CompSci 501 Lecture 38: BPP, BPL, Arthur-Merlin Games and Shamir’s Theorem

Despite Ladner’s Theorem, there are very few natural problems that are:

- Known to be in NP, and
- Not known to be NP-complete, and
- Not known to be in P

Examples: Factoring natural numbers, Graph Isomorphism, Model Checking the μ-Calculus

$$\text{PRIME} = \{ m \in \mathbb{N} \mid m \text{ is prime} \}$$

Proposition 38.1 \(\overline{\text{PRIME}} \in \text{NP} \)

Proof: \(m \in \overline{\text{PRIME}} \iff m < 2 \lor \exists xy \ (1 < x < m \land x \cdot y = m) \)

Question: Is \(\text{PRIME} \in \text{NP} \)?

Fact 38.2 (Fermat’s Little Thm) Let \(p \) be prime and \(0 < a < p \), then, \(a^{p-1} \equiv 1 \mod p \).

$$\mathbb{Z}_n^* = \{ a \in \{1, 2, \ldots, n-1\} \mid \text{GCD}(a, n) = 1 \}$$

\(\mathbb{Z}_n^* \) is the multiplicative group of integers mod \(n \) that are relatively prime to \(n \).

Euler’s phi function: \(\varphi(n) \overset{\text{def}}{=} |\mathbb{Z}_n^*| \)
Prop: If \(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \) is the prime factorization of \(n \), then
\[
\varphi(n) = n(p_1 - 1)(p_2 - 1) \cdots (p_k - 1)/(p_1 p_2 \cdots p_k)
\]

Euler’s Thm: For any \(n \) and any \(a \in \mathbb{Z}_n^* \), \(a^{\varphi(n)} \equiv 1 \pmod{n} \).

Fact: Let \(p > 2 \) be prime. Then \(\mathbb{Z}_p^* \) is a cyclic group of order \(p - 1 \). That is,
\[
\mathbb{Z}_p^* = \{a, a^2, a^3, \ldots, a^{p-1}\}
\]

\(m \in \text{PRIME} \iff \exists a \in \mathbb{Z}_m^* (\text{ord}(a) = m - 1) \)

Pratt’s Thm: \(\text{PRIME} \in \text{NP} \).

Proof: Given \(m \),

1. Guess \(a, 1 < a < m \)
2. Check \(a^{m-1} \equiv 1 \pmod{m} \) by repeated squaring.
3. Guess prime factorization: \(m - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \)
4. Check for \(1 \leq i \leq k \), \(a^{m-1/p_i} \not\equiv 1 \pmod{m} \)
5. Recursively check that \(p_1, p_2, \ldots, p_k \) are prime.

Divide and Conquer NP Algorithm:
\[
T(n) = O(n^2) + T(n - 1)
\]
\[
T(n) = O(n^3) \quad \square
\]

Cor: \(\text{PRIME} \) and \(\text{FACTORIZATION} \) are in \(\text{NP} \cap \text{co-NP} \).

Proof: \(\text{PRIME} \): immediately from Pratt’s Thm.

\(\text{FACTORIZATION} \) is the problem of given \(N \), find it’s prime factorization: \(N = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \).

Think of this as a decision problem by putting the factorization in a standard form, e.g., \(p_1 < p_2 < \cdots < p_k \), and
asking if bit i of the factorization is “1”.

This is in $\text{NP} \cap \text{co-NP}$ because an NP or co-NP machine can guess the unique prime factorization, check that it is correct, and then read bit i. \qed

More Primality Testing

$a \in \mathbb{Z}_m^*$ is a **quadratic residue** mod m iff, $\exists b \ (b^2 \equiv a \ (\text{mod } m))$

For p prime let,

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratic residue mod } p \\ -1 & \text{otherwise} \end{cases}$$

Generalize to $(\frac{a}{m})$ when m is not prime,

$$(\frac{a}{mn}) = (\frac{a}{m})(\frac{a}{n})$$

$$(\frac{a}{m}) = (\frac{a \mod m}{m})$$

Quadratic Reciprocity Thm: [Gauss] For odd a, m,

$$\left(\frac{a}{m}\right) = \begin{cases} \left(\frac{m}{a}\right) & \text{if } a \equiv 1 \ (\text{mod } 4) \ or \ m \equiv 1 \ (\text{mod } 4) \\ -\left(\frac{m}{a}\right) & \text{if } a \equiv 3 \ (\text{mod } 4) \ and \ m \equiv 3 \ (\text{mod } 4) \end{cases}$$

$$\left(\frac{2}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1 \ (\text{mod } 8) \ or \ m \equiv 7 \ (\text{mod } 8) \\ -1 & \text{if } m \equiv 3 \ (\text{mod } 8) \ or \ m \equiv 5 \ (\text{mod } 8) \end{cases}$$

Thus, we can calculate $(\frac{a}{m})$ efficiently. For example,
\[
\begin{align*}
\left(\frac{107}{351} \right) &= -\left(\frac{351}{107} \right) = -\left(\frac{30}{107} \right) \\
&= -\left(\frac{2}{107} \right) \left(\frac{15}{107} \right) = -\left(\frac{107}{15} \right) \\
&= -\left(\frac{2}{15} \right) = -1
\end{align*}
\]

\[107 \equiv 351 \equiv 15 \equiv 3 \pmod{4}\]

\[107 \equiv 3 \pmod{8}; \quad 15 \equiv 7 \pmod{8}\]
Fact: [Gauss] For p prime, $a \in \mathbb{Z}_p^*$, \(\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \pmod{p} \).

Fact: If m not prime then,

\[\left| \left\{ a \in \mathbb{Z}_m^* \mid \left(\frac{a}{m} \right) \equiv a^{(m-1)/2} \pmod{m} \right\} \right| < \frac{m-1}{2} \]

Solovay-Strassen Primality Algorithm:

1. Input is odd number m
2. For $i := 1$ to k do {
3. choose $a < m$ at random
4. if $\text{GCD}(a, m) \neq 1$ return (“not prime”)
5. if \(\left(\frac{a}{m} \right) \not\equiv a^{(m-1)/2} \pmod{m} \) return (“not prime”)
6. }
7. return (“probably prime”)

Thm:

• If m is prime then Solovay-Strassen(m) returns “probably prime”.
• If m is not prime, then the probability that Solovay-Strassen(m) returns “probably prime” is less than $1/2^k$.

Cor: PRIME \in “Truly Feasible”

Fact: [Agrawal, Kayal, and Saxena, 2002] PRIME \in P

Def: A decision problem S is in BPP (Bounded Probabilistic Polynomial Time) iff there is a probabilistic, polynomial-time algorithm A such that for all inputs w,

\[
\text{if } (w \in S) \text{ then } \Pr(A(w) = 1) \geq \frac{2}{3} \\
\text{if } (w \notin S) \text{ then } \Pr(A(w) = 1) \leq \frac{1}{3}
\]
Prop: If \(S \in \text{BPP} \) then there is a probabilistic, polynomial-time algorithm \(A' \) such that for all \(n \) and all inputs \(w \) of length \(n \),

\[
\begin{align*}
\text{if } (w \in S) \text{ then } \text{Prob}(A'(w) = 1) & \geq 1 - \frac{1}{2^n} \\
\text{if } (w \notin S) \text{ then } \text{Prob}(A'(w) = 1) & \leq \frac{1}{2^n}
\end{align*}
\]

Proof: Iterate \(A \) polynomially many times and answer with the majority. Probability the mean is off by \(\frac{1}{3} \) decreases exponentially with \(n \) — Chernoff bounds.

Is BPP equal to P???

Probably, because pseudo-random number generators are good.

Is randomness ever useful?

Colonel Kelly:

Which base to inspect?

If we randomize, then our opponent cannot know what we will do.
UREACH = \{ G, \text{undirected} \mid s \xrightarrow{G} t \}\)

Fact 38.3 Consider a random walk in a connected undirected graph G. Let $T(i)$ be the expected number of steps until we have reached all vertices, assuming we start at vertex i. Then, $T(i) \leq 2m(n - 1)$, where $n = |V|$, $m = |E|$.

Corollary 38.4 $\text{UREACH} \in \text{BPL}$.

Definition 38.5 A *universal traversal sequence* for graphs on n nodes, is a sequence of instructions, $q = a_1a_2a_3 \cdots a_t \in \{1, \ldots, n - 1\}^*$, such that for any *undirected* graph on n nodes, if we start at s in G and follow q, then we will visit every vertex in the connected component of s. □
Fact 38.6 Undirected graphs with \(n \) vertices have universal traversal sequences of length \(O(n^3) \).

Fact 38.7 (Reingold, 2004) UREACH \(\in \) \(\mathbb{L} \)

Proof idea: derandomization of universal traversal sequences using expander graphs.

Corollary 38.8 Symmetric-\(\mathbb{L} \) = \(\mathbb{L} \)
Recall From Last Time
Factoring natural numbers $\in \text{NP} \cap \text{co-NP}$

Definition of BPP and BPL

Thm: PRIME \in BPP

Thm: UREACH \in BPL

Newish Results:

- PRIME \in P [Agrawal, Kayal, and Saxena, 2002]
- UREACH \in L [Reingold, 2004]
One-Time Pad: \(p \in \{0, 1\}^n; \quad m \in \{0, 1\}^n \)

\[
E(p, x) = p \oplus x
\]

\[
D(p, x) = p \oplus x
\]

\[
D(p, E(p, m)) = p \oplus (p \oplus m) = m
\]
One-Time Pad, Continued

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(m)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(E(p, m))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(D(p, E(p, m)))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Thm: If \(p \) is chosen at random and known only to \(A \) and \(B \) Then \(E(p, m) \) provides no information to \(E \) about \(m \) except perhaps its length.

Better not use \(p \) more than once!
Public-Key Cryptography

Idea: [Diffie, Hellman, 1976] Using computational complexity, I may be able to publish a key for sending secret messages to me, that are intractable to decode. Example: Diffie-Hellman key exchange.

Realization: [Rivest, Shamir, Adleman, 1976] This is the Public-Key Algorithm that is used today in the SSL algorithm that lets your browser generate a key to send an order to Amazon.com without, *we believe*, divulging any useful information about your credit card number, or what you bought.
RSA

B chooses \(p, q \) \(n \)-bit primes, \(e \), s.t. \(\text{GCD}(e, \varphi(pq)) = 1 \);

B publishes: \(pq, e \); keeps \(p, q \) secret.

Using Euclid’s algorithm, B computes \(d, k \), s.t. \(ed + k\varphi(pq) = 1 \)

[Break message into pieces shorter than \(2n \) bits]

\[
\begin{align*}
E_B(x) & \equiv x^e \pmod{pq} \\
D_B(x) & \equiv x^d \pmod{pq} \\
D_B(E_B(m)) & \equiv (m^e)^d \pmod{pq} \\
& \equiv m^{1-k\varphi(pq)} \pmod{pq} \\
& \equiv m \cdot (m^{\varphi(pq)})^{-k} \pmod{pq} \\
& \equiv m \pmod{pq} \\
& \equiv E_B(D_B(m)) \pmod{pq}
\end{align*}
\]
For **sufficiently large** n, \[n \geq 300 \text{ bits is fine in 2005}, \]

It is widely believed that: $E_B(m)$ divulges no useful information about m to anyone not knowing p, q, or d.

Message signing:

Let $m = "B$ promises to give A $10 by 5/17/05."$

Let $m' = m \circ r$ where r is nonce or current date and time

It is widely believed that: $D_B(m')$ could be produced only by B. Thus it can be used as a contract signed by B.

Useful for proving authenticity
Interactive Proofs

[Goldwasser, Micali, Rackoff], [Babai]

Decision problem: D; input string: x

Two players:

Prover — Merlin is computationally all-powerful. Wants to convince **Verifier** that $x \in D$.

Verifier — Arthur: probabilistic polynomial-time TM. Wants to know the truth about whether $x \in D$.
Input = x; \; \; n = |x|; \; \; t = n^{O(1)}

0. \textbf{Arthur} has x \quad \textbf{Merlin} has x

1. flip σ_1, compute $m_1 \rightarrow$

2. \quad $\leftarrow m_2$

3. flip σ_3, compute $m_3 \rightarrow$

4. \quad $\leftarrow m_4$

: \quad : \quad : \quad :

2t.

\quad $\leftarrow m_{2t}$

$2t + 1$. \; \text{flip σ_{2t+1}, accept or reject}
Def: $D \in \text{IP}$ iff there is a PTIME interactive protocol

1. If $x \in D$, then there exists a strategy for Merlin

 $$\text{Prob}\{\text{Arthur accepts } x\} > \frac{2}{3}$$

2. If $x \notin D$, then for all strategies for Merlin

 $$\text{Prob}\{\text{Arthur accepts } x\} < \frac{1}{3}$$

Observation: As for BPP, by iterating we can make probability of error exponentially small.
Def: MA is the set of decision problems admitting two step proofs where Merlin moves first.

AM is the set of decision problems admitting two step proofs where Arthur moves first. For $k \geq 2$,

$$\text{AM}[k] = \underbrace{\text{ArthurMerlinArthur} \cdots}_{k}$$

□

Fact: [Babai] For all $k \geq 2$, $\text{AM}[k] = \text{AM}$.
PSPACE \equiv \text{P} \quad \text{BPP} \quad \text{NP} \quad \text{MA} \quad \text{AM} \quad \text{AM[\text{poly}]} \quad \text{PSPACE}

\text{MA} \equiv \text{AM}

\text{BP(NP)}
Fact: [Goldwasser & Sipser] The power of interactive proofs is unchanged if Merlin knows Arthur’s coin tosses. For all k,

- $\text{IP}[k] = \text{AM}[k]$

- $\text{IP} = \text{AM}[n^{O(1)}]$
Graph Isomorphism \in NP; Is it in co-NP?

Input $= G_0, G_1, \quad n = \|G_0\| = \|G_1\|

0. Arthur has G_0, G_1\quad Merlin has G_0, G_1

1. flip $\kappa : \{1, \ldots, r\} \rightarrow \{0, 1\}$
 flip $\pi_1, \ldots, \pi_r \in S_n$
 $\pi_1(G_{\kappa(1)}), \ldots, \pi_r(G_{\kappa(r)})$ \rightarrow

2. $\leftarrow m_2 \in \{0, 1\}^r$

3. accept iff $\kappa = m_2$

Prop: Graph Isomorphism \in co-AM

proof: If $G_0 \not\cong G_1$, then Arthur will accept with probability 1.

If $G_0 \cong G_1$, then Arthur will accept with probability $\leq 2^{-r}$. Q.E.D.
Shamir’s Thm: \(\text{IP} = \text{PSPACE} \)

proof that \(\text{IP} \subseteq \text{PSPACE} \): Evaluate the game tree.

For *Merlin*’s moves choose the maximum value.

For *Arthur*’s moves choose the average value.
Show QSAT ∈ IP

\[\varphi \equiv \forall x \exists y (x \lor y) \land \forall z ((x \land z) \lor (y \land \overline{z})) \lor \exists w (z \lor (y \land \overline{w})) \]

Formula \(\varphi \) is simple iff no occurrence of a variable is separated by more than one universal quantifier from its point of quantification.

Lemma 38.9 *Any quantified boolean formula can be transformed in logspace to an equivalent, simple formula.*

proof: Suppose \(x \) is quantified before \(\forall y \) and used after \(\forall y \)

\[\varphi = \cdots Qx \cdots \forall y \psi(x) \]

Right after the \(\forall y \), rename \(x \),

\[\varphi' = \cdots Qx \cdots \forall y \exists x'((x \land x') \lor (\overline{x} \land \overline{x'})) \land \psi(x') \]

This needs to be done fewer than \(|\varphi|^2 \) times. \(\square \)

From now on we may assume that \(\varphi \) is simple and all \(\neg \)'s are pushed all the way inside.
Arithmetization of formulas

Define $f : \text{boolean formulas} \rightarrow \text{polynomials}$.

$x = 1$ means x is true; $x = 0$ means x is false.

\[
\begin{align*}
 f(\overline{x}) &= 1 - x \\
 f(\alpha \land \beta) &= f(\alpha) \cdot f(\beta) \\
 f(\alpha \lor \beta) &= f(\alpha) + f(\beta) \\
 f(\forall x(\alpha(x))) &= \prod_{i=0}^{1} f(\alpha(i)) \\
 f(\exists x(\alpha(x))) &= \sum_{i=0}^{1} f(\alpha(i))
\end{align*}
\]

Lemma 38.10 Let φ be a closed, quantified boolean formula with all “\neg”s pushed to variables. Then,

$$\varphi \in \text{QSAT} \iff f(\varphi) > 0$$
M must prove to A that \(f(\varphi) > 0 \)

Lemma 38.11 Let \(n = |\varphi| \). If \(f(\varphi) \neq 0 \), then there is a prime \(p \), \(2^n < p < 2^{3n} \) s.t.

\[
f(\varphi) \not\equiv 0 \pmod{p}
\]

M must prove to A that \(f(\varphi) \not\equiv 0 \pmod{p} \)

At step 1, M sends \(p \) to A and says,

“I will now prove to you that \(f(\varphi) \not\equiv 0 \pmod{p} \)!”
\[\varphi \equiv \forall x \exists y (x \lor y) \land \forall z ((x \land z) \lor (y \land \bar{z})) \lor \exists w (z \lor (y \land \bar{w})) \]

\[
f(\varphi) = \prod_x \sum_y ((x + y) \cdot \prod_z ((x \cdot z) + (y \cdot (1 - z))) + \sum_w (z + (y \cdot (1 - w)))
\]

\[
f_1(x) = \sum_y ((x + y) \cdot \prod_z ((x \cdot z) + (y \cdot (1 - z))) + \sum_w (z + (y \cdot (1 - w)))
\]

\[
= 2x^2 + 8x + 6
\]

Note, \(f_1 \in \mathbb{Z}[x] \) has degree \(\leq 2n \) because \(\varphi \) is simple. There is at most one “\(\prod \)” affecting \(x \).

\[
f(\varphi) = f_1(0) \cdot f_1(1)
\]

\[
96 = 6 \cdot 16
\]
\[\varphi = (\forall x)(\exists y)\psi \]

\[f(\varphi) = \prod_{x=0}^{1} f_1(x) \]

1. M sends to A:
 - \(p \)
 - a proof that \(p \) is prime
 - \(v_0 \) where \(v_0 \equiv f(\varphi) \pmod{p} \)
 - coefficients of \(g_1 \), where \(g_1 \equiv f_1 \pmod{p} \)

2. A
 - checks that \(g_1(0) \cdot g_1(1) \equiv v_0 \pmod{p} \)
 - chooses random \(r_1 \in \mathbb{Z}_p \)
 - computes \(v_1 \equiv g_1(r_1) \pmod{p} \)
 - sends \(r_1 \) to M

 M must prove to A that \(f_1(r_1) \equiv v_1 \pmod{p} \)
M must prove to A that $f_1(r_1) \equiv v_1 \pmod{p}$

proof: If $g_1 \not\equiv f_1 \pmod{p}$, then

$$\Pr[g_1(r_1) \equiv f_1(r_1) \pmod{p}] \leq \frac{2n}{p} < \frac{2n}{2^n}$$

Proof: Since g_1 and f_1 each have degree $2n$, so does $g_1 - f_1$.

But a degree d polynomial has at most d zeros.

Thus, with r chosen at random,

$$\Pr[(g_1 - f_1)(r) \equiv 0 \pmod{p}] \leq \frac{2n}{p} \quad \Box$$

Thus, in one double round, we have removed one quantifier from φ.

Key idea: replace the universal boolean quantifier:

$$\forall x(f_1(x) = g_1(x))$$

with a random quantifier

$$(\text{for most } r)(f_1(r) = g_1(r))$$
M must prove to A that $f_1(r_1) \equiv v_1 \pmod{p}$
\[\varphi = (\forall x)(\exists y)\psi \]
\[f(\varphi) = \prod_{x=0}^{1} f_1(x) \]
\[f_1(r_1) = \sum_{y=0}^{1} f_2(y) \]

3. M sends to A:
 - coefficients of \(g_2 \), where \(g_2 \equiv f_2 \pmod{p} \)

4. A
 - checks that \(g_2(0) + g_2(1) \equiv v_1 \pmod{p} \)
 - chooses random \(r_2 \in \mathbb{Z}_p \)
 - computes \(v_2 \equiv g_2(r_2) \pmod{p} \)
 - sends \(r_2 \) to M

M must prove to A that \(f_2(r_2) \equiv v_2 \pmod{p} \)
After n steps, all the variables are eliminated and A should accept iff $f_n(r_n) = v_n$.

The probability of M getting away with a lie is at most $n \left(\frac{2n}{2^n} \right)$.

Shamir’s Theorem is proved.