CS501: Formal Language Theory

L30: P and PSPACE
Def: In an alternating graph, $G = (V, A, E)$, i reaches t iff

1. $i = t$, or
2. i is an \exists node and for some edge, $\langle i, a \rangle \in E$, a is reaches t, or,
3. i is a \forall node and there is an edge leaving i and for all edges, $\langle i, a \rangle \in E$, a is reaches t.
\[\text{AREACH} = \{ G = (V, A, E, s, t) \mid s \text{ reaches } t \} \]

Prop: AREACH is \(P \) complete.

Proof: A arbitrary \(\text{ASPACE}[\log n] \) TM; \(w \) input; \(n = |w| \),

\((w \in L(A)) \Leftrightarrow (\text{CompGraph}(A, w) \in \text{AREACH}) \)

Cor: CVP and MCVP are \(P \) complete.

Proof: Easy to see that \(\text{AREACH} \leq \text{MCVP} \leq \text{CVP} \).
PSPACE = DSPACE[$n^{O(1)}$] = NSPACE[$n^{O(1)}$]

- PSPACE consists of what we could compute with a feasible amount of hardware, but with no time limit.

- PSPACE is a large and very robust complexity class.

- With polynomially many bits of memory, we can search any implicitly-defined graph of exponential size. Succinct-REACH is PSPACE complete.

- We can search the game tree of any board game whose configurations are polynomial size. This leads to PSPACE complete games.
Recall from Lecture 29: \(\text{PSPACE} = \text{ATIME}[n^{O(1)}] \)

Recall QSAT, the quantified satisfiability problem.

Prop: QSAT is PSPACE-complete.

Proof: QSAT \(\in \text{ATIME}[n] \subseteq \text{PSPACE} \) (Lecture 28).
Claim: QSAT is hard for $\text{ATIME}[n^k]$.

Let M be an $\text{ATIME}[n^k]$ TM, w an input, $n = |w|$.

Let M write down its n^k alternating choices, $c_1 \ c_2 \ldots \ c_{n^k}$.

Deterministic TM D evaluates the answer, i.e., for all inputs w,

$M(w) = 1 \iff \exists c_1 \ \forall c_2 \cdots \exists c_{n^k} \ (D(\overline{c}, w) = 1)$

By Cook’s Theorem \exists reduction $f : L(D) \leq \text{SAT}$:

$D(\overline{c}, w) = 1 \iff f(\overline{c}, w) \in \text{SAT}$

Let the new boolean variables in $f(\overline{c}, w)$ be $d_1 \ldots d_{t(n)}$.

$M(w) = 1 \iff \exists c_1 \ \forall c_2 \cdots \exists c_{n^e} \ \exists d_1 \cdots \exists d_{t(n)} \ (f(\overline{c}, w)) \in \text{QSAT}$ □
Geography is a two-person game.

1. E chooses a start vertex, v_1.
2. A chooses v_2, having an edge from v_1
3. E chooses v_3, have an edge from v_2, etc.

No vertex may be chosen twice. Whoever moves last wins.
GEOGRAPHY $\overset{\text{def}}{=} \{ p \in \text{Pos}(\text{Geo}) \mid \exists \text{ has a winning strategy for } p \}$

Prop: GEOGRAPHY is PSPACE-complete.

Proof: (GEOGRAPHY \in PSPACE): Just search the polynomial-depth game tree. A polynomial-size stack suffices.
Show: $\text{QSAT} \leq \text{GEOGRAPHY}$

Given formula, φ, build graph G_{φ} s.t. \exists chooses existential variables; \forall chooses universal variables.

$$
\varphi \equiv \exists a \forall b \exists c \\
[(a \lor b) \land (\overline{b} \lor c) \land (b \lor \overline{c})]
$$
Succinct representation of graph \(G(n, C, s, t) = (V, E, s, t) \)

\(C \) is a boolean circuit with \(2n \) inputs and

\[
V = \{ w \mid w \in \{0, 1\}^n \}
\]

\[
E = \{ (w, w') \mid C(w, w') = 1 \}
\]

\(V \) has \(2^n \) vertices;

Circuit or Algorithm \(C \) gives rule for when \((w, w') \in E \)

\[
\text{SUCCINCT REACH} = \{ (n, C, s, t) \mid G(n, C, s, t) \in \text{REACH} \}
\]
Prop: SUCCINCT REACH ∈ PSPACE

Proof: Remember Savitch’s Thm:

\[
\text{REACH} \in \text{NSPACE}[\log n] \subseteq \text{DSPACE}[(\log n)^2]
\]

\[
\text{SUCCINCT REACH} \in \text{NSPACE}[n] \subseteq \text{DSPACE}[n^2] \subseteq \text{PSPACE} \quad \square
\]
Prop: SUCCINCT REACH is PSPACE-complete.

Proof: Let M be a DSPACE[n^k] TM, input w, $n = |w|$

$$(M(w) = 1) \iff (\text{CompGraph}(M, w) \in \text{REACH})$$

$$\text{CompGraph}(n, w) = (V, E, s, t)$$

$$V = \{ \text{ID} = \langle q, h, p \rangle \mid q \in \text{States}(N), h \leq n, |p| \leq c n^k \}$$

$$E = \{ (\text{ID}_1, \text{ID}_2) \mid \text{ID}_1(w) \xrightarrow{M} \text{ID}_2(w) \}$$

$s = \text{initial ID}$

$t = \text{accepting ID}$

□
Succinct Representation of $\text{CompGraph}(n, w)$:

\[V = \{ \text{ID} = \langle q, h, p \rangle \mid q \in \text{States}(N), h \leq n, |p| \leq cn^k \} \]

\[E = \{ (\text{ID}_1, \text{ID}_2) \mid \text{ID}_1(w) \xrightarrow{M} \text{ID}_2(w) \} \]

Let $V = \{0, 1\}^{c'n^k}$

Build circuit C_w: on input $u, v \in V$, accept iff $u \xrightarrow{M} v$.

$M(w) = 1 \iff G(c'n^k, C_w, s, t) \in \text{SUCCINCT REACH}$