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Abstract

A fundamental part of a computational system is its memory, which is used to store and retrieve data. Classical computer memories rely on the
static approach and are very different from human memories. Neural network memories are based on auto-associative attractor dynamics and thus
provide a high level of pattern completion. However, they are not used in general computation since there are practically no algorithms to load
an arbitrary landscape of attractors into them. In this sense neural network memory models cannot communicate well with symbolic and prior
knowledge.

We propose the design of a new memory based on localist attractor dynamics with reconsolidation called Reconsolidation Attractor Network
(RAN). RAN combines symbolic and subsymbolic features in a very attractive way: it is based on attractors; enables pattern classification under
missing data; and demonstrates dynamic reconsolidation, which is very useful for tracking changing concepts. The perception RAN enables is
somewhat reminiscent of human perception due to its context sensitivity. Furthermore, it enables an immediate and clear interface with symbolic
memories, including loading of attractors by means of trivial wiring, updating attractors, and retrieving them faster without waiting for full
convergence. It also scales to any number of concepts. This provides a useful counterpoint to more conventional memory systems, such as random
access memory and auto-associative neural networks.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Human memory is very different from current computer
memory. Models of biological memories rely on dissipation and
thus introduce attractors [35]. The use and application of dissi-
pative dynamics in general analog computation was analyzed
previously, with the attractors as either points, limit cycles, or
chaotic [34,4,5]. Dissipative dynamics are considered to be the
cause of persistent activity during memory experiments in both
the Prefrontal Cortex and the Hippocampus [13,26,27,21,7,12,
8,29]. Attractor neural networks were thus used or incorporated
in many memory models [20,25,30,18,11,6,17]. These models
typically assume fixed attractors to which the inputs flow, stati-
cally mapping the continuous input space into predefined basins
of attraction. Experimental studies, however, suggest that nei-
ther the attractors nor the basins of their attraction in the input
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space are static; rather, they change upon retrieval via a process
called Reconsolidation [9,31,22,10].

Perhaps the simplest psychological phenomena demonstrat-
ing the flexibility of attractors are the priming and gang effects.
Priming is the phenomenon in which recently visited attrac-
tors have a higher chance to attract the next inputs [3]. In the
gang effect, a gang of attractors has an effect beyond its own
members; the visited attractors do not bias the landscape toward
themselves only, but rather the pull of any attractor is affected
by its neighbors’ history as well [24].

The influence of the ordering of recently perceived inputs
on the internal attractors in the Hippocampus was described
by [29,23]. First [29] reported two distinct attractors in
the firing of CA3 cells depending on whether a rat was
put in a circle or square shaped environment. It also
showed that when further morphed versions of the circle
and the square environments were provided, the end states
of the circle and the square became closer to each other.
Interestingly, when the morphing was done in order from
circle to square in small steps, the end representations became
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almost identical [23]. Similar phenomena was demonstrated in
psychophysics experiments [32], where the order of the inputs
was shown to influence recognition of faces. People were asked
to identify previously presented faces from a test sequence of
faces. Manipulation of the test sequence involved gradually
transforming from one pre-learned face (source) to another
initially distinguishable face (target). The results demonstrated
partial merging of the source and the new face, but only when
the faces were presented in gradual order from the pre-learned
to the new face. A model based on the Hopfield network was
proposed to explain this phenomenon [6]. Other existing neural
networks also move their internal representations slightly in
the direction of changing inputs, including networks used in
competitive learning and in self-organizing maps [19]. All
current neural networks models, however, suffer from a lack
of practicality as a computational memory, since there are no
existing procedures that can robustly translate a specification
of attractors into a set of weights [36]. These memories are
sub-symbolic and cannot be well coupled with symbolic items.
Our goal is to create the foundation of a new kind of memory
system that includes pattern completion in terms of attractor
dynamics; that is easy to load, update, and retrieve; that
is understandable and clear; and that still demonstrates the
biological-like reconsolidation process along with its benefits
for tracking changing concepts.

Recent work in neuroscience implies that attractors can be
studied on different levels. Single cells were identified that
recognize objects, people, and abstract concepts across fairly
robust changes in modalities including the look, name, voice,
etc. [33]. These were termed celebrity cells. Modeling attractors
in this high level would mean allocating a node per attractor. A
very practical model was suggested along this line called the
”localist attractor networks” (LAN) in [36]. The LAN provides
a unique combination of advantages: wiring the architecture to
any given attractor landscape is simple; the network contains
no spurious attractors, as in symbolic memories; and pattern
completion and classification are available, as they are in neural
network memories. Even the psychological features of gang and
priming are demonstrated in the LAN.

In this paper we introduce the Reconsolidation Attractor
Network (RAN), a generalization to the LAN that includes
flexible memories, a controlled flow with early stopping,
and contextual effects. The RAN’s chief applicability is in
computational paradigms which require pattern completion and
tracking of changing concepts. Additionally, it can be applied
to systems with any number of underlying prototypes. Due
to its similarity to human memory, RAN will also be highly
applicable in social robotics, where human-robot understanding
is beneficial.

2. The reconsolidation attractor network (RAN) Model

RAN includes three types of nodes or cells: input cells (I ),
internal state cells (y), and attractor cells (A). Each attractor
cell Ai , i = 1, 2, . . . n stores three pieces of information: the
current activity or pull toward the attractor (ai ), the size of its
basin of attraction (bi ), and the location of its center (ci ). The
state cells y are the hidden variables that enable the convergence
from the input to one of the given attractors, as in the LAN.
The state cells change their values fast, reminiscent of neural
network flow. In our model, the attractors are adaptable as well,
but only when they are retrieved, as is the case in biological
reconsolidation. We thus consider different time scales for the
update of information within the system, which can be activity
dependent. We note that multiple time-scales were shown to
be history dependent at several levels of organization in the
neural system, and they were considered to provide powerful
means for computation and memory [16]. Our memory model
demonstrates the applicability of this feature.

2.1. Contextual Effects in the State of RAN

The state cells update from the new input, when available,
otherwise, they update recurrently based only on the state cells.
The RAN creates contextual effects among the inputs by mixing
previous states with input values to get the updated value of
each state cell. The update equation of the state cells (vector y)
is

y(t + 1) = µ · y(t) + (1 − µ)

·

[
α I + (1 − α)

∑
i

ai (t)ci (t)

]
(1)

where µ is the scalar describing the amount of context
dependent memory, I is the input vector, and ci is the center of
the i th attractor. The vector ci has the same length as the input
and the state. The scalar α is the pull of the state toward the
input versus the attractor. The value of α is typically decreased
between the introduction of new inputs. Other protocols that
attend to the inputs will be described in Section 3.3. The (scalar)
activity of the attractor ai is a function of its distance from the
state, normalized by the size of its basin:

ai (t) =
d[y(t), ci (t), bi (t)]∑

j
d[y(t), c j (t), b j (t)]

. (2)

It was assumed [36] that all attractor basins are equal and update
by b2

= 1/n
∑

j a j (t)|y(t) − c j (t)|2; we follow a similar
assumption. The function d[·] measures the distance between
the state and the attractors. If we chose d = e[−(y−ci )

2/2b2
],

then the attractor cells would be similar to a layer of radial basis
functions with normalization [28].

2.2. Entropy of attractors’ activity distribution

When is it appropriate to stop the iteration of the state nodes
in order to make decisions? In theory, we could wait until the
state nodes reach an attractor. However, stopping early prevents
over-fitting and correlates better with biological systems which
require a timely response. We propose to employ an entropy
threshold based on the distribution of attractors’ activities:

Ha(t) =

n∑
i=1

ai (t) · log2

(
1

ai (t)

)
. (3)
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According to our definition of activity entropy, the algorithm
is guaranteed to have non-increasing entropy with subsequent
iterations. If not stopped the state will always converge to the
attractor with the lowest possible entropy value. However, with
early stopping the state nodes will end the updating process
when entropy is small enough, which occurs at the peak of
the distribution of the attractors’ activity. At that point the
algorithm will be able to identify the attractors closest to the
current state, and the attractors will update based on that state.
As the activity of an attractor is a function of its center and
its basin, individual changes to bi could bias the stopping
landscape. Individual changes of basins will be considered in
a future study.

In addition to the use of a low level of the activity entropy
for early stopping of the state iteration process, we will also
consider a high level of the entropy. Very high entropy means
that no existing attractor can explain the input. We propose in
Section 4.1 a general framework of memory where high entropy
indicates that the current memory models held in short term
memory are insufficient to explain the input. This creates a
need to retrieve or create new memories. This use of entropy
is related to the mathematical modeling of the surprise raised
by a new input relative to the current internal landscape [2].
Our notion better evaluates the peaked distributions, and it thus
provides a decision value for early stopping.

2.3. Updating the attractors: Reconsolidation

It is proven [36] that the LAN’s dynamic corresponds
to a search for a maximum likelihood interpretation of the
observation. This holds true for our networks even though we
add the tuning of the interpretation. RAN’s attractors can be
updated when the activity distribution peaks, as measured by
the entropy. If we consider the attractors as generative models
then the center should represent the mean of the observed
inputs. This is possible if learning is performed using an
unbiased estimator. We thus employ the following update:

ci (t + 1) = νai (t) · y(t) + [1 − νai (t)] · ci (t) (4)

where ν is the flexibility coefficient controlling the amount of
lability in the attractors. The extreme value of ν = 0 results
in no reconsolidation, and the value of ν =

1
ai

causes the
attractor to fully change to the final internal state. Note that
in our system, all active attractors can update, while the most
active ones update the strongest.This joint updating will cause
attractors that are frequently active together to become even
closer, while ones that are active at different times will move
further apart. Such processes of merging and separation are
achievable simply by setting the stopping entropy value to the
levels of zooming in or out of details, as desired.

3. Properties of the RAN: Simulations

The chief advantage of the RAN over the LAN is its
reconsolidation property. There are no changes to already
existing gang and priming effects, and the RAN is as simple
and scalable as the LAN and with no spurious attractors. In
this section we provide examples of the type of reconsolidation
available in the RAN. While the simulations are minimalist,
they adequately express the network’s behavior.

3.1. Attractor reconsolidation: Growing a beard

The data described in [23,32] suggest that an attractor is
updated following an input sequence consisting of monotonic
changes from an input that fits an attractor to a foreign input.
We demonstrate this phenomenon in the RAN and describe our
findings.

For this simulation we wire the system with three attractors
which represent different faces: circular (Frank), semi-circular
(Nate), and square (Stu). The inputs are 2D gray scale matrices
with 237 × 237 values, and the internal states of the network
are similarly represented in the pixel domain. Naturally, there
is much overlap in the state cells of the different faces but the
attractor cells do not overlap, according to our construction (as
is the case in celebrity cells).

Next, the RAN is presented with an input sequence in which
the circle face grows a beard in seven small steps. Fig. 1b
depicts the distance of each attractor node from each input,
when the attractors are forced to remain fixed (as in LAN) with
no reconsolidation (ν = 0). As Frank’s beard grows, we see
that the distance between the input and each attractor increases,
and that the biggest relative increase in distance occurs in the
attractor of Frank’s original face. We next relax the flexibility
control and let the attractors reconsolidate. In Fig. 1c we see
the distance of the attractors from the same sequence when the
attractors can update with the inputs received. We include eight
learning steps for each input in which the attractor is pulled
towards the input. The RAN modeling allows the hypothesizing
of what the new attractors represent as shown in Fig. 1d, which
has not been explicitly suggested before. We see that as the
circle face grows a beard monotonically, the attractor of the
circle face changes to become a bearded face, the semi-circular
attractor adjusts modestly, and the square face which is farther
away does not update at all.

In Fig. 2 we run the same experiment but with different
values of the entropy in the stopping condition. Higher entropy
in the stopping criterion causes bigger changes to near-by
attractors. This is because the distribution of the attractor
activity was not highly peaked, and the activity of closer
attractors is not significantly different from the activity of the
winning one. A lower entropy condition halts the update of
the internal nodes in a more peaked distribution, and, thus, an
attractor that does not win has a much lower activity and is
affected very slightly by the input. When shuffling the input set
of bearded face images such that they are not provided in the
previously used monotonic order, the attractors only adjusted
mildly, demonstrating the importance of the monotonicity of
input as seen in [23].

3.2. Contextual Perception: SOS versus 505

We next focus on how RAN causes biases in perception; this
is indeed a chief property of human memory. We demonstrate
the bias by a system that will read SOS even when it is not
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Fig. 1. Memory concepts change with a monotonic input sequence that leads toward a new concept: (a) Three faces are stored as non overlapping attractor memories
(b) Seven inputs arrive sequentially featuring Frank growing a beard. The distance of each attractor from each input is depicted for when the attractors are held static.
The Frank attractor increases its relative distance from bearded Frank (c) The distances of the three attractors from the seven inputs when attractors are flexible
(d) The modified attractors are depicted: Frank changes to a bearded Frank, Nate will recognize both clean shaved and bearded Nates, and the Stu memory has not
been modified.
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ig. 2. Updating related attractors. (a) When entropy is set high for early
topping, the attractor activity distribution is less peaked, and neighbors of
he most peaked attractor will update their values as well. Here the stopping
ondition is set to H = 1. (b) Memory updates better focus on the winning
ttractor when a lower level of the entropy (higher peak) is required as the
topping condition. Here the stopping condition is set to 0.25.
exactly written there, based on context and expectation. We
focus on the effect that occurs due to persistent continuous
activity. To do this, we hold the attractor landscape unchanged
during the experiment.

We initiate a RAN with four attractors: the letters S and O,
and the digits 0 and 5. The inputs to the network are based
on 20 point bold face font represented by a 25 × 25 pixel
image and an additional column which specifies whether the
image is a letter (the whole column is 1) or a digit (the whole
column is 0). In addition to true letters and digits, we also
formed an input image containing a combined morphing of 5
with S (50% each) concatenated with a column vector with
values of 1

2 . Analogously, we made another image by morphing
0 with O (50% each) and appending an identification column
of all 1

2 . These inputs were used for testing. While in the
previous demonstration we visualized the attractors themselves,
we now want to visualize the flow of the state nodes within
the attractor space. To visualize the attractor space (where
the attractors are only points) we use Principle Component
Analysis (PCA) across the state space on the full images,
including the image pixels and the identification columns.
Fig. 3a shows the attractors mapped to a 2D space after applying
the PCA. The digit 5 lies in the top right area, the letter S is in
the bottom right; both the digit 0 and the letter O are on the
left side of the space but the digit lies higher than the letter.
Because of the identification column, the space is divided into
the letters area and the digits area, although we may not be able
to completely see this division.

The first demonstration includes the sequence of three
consecutive inputs: the letter 5, the morphed image of O-0,
and the morphed image of S-5. The system first recognizes
the 5; then, with the next input, it flows to the digit 0; and
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Fig. 3. Contextual effect due to persistent continuous activity in the state nodes
is demonstrated by reading SOS or 505 from similar sequences based on the
starting attractor. The attractors correspond with the digits 0 and 5 and the
letters O and S. Also considered as input are combinations of 0-O and 5-S.
The representation of each digit and letter includes both the pixel image as well
as an identification column of 1’s for a letter, 0’s for a digit, and a fraction
when it is unknown. (a) The high dimensional space of the letters and digits is
viewed in 2D via PCA applied to the image concatenated with the identification
column. (b) The input sequence is the digit 5 followed by 50% of 0-O and then
by 50% of 5-S. The flow after the presentation of the first digit is depicted
with gray stars, the flow after the presentation of the 0-O are white circles, and
the flow after the presentation of the third input are black triangles. It can be
seen that the trajectory flows to an unstable middle point first, and then it is
biased toward digits (the first attractor). (c) The input sequence is the letter S
followed by 50% of 0-O and then by 50% of 5-S. The flow is depicted with
stars, circles, and triangles after the representation of the first, second, and third
inputs accordingly. As in part (b), the trajectory also flows to an unstable middle
point first, but then it is biased toward letters (the first attractor in this case). The
bias occurs since the state nodes leave traces of their previously seen inputs,
which act as the prior bias to perception for the next input signals.

with the last input, it converges to 5 (see Fig. 3b). The fact
that the first input was a digit biased the following perception;
this is a generalization of the priming effect. In the control
demonstration, the system was first shown the letter S and
then the same two morphed images of O-0 and S-5, as in the
previous manipulation. The system now reads SOS. This occurs
because the internal state is not wiped after the recognition of
an attractor (µ > 0), and it leads to the continuous activity
of the state space that causes contextual effects. Note that
we kept the attractor’s state unchanged in order to show that
continuous activity can bias a percept. In reality the effect of
such a bias on perception is even stronger since, as 5 and
0 occur more frequently together, the joint reconsolidation
process strengthens their link to each other.

3.3. Input dynamics and continuously many attractors

In all previous experiments the input affected the state
nodes in exponentially decreasing amounts (α) after the first
presentation. It is possible however to consider the input in
different attention levels during the process of state flow. We
will study different protocols of lingering on input, and this will
demonstrate that different attention protocols will change both
the dynamic and the end state of the network. In other words,
both the flows and the attractors that are reached will differ.

For this study we introduce the RAN with three attractors,
each of which represents a line with a given length and rotation
degree from the vertical direction (see Fig. 3c): the first attractor
is a line that is presented with a 0 degree rotation and a 45 pixel
length (0, 45), the second one is a line with a 90 degree rotation
and a 45 pixel length (90, 45), and the third one has a 45 degree
rotation and is only 10 pixels long (45, 10). The inputs and
states correspond to lines as well. The input itself is a set of
pixel images, but for simplicity of presentation we show them
in the 2D space of rotation and length where the attractors are
points.

We experimented with four update protocols for α. Since,
α affects how much the input is considered, this can be
perceived as studying attention protocols. In the constant
attention protocol, the input gets a constant weight. For linear
and exponential, the input is considered in decreasing amounts
for a few steps and then jumps up again; and in the periodic
protocol, the input is considered and then not considered at all
and then is considered again, etc., see Fig. 4a. We see in Fig. 4b
that for input (44, 20) the constant and exponential protocols
lead to fixed points, while the linear and exponential ones lead
to limit cycle dynamics in state space.

In Fig. 4d we attend to the input constantly but to varying
degrees, which bring about different fixed point attractors in the
state nodes. Note that while all the attractors at the state space
of this demonstration are close to the true attractor (0, 45), none
fuses with it. In Fig. 4e we consider two different strengths of
inputs for the periodic protocol, and we see that a small change
in the strength of the periodic signal can cause a totally different
flow in the state space. In one case, the state flows to a fixed
point and in the other one it flows to a limit cycle attractor.

When a series of different inputs is considered the slight
changes in the protocols may lead to different associations of
RAN’s closest attractor. The input of (30, 25) when presented
after (44, 20) reaches a different attractor than when it follows
(46, 20). In the first case it goes to attractor (0, 45), and in the
second case it goes to attractor (45, 10), as seen in Fig. 4f.

This demonstration shows that a network with a discrete
number of fixed point attractors may lead to a continuum of
fixed point and limit-cycle attractors in the state node space
based on differences in attending to the input. Also, the path to
convergence of the state nodes can be very complex and varies
for the different protocols. The perception and consequently
the memory of the input can differ based on the protocol
considering the inputs.

4. Discussion

We present a computational technique based on Reconsol-
idation Attractor Networks (RANs) for modeling various as-
pects of memory storage, retrieval, and reconsolidation. The
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Fig. 4. We study the flow in state nodes and how it varies with different attendance to the input: (a) Four different protocols of controlling α in Eq. (1) are
considered (b) The different protocols lead to different trajectories on input of (44 degree rotation, 20 pixel length) (c) The three attractors of the RAN are the
three lines. Here we show the attractors in pixel form as appeared in the input and node spaces; in all other figures the inputs are shown in the 2D analogous
representation of degree-length state space in order to view the attractors as points (d) Three different point attractors in the state node space are reached when the
input is considered in the constant protocol but with varying degrees; none merge with the original attractors (e) Different trajectories and type of attractors result in
considering the input in the periodic protocol and with 1% difference in strength (f) This figure demonstrates contextual effects. First the input (44, 20) is introduced,
followed by (30, 25). The trajectory starts with a limit cycle after the introduction of the first input, and it flows to a fixed point close to the attractor (0, 45) after
seeing the second input. In the other case, an input of (46, 20) leads to a different limit cycle, and with the introduction of (30, 25) the flow goes to a fixed point
near (45, 10).
chief focus is on unconventional memory for use in computa-
tional systems. In the RAN, raw input is translated into dynamic
activity across a state space, whose activity in turn is influenced
by the activity levels across various attractors. The attractors
themselves can be modified during reconsolidation, which is
triggered by an entropy criterion that kicks in when the distri-
bution of activity across the various attractors becomes suffi-
ciently sharp. The model accounts in an abstract way for cer-
tain contextual memory effects by showing that RANs exhibit
hysteresis. In other words, the system settles into a different
attractor for a given input depending on the sequence of prior
inputs. Such hysteresis can result either from persistent activ-
ity across the state space or from the movement of the attrac-
tors themselves. In our model, attractor centers can be morphed
semi-continuously by gradual changes in inputs. The RANs
continue to function sensibly even at an arbitrarily large num-
ber of attractors, since the attractors can be defined in a higher
dimensional space and keep distance by this operation. For ex-
ample, we can think of a 200 dimensional input with 200 attrac-
tors that lie on the corners of a 200 dimension hypercube, so
that they are spaced out [36]. It is possible that during reconsol-
idation the attractors will become closer or further apart based
on the level of entropy chosen for early stopping of the peaked
distribution.

The practicality of the RAN over neural network attractor
modeling lies in its ability to bridge symbolic and subsymbolic
information naturally; it is possible to load any set of symbolic
data by simple wiring, a feature which is not available at all



H.T. Siegelmann / Physica D 237 (2008) 1207–1214 1213
in neural networks. A chief superior feature of our memory is
its ability to reconsolidate, which means it can track changing
concepts. The use of entropy and the update of prototypes
similar to the winning one are supportive of generalization and
transfer learning.

It is our intention to continue to study the practicality
of reconsolidation based memories, in particular the tracking
of dynamic concepts while maintaining robustness and
generalization. We will also explicitly model the merging of
prototypes and their hierarchical decomposition. We will focus
on individual changes to the basins of the attractors and study
how this will modify prototype selection.

4.1. The large view of memory system

While our model may be removed from neurological
structure, it still has some functional similarity. Anatomically,
it has long been recognized that the initial site of learning is
different from the eventual site of storage. Hippocampal lesion
experiments demonstrate that the hippocampus is necessary to
learn a new memory, as well as to recall it in a relatively short
period of time after learning. After some time, hippocampal
lesions no longer disrupt previously acquired memory. However
this is not the case when memories are recalled, as they then rely
on the hippocampus for the process of reconsolidation.

This leads us to propose the RAN as part of the memory
system. According to this view, long term memory may
include prototypes (e.g., ball, red, dark, line, degree, loud) and
operators that can be applied to prototypes, where operators
may also include associations between different prototypes
and return concrete concepts or models (e.g., a red ball).
Operators also enable longer and more complicated sequences
of other prototypes. The resulting models are sent to short term
memory, and they are used as the reference of the working
memory, which can receive input and perceive it according
to the models in short term memory. The state nodes of the
RAN correspond to working memory, and the individualized
attractors correspond to the models in short term memory.
According to the RAN, the models of STM can be modified in
accordance with the new inputs. The change to LTM occurs on
a much slower time scale and directly influences the individual
prototypes and operators; it is not part of the current RAN
model. When input arrives, if the entropy of the STM attractors
with respect to the input is too large, no memory model is able
to explain the input, and new memory models are requested
to be composed from LTM into STM. Fig. 5 explains our
computational and algorithmic view of memory.

4.2. RAN in Future Modeling and Predictions

Unlike neural networks, RAN’s parameters are easier to link
to their corresponding psychological values since they relate
to the center and pull of attractors. This leads us to suggest
using RAN both to predict results and to design biological
experiments based on the computer experiments done in this
work. Based on the first experiment of growing a beard,
we hypothesize that reconsolidation affects the priors of not
Fig. 5. Algorithmic view of memory system: (a) The figure depicts Long
Term Memory that includes prototypes (e.g., ball, red) and operators
(e.g., association) that together can form instances or models that are deposited
into Short Term Memory. Short Term Memoryś models can be updated by
Working Memory via the RAN update algorithm. Working Memory hosts the
state nodes of the RAN and enables the perception of new inputs. (b) The
algorithm associated with the proposed framework of memory.

only the particular memory but also of close memories. This
prediction can be tested in psychophysics. Humans subjects
will be asked to categorize sets of stimuli. The stimuli will
be generated from a set of prototypical random stimuli with
added noise, so the prototypes are never presented without
noise. First, subjects will be trained to categorize the patterns,
and then changes will be applied to one underlying prototype.
The learning rate will be measured. Later, similar changes
will be made to another category, and the learning rate will
be compared with the first one. The rate of learning will be
estimated by both the percentage of correct classification and
the reaction time [1].

The second experiment will check the hypothesis that
subjects bias their view to recent associations. First, a sequence
of images will be shown that either bias toward only digits
or only letters, then distorted images will be shown, each
combining an image of a digit with an image of a letter. The
subjects will be asked to type what they see. As a second
manipulation, successions of the letter S and the digit 5 will
appear frequently together, and then the blurred test images will
be shown again.

The third experiment will measure the effect of attention
via both color saliency and explicit directions. These will be
applied to the first experiment described above. During the
experiments the RAN will be compared with data. One may
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want to also compare the model with evidence of multi-scale
and sharp learning [14,15].

To summarize, the main focus of this contribution is the
design of memory that can be used for improved thinking
machines that are able to follow dynamically changing concepts
and demonstrate sensitivity to context. The new computational
machines will naturally combine learning from examples, high-
level directions, and cognitive attention and, thus, will change
the state of the art of machine learning, which is currently best
equipped to produce rigidly single task oriented algorithms.
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