIME[$t(n)$] machine, input w, $n = \|w\|$.

CompGraph(A, w) has depth $c(t(n))$ and size $2^{c(t(n))}$, for some constant c.

Search this and/or graph systematically using $c(t(n))$ extra bits of space.
Evaluate computation graph of \(\text{ATIME}[t(n)] \) machine using \(t(n) \) space to cycle through all possible computations of \(A \) on input \(w \).
Example: \(\text{ATIME}[t(n)] \subseteq \text{DSPACE}[t(n)] \)
Thm: $\text{ASPACE}[s(n)] = \text{DTIME}[2^{O(s(n))}]$

Proof: $\text{ASPACE}[s(n)] \subseteq \text{DTIME}[2^{O(s(n))}]$:
Let A be an $\text{ASPACE}[s(n)]$ machine, w an input, $n = |w|$. $\text{CompGraph}(A(w))$ has size $\leq 2^{O(s(n))}$
Marking algorithm evaluates this in $\text{DTIME}[2^{O(s(n))}]$.

\[\begin{array}{c}
\text{CompGraph}(A(w)) \\
\text{Marking algorithm evaluates this in DTIME}[2^{O(s(n))}]
\end{array} \]
Let M be $\text{DTIME}[2^{k(s(n))}]$ TM, w an input, $n = |w|$. alternating procedure $C(t, p, a)$ accepts iff contents of cell p at time t in M's computation on input w is symbol a.

$C(t + 1, p, b)$ holds iff the three symbols a_{-1}, a_0, a_1 in tape positions $p - 1, p, p + 1$ lead to a “b” in position p in one step of M’s computation.

$$C(t + 1, p, b) \equiv \bigvee (a_{-1}, a_0, a_1)^M b \bigwedge_{i \in \{-1, 0, 1\}} C(t, p + i, a_i)$$

Space needed is $O(\log 2^{k(s(n))}) = O(s(n))$.

Note that M accepts w iff $C(2^{k(s(n))}, 1, \langle q_f, 1 \rangle)$
This completes the proof of the Alternation Thm. □