Jrn |
H.T. Siegelmann and R. Freund |
Bulletin of European Association for Theoretical Computer Science |
EATCS |
2014 |
number 114, pp. 265-269 |
pdf |
Jrn |
A. Tal, N. Peled, and H. T. Siegelmann |
Biologically inspired load balancing mechanism in neocortical competitive learning |
Frontiers in Neural Circuits |
2014 |
doi: 10.3389/fncir.2014.00018 |
pdf |
Jrn |
J. Cabessa, H.T. Siegelmann |
The Super-Turing Computational Power of Plastic Recurrent Neural Networks |
International Journal of Neural Systems |
2014 |
24, 1450029 |
pdf |
Jrn |
D. Nowicki, P. Verga, H.T. Siegelmann |
Modeling Reconsolidation in Kernel Associative Memory |
PLOS One |
2013 |
8(8) e68189 |
pdf |
Jrn |
H. T. Siegelmann |
Turing on Super-Turing and Adaptivity |
Progress in Biophysics and Molecular Biology |
2013 |
S0079-6107(13)00027-8 |
pdf |
Jrn |
E. Kagan, A. Rybalov, H. T. Siegelmann, and R. Yager |
Probability-generated aggregators |
International Journal of Intelligent Systems |
2013 |
28(7): 709-727 |
- |
Jrn |
J. Cabessa and H. T. Siegelmann |
The Computational Power of Interactive Recurrent Neural Networks |
Neural Computation |
2012 |
24(4): 996-1019 |
pdf |
Jrn |
Frederick C. Harris, Jr., Jeffrey L. Krichmar, Hava Siegelmann, Hiroaki Wagatsuma |
Biologically-Inspired Human-Robot Interactions – Developing More Natural Ways to Communicate with our Machines |
IEEE Transactions on Autonomous Mental Development (editorial) |
2012 |
4(3),190-191 |
- |
Jrn |
Jean-Philippe Thivierge, Ali Minai, Hava Siegelmann, Cesare Alippi, Michael Geourgiopoulos |
A year of neural network research: Special Issue on the 2011 International Joint Conference on Neural Networks |
Neural Networks (editorial) |
2012 |
32,1-2 |
- |
Jrn |
H. T. Siegelmann |
Addiction as a Dynamical Rationality Disorder |
Frontiers of Electrical and Electronic Engineering (FEE) in China |
2011 |
1(6),151-158 |
pdf |
Jrn |
H. T. Siegelmann |
Complex Systems Science and Brain Dynamics: A Special Topic |
Frontiers in Computational Neuroscience |
2010 |
10.3389 |
- |
Jrn |
L. Glass and H. T. Siegelmann |
Logical and symbolic analysis of robust biological dynamics |
Current Opinion in Genetics & Development 20 |
2010 |
644-649 |
- |
Jrn |
H.T. Siegelmann and L.E. Holzman |
Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference |
Chaos 20 |
2010 |
037112 |
pdf |
Jrn |
D.V. Nowicki, H.T. Siegelmann |
Flexible Kernel Memory |
PLOS One 5(6) |
2010 |
e10955 |
pdf |
Jrn |
M.M. Olsen, N. Siegelmann-Danieli, H.T. Siegelmann |
Dynamic Computational Model Suggests that Cellular Citizenship is Fundamental for Selective Tumor Apoptosis |
PLOS One 5(5) |
2010 |
e10637 |
pdf |
Jrn |
K. Tu, D. Cooper, H.T. Siegelmann |
Memory reconsolidation for natural language processing |
Cogn Neurodyn 3 |
2009 |
365-372 |
pdf |
Jrn |
A. Z. Pietrzykowski, R. M. Friesen, G. E. Martin, S.I. Puig, C. L. Nowak, P. M. Wynne, H. T. Siegelmann, S. N. Treistman |
Post-transcriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol |
Neuron 59(2) |
2008 |
274-287 |
pdf |
Jrn |
Lu, S., Becker, K.A., Hagen, M.J., Yan, H., Roberts, A.L., Mathews, L.A., Schneider, S.S., Siegelmann, H.T., Tirrell, S.M., MacBeth, K.J., Blanchard, J.L. and Jerry, D.J. |
Transcriptional responses to estrogen and progesterone in Mammary gland identify networks regulating p53 activity |
Endocrinology |
2008 |
- |
pdf |
Jrn |
H.T. Siegelmann |
Analog-Symbolic Memory that Tracks via Reconsoliation |
Physica D 237(9) |
2008 |
1207-1214 |
pdf |
Jrn |
M.M. Olsen, N. Siegelmann-Danieli and H.T. Siegelmann |
Robust Artificial Life Via Artificial Programmed Death |
Artificial Intelligence 172(6-7) |
2008 |
884-898 |
pdf |
Jrn |
F. Roth, H.T. Siegelmann and R. J. Douglas |
The Self-Construction and -Repair of a Foraging Organism by Explicitly Specified Development from a Single Cell |
Artificial Life 13(4) |
2007 |
347-368 |
pdf |
Jrn |
S. Sivan, O. Filo and H. Siegelman |
Application of Expert Networks for Predicting Proteins Secondary Structure |
Biomolecular Engineering, Volume 24, Issue 2 |
2007 |
237-243 |
pdf |
Jrn |
W. Bush and H.T. Siegelmann |
Circadian Synchrony in Networks of Protein Rhythm Driven Neurons |
Complexity Volume 12, Issue 1 |
2006 |
67-72 |
pdf |
Jrn |
T. Leise and H Siegelmann |
Dynamics of a multistage circadian system |
Journal of Biological Rhythms, 21:4 |
2006 |
314-323 |
pdf |
Jrn |
L. Glass, T. J. Perkins, J. Mason, H. T. Siegelmann and R. Edwards |
Chaotic Dynamics in an Electronic Model of a Genetic Network |
Journal of Statistical Physics Volume 121 Numbers 5/6 |
2005 |
969-994 |
pdf |
Jrn |
Loureiro, O. and Siegelmann, H. |
Introducing an Active Cluster-Based Information Retrieval Paradigm |
Journal of the American Society for Information Science and Technology, vl 56, n. 10 |
2005 |
1024-1030 |
pdf |
Jrn |
A. Roitershtein, A. Ben-Hur and H.T. Siegelmann |
On Probabilistic Analog Automata |
Theoretical Computer Science, 320(2-3) |
2004 |
449-464 |
pdf |
Jrn |
A. Ben-Hur, H.T. Siegelmann |
Computation in Gene Networks |
Chaos: An Interdisciplinary Journal of Nonlinear Science, 14(1) |
2004 |
145-151 |
pdf |
Jrn |
A. Ben-Hur, J. Feinberg, S. Fishman and H. T. Siegelmann |
Random matrix theory for the analysis of the performance of an analog computer: a scaling theory |
Phys. Lett. A. 323(3-4) |
2004 |
204-209 |
pdf |
Jrn |
A. Ben-Hur, J. Feinberg, S. Fishman and H. T. Siegelmann |
Probabilistic analysis of a differential equation for linear programming |
Journal of Complexity, 19(4) |
2003 |
474-510 |
pdf |
Jrn |
J. P. Neto, H. T. Siegelmann, and J. F. Costa |
Symbolic processing in neural networks |
Journal of the Brazilian Computer Society, 8(3) |
2003 |
- |
pdf |
Jrn |
S. Eldar, H. T. Siegelmann, D. Buzaglo, I. Matter, A. Cohen, E. Sabo, J. Abrahamson |
Conversion of Laparoscopic Cholecystectomy to open cholecystectomy in acute cholecystitis: Artificial neural networks improve the prediction of conversion |
World Journal of Surgery, 26(1) |
2002 |
79-85 |
pdf |
Jrn |
A. Ben-Hur, H.T. Siegelmann and S. Fishman. |
A Theory of Complexity for Continuous Time Systems. |
Journal of Complexity 18(1) |
2002 |
51-86 |
pdf |
Jrn |
H.T. Siegelmann |
Neural and Super-Turing Computing |
Minds and Machines 13(1) |
2003 |
103-114 |
pdf |
Jrn |
A. Ben-Hur, D. Horn, H.T. Siegelmann and V. Vapnik |
Support Vector Clustering |
Journal of Machine Learning Research 2 |
2001 |
125-137 |
pdf |
Jrn |
H.T. Siegelmann A., Ben-Hur, S. Fishman |
Comments on Attractor Computation |
International Journal of Computing Anticipatory Systems, D.M. Dubois, ed. |
2000 |
- |
pdf |
Jrn |
R. Edwards, H.T. Siegelmann, K. Aziza and L. Glass |
Symbolic dynamics and computation in model gene networks |
Chaos 11(1) |
2001 |
160-169 |
pdf |
Jrn |
H. Lipson and H.T. Siegelmann |
Clustering Irregular Shapes Using High-Order Neurons |
Neural Computation 12(10) |
2000 |
2331-2353 |
pdf |
Jrn |
D. Lange, H.T. Siegelmann, H. Pratt, and G.F. Inbar |
Overcoming Selective Ensemble Averaging: Unsupervised Identification of Event-Related Brain Potentials |
IEEE Transactions on Biomedical Engineering, 47(6) |
2000 |
822-826 |
pdf |
Jrn |
H. Karniely and H.T. Siegelmann |
Sensor Registration Using Neural Networks |
IEEE Transactions on Aerospace and Electronic Systems, 36(1) |
2000 |
85-98 |
pdf |
Jrn |
H.T. Siegelmann, |
Stochastic Analog Networks and Computational Complexity |
Journal of Complexity, 15(4) |
1999 |
451-475 |
pdf |
Jrn |
H.T. Siegelmann, A. Ben-Hur and S. Fishman |
Computational Complexity for Continuous Time Dynamics |
Physical Review Letters, 83(7) |
1999 |
1463-1466 |
pdf |
Jrn |
H.T. Siegelmann and M. Margenstern |
Nine Switch-Affine Neurons Suffice for Turing Universality |
Neural Networks, 12 |
1999 |
593-600 |
pdf |
Jrn |
R. Gavaldà and H.T. Siegelmann |
Discontinuities in Recurrent Neural Networks |
Neural Computation, 11(3) |
1999 |
715-745 |
pdf |
Jrn |
H.T. Siegelmann and S. Fishman |
Analog Computation with Dynamical Systems |
Physica D, 120 |
1998 |
120--214 |
pdf |
Jrn |
A. Galperin, Y. Kimhi, E. Nissan, and H.T. Siegelmann |
FUELCON's Heuristics, their Rationale, and their Representations |
The New Review of Applied Expert Systems, 4 |
1998 |
163-176 |
abstract |
Jrn |
Joachim Utans, John Moody, Steve Rehfuss, and Hava Siegelmann |
Input Variable Selection for Neural Networks: Application to Predicting the U.S. Business Cycle |
Proceedings of Computational Intelligence in Financial Engineering, IEEE Press |
1995 |
118-122 |
pdf |
Jrn |
H.T. Siegelmann, E. Nissan, and A. Galperin |
A Novel Neural/Symbolic Hybrid Approach to Heuristically Optimized Fuel Allocation and Automated Revision of heuristics in Nuclear Engineering |
Advances in Engineering Software, 28(9) |
1997 |
581-592 |
pdf |
Jrn |
J.L. Balcázar, R. Gavaldà, and H.T. Siegelmann |
Computational Power of Neural Networks: A Characterization in Terms of Kolmogorov Complexity |
IEEE Transactions on Information Theory, 43(4) |
1997 |
1175-1183 |
pdf |
Jrn |
H.T. Siegelmann, B.G. Horne, and C.L.Giles |
Computational Capabilities of Recurrent NARX Neural Networks |
IEEE Transaction on Systems, Man and Cybernetics-part B: Cybernetics, 27(2) |
1997 |
208-215 |
pdf |
Jrn |
E. Nissan, H.T. Siegelmann, A. Galperin, and S. Kimhi, |
Upgrading Automation for Nuclear Fuel In-Core Management: From the Symbolic Generation of Configurations, to the Neural Adaptation of Heuristics, |
Engineering with Computers, 13(1) |
1997 |
1-19 |
pdf |
Jrn |
O. Frieder and H.T. Siegelmann |
Multiprocessor Document Allocation: A Genetic Algorithm Approach |
IEEE Transactions on Knowledge and Data Engineering, 9(4) |
1997 |
640-642 |
pdf |
Jrn |
H.T. Siegelmann and C.L. Giles |
The Complexity of Language Recognition by Neural Networks |
Journal of Neurocomputing; Special Issue Recurrent Networks for Sequence Processing, Editors: M. Gori, M. Mozer, A.H. Tsoi, W. Watrous, 15(3-4) |
1997 |
327-345 |
pdf |
Jrn |
H.T. Siegelmann, |
On NIL: The Software Constructor of Neural Networks |
Parallel Processing Letters, 6(4) |
1996 |
575-582 |
abstract |
Jrn |
H.T. Siegelmann |
The Simple Dynamics of Super Turing Theories |
Theoretical Computer Science, 168(2)(special issue on UMC) |
1996 |
461-472 |
pdf |
Jrn |
H.T. Siegelmann |
Recurrent Neural Networks and Finite Automata |
Journal of Computational Intelligence, 12(4) |
1996 |
567-574 |
pdf |
Jrn |
J. Kilian and H.T. Siegelmann |
The Dynamic Universality of Sigmoidal Neural Networks |
Information and Computation, 128(1) |
1996 |
45-56 |
pdf |
Jrn |
H.T. Siegelmann |
Analog Computational Power |
Science, 271(19) |
1996 |
- |
pdf |
Jrn |
B. DasGupta, H.T. Siegelmann and E. Sontag |
On the Complexity of Training Neural Networks with Continuous Activation Functions |
IEEE Transactions on Neural Networks, 6(6) |
1995 |
1490-1504 |
pdf |
Jrn |
H.T. Siegelmann |
Computation Beyond the Turing Limit |
Science, 238(28) |
1995 |
- |
pdf |
Jrn |
H.T. Siegelmann and E.D. Sontag |
On the Computational Power of Neural Nets, |
Journal of Computer System Sciences, 50(1) |
1995 |
132-150 |
pdf |
Jrn |
H.T. Siegelmann and E.D. Sontag |
Analog Computation via Neural Networks |
Theoretical Computer Science, 131 |
1994 |
331-360 |
pdf |
Jrn |
H.T. Siegelmann and E.D. Sontag |
Turing Computability with Neural Nets |
Applied Mathematics Letters, 4(6) |
1991 |
77-80 |
pdf |