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Abstract

Computational models in the field of cancer research have focused primarily on estimates of biological events based on
laboratory generated data. We introduce a novel in-silico technology that takes us to the next level of prediction models
and facilitates innovative solutions through the mathematical system. The model’s building blocks are cells defined
phenotypically as normal or tumor, with biological processes translated into equations describing the life protocols of the
cells in a quantitative and stochastic manner. The essentials of communication in a society composed of normal and tumor
cells are explored to reveal ‘‘protocols’’ for selective tumor eradication. Results consistently identify ‘‘citizenship properties’’
among cells that are essential for the induction of healing processes in a healthy system invaded by cancer. These
properties act via inter-cellular communication protocols that can be optimized to induce tumor eradication along with
system recovery. Within the computational systems, the protocols universally succeed in removing a wide variety of tumors
defined by proliferation rates, initial volumes, and apoptosis resistant phenotypes; they show high adaptability for biological
details and allow incorporation of population heterogeneity. These protocols work as long as at least 32% of cells obey
extra-cellular commands and at least 28% of cancer cells report their deaths. This low percentage implies that the protocols
are resilient to the suboptimal situations often seen in biological systems. We conclude that our in-silico model is a powerful
tool to investigate, to propose, and to exercise logical anti-cancer solutions. Functional results should be confirmed in a
biological system and molecular findings should be loaded into the computational model for the next level of directed
experiments.
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Introduction

Cancer incidence is expected to rise worldwide from 12 million

new people affected annually in the year 2000 to an anticipated 20

million in the year 2030, highlighting the urgent need to identify

highly effective preventative and therapeutic interventions. This

paper introduces an original mathematical system, combining

Dynamical Systems theory and Artificial Intelligence algorithms in

an attempt to identify logical principles underlying cancer

development and imply innovative anti-cancer solutions. The

model simplifies the complex environment of cancer development

and progression, where numerous chemical, biological, and

physical factors act together to affect intra-cellular events and

extra-cellular signaling. While simplification is essential to unmask

the fundamental principles of cancer occurrence, the artificial

intelligence component of our system affords a high level of

adaptation for numerous intra- and extra-cellular details, unlike

previous cancer models that were restricted to probabilities of

several intra-cellular events [1–8]. Our model provides a

framework to assess several important questions in Oncology:

What kind of information flow inside and between cells may be

associated with tumor development and progression; What kind of

inter-cellular communication keeps tumor cells dormant; Do

current therapies bias some of the natural flow to explain their

temporary benefit; And what are the principles of successful inter-

cellular communication rules that would enable selective tumor

cells’ apoptosis (programmed cell death). The latter subject is the

focus of this manuscript.

Three assumptions are made within the model [9]. First, it is

assumed that intra-cellular biological cascades and extra-cellular

signaling can be measured by units and be quantified by

mathematical equations; this relates to Information Substance

Theory where biological events are interpreted as flow of

information units [10]. Second, natural mechanisms for selective

cancer cell death in living organisms are assumed to exist, as

otherwise cancer incidence as calculated by mutation rates would

be significantly higher [2]. Analogous mechanisms have been

reported and include tumor removal via immune surveillance [11].

Third, we relate two seemingly opposing biological facts about

cancer and apoptosis: The classic hallmark of cancer, that cancer

arises when inappropriate apoptotic response occurs and prevents

natural eradication of mutated cells [12], and the induction of

caspace-dependent tumor cell apoptosis as a universal mechanism

for tumor cell death by irradiation and the majority of
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chemotherapy agents [13–15]. This leads to our third assumption

that even highly mutated cells maintain residual apoptotic abilities

that we name ‘‘basic citizenship responsibilities.’’ We further

assume that those skills require communication with other cells in

the system, both by signal emission on viability status (alive or

dead) and the compliance with external apoptotic commands.

These assumptions are supported by mounting evidence on the

significance of the tumor environment in cancer occurrence, with

data from several studies pointing directly to our assumptions.

There are data on the role of high mobility group box 1

(HMBOX1) protein in reporting cancer cell death to the immune

system as an essential part of tumor death by chemotherapy agents

[16], and findings showing that AP2L/TRAIL (tumor-necrosis-

factor-related apoptosis induced ligand) binding to ‘‘death

receptors’’ DR4 and DR5 induces selective tumor cell apoptosis

via the external apoptosis pathway [17–19].

Our model seeks to provide a single unifying mechanism

incorporating these assumptions [16–19]. It is a dynamic tissue

simulation model composed of cells cycling in a 3-dimensional

society, where normal and mutated cells are defined phenotypi-

cally by their apoptotic response, proliferation pace, and

compliance with spatial regulation rules. Signaling toward

apoptosis is modeled in terms of the flow of information that

activates the intrinsic and extrinsic paths correlating with activities

of intrinsic regulating factors, and extrinsic modifiers, respectively

[17,18]. Findings suggest that our modeling may constitute a

complementary approach to biological research; directions

proposed by the self learning model (upon incorporation of

resultant biological details and a definition of optimal results) could

lead to an enhanced understanding of these processes and of

potential interventions.

Methods

The system is written in the object-oriented C++ programming

language, and is initiated as a single cell that via replication and

structural regulations fills a given size 3-dimensional membrane

(Figure 1a). Once the membrane is filled, the system maintains its

structural and functional homeostasis. Simulated cells are

regulated by basic life protocols that sense and affect both their

internal states and their environment, and jointly support the

system’s goals: Spatial regulations (contact inhibition), control of

individual cell health via repair of mutations, and system longevity

and integrity.

Models using various levels of detail exist, all aimed at

simplifying the complexities of cancer occurrence in order to

reveal fundamental biological processes. Choosing which details to

remove and include should be suggested by the specific goal being

investigated. In our case, the goal is to determine core information

about the types of ‘‘rescue protocols’’ internal to the cells, which

are an essential part of the ability to fight the growth of mutated

cells and prevent them from overwhelming the system. Conse-

quently, we select the details we will focus on based on the

necessities for modeling this type of occurrence, and generalize the

rest.

The Life Protocols
The basic life protocols reflect proliferation (including

rate parameters, generation potential, and space restrictions

[9,20–22]), proliferation-suppression mechanisms, self-test-
ing at a check point prior to the replication decision, repairing
damages, and apoptosis. The latter is activated as either a

random process, secondary to a cell’s decision to die due to aging

or uncorrected defects, or as a reaction to extra-cellular signaling.

The distance regulation protocol maintains shape cohesive-

ness and allows undisturbed communication flow among cells [8].

These protocols are chosen to approximate the healthy function-

ing of phenotypic properties of cycling cells. The physical property

of space is important in our model since normal cells proliferate

only when given space around them, whereas tumor cells may

violate this restriction. This can be a basis for the creation of solid

tumors of a particular shape, as our cells grow in an expected

spheroid pattern with current spatial parameters even though we

do not explicitly model this behavior [23,24].

Tumor cells can develop in the system spontaneously (see

results) from a cell whose life protocols are damaged; however, to

speed up and ease the analysis of growth after the initial tumor cell

develops, we can also plant a single cancer cell into the model at a

set time for every experiment. A tumor cell in our model, once

created, can only produce tumor cells and cannot back mutate into

a normal cell.

Three techniques are used to provide biological plausibility and

applicability to the simulation results. They are population

heterogeneity, a relative proliferation ratio, and varied experi-

mentation.

Population Heterogeneity. Variances are created by ranges

of death and proliferation probabilities within each cell popu-

lation, which vary by +/2200% and +/2300% respectively. A

newly created daughter cell inherits these probabilities with

random skewing from the parent’s characteristics. To assure

probabilistic cover for feasible ranges of variables due to the

difficulty of estimation, we include large ranges of values.

Relative proliferation ratio. This factor describes the

quotient of the valid range of tumor and normal proliferation

probabilities. For demonstrations we use ratios of 6, 10, and 20.

This ratio characterizes the tumor cells in terms of how much their

proliferation is increased over the normal cells. For each ratio the

tumor proliferation rate is taken to be in the range of 0.3 to 0.9,

and the tumor death rate is 0.0001 to 0.0002. The normal

proliferation rates are in the range of 0.05 to 0.15 for ratio 6, in

0.03 to 0.09 for ratio 10, and in 0.015 to 0.045 for ratio 20. The

normal death rates are within the wide range of 0.0024 to 0.0048

for all ratios. These ranges are based on biological data [25].

Varied Experimentation. To ensure more accurate results,

each set of parameters is tested multiple times since even for a

fixed set of parameters describing the system the end result may

Figure 1. The progression of a simulation. Color is utilized for
visualization purposes, with black representing tumor cells. (a) The
initial system growth starting with a single cell in increments of 50
steps. (b) The growth of a tumor, starting from a single cell, in
increments of 10 computational time steps. (c) The rescue protocols
working to remove the tumor cells without significant damage to the
surrounding tissue at time steps 18, 20, and 25 after tumor planting.
doi:10.1371/journal.pone.0010637.g001
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differ as life protocols of individual cells are defined in a stochastic

manner. This increases the realism of results, as it ensures that we

test many different possible outcomes from the same set of basic

parameters in the system.

Anti-Cancer Interventions
The major innovation of this research is discovering potentially

natural ‘‘rescue protocols’’ that have the ability to prevent many

occurrences of evolved cancer cells from overrunning the system.

These protocols are activated once the system detects a risk to its

existence. Successful protocol activation is defined as having all

cancer cells die at the end of the process without irreversibly

wiping out the healthy system.

Numerous hypothetical protocols are tested by varying, for

example, the type of cells initiating signals (normal, tumor,

partially mutated cells), the conditions causing signal initiation

(e.g., spatial violation), and emitted signal properties and

parameters (strength, radius).

Results

Tumor Developmental Model
A tumor cell originates through mutations to basic life protocols

of a normal cell, and may occur only through particular orderings

of mutations that bypass normal guarding mechanisms: repair,

apoptosis, proliferation-suppression, and distance regulation.

Tumor cells may over-replicate to form tumor clusters that

blindly occupy space, creating pressure on nearby healthy tissue

(Figure 1b). This pressure suppresses normal cells’ proliferation

rates due to the distance regulation protocol representing contact

inhibition. This further increases the gap between proliferation

activities of normal and mutated cells.

The Rescue Protocols
From in-silico experiments comparing numerous communica-

tion rescue protocols (tens of thousands of runs), the following

combined protocol was determined to show the optimal outcome

(Figure 2):

1.Please Die Protocol. Normal cells initiate signals called

‘‘please die’’ when they are spatially (physically) violated by

neighboring tumor clusters. Receiving cells consider the total

strength of signals received over time. If the ‘‘higher threshold’’

is reached in a cell it will induce apoptosis. A ‘‘lower threshold’’

is also defined for normal cells only; in response to it they will

emit ‘‘please die’’ signals sooner, causing resistance to tumor

re-growth.

2.I’m Dying Protocol. Cells dying due to either the ‘‘please

die’’ or the ‘‘I’m dying’’ protocol will emit ‘‘I’m dying’’ signals.

This protocol is a basic cellular ‘‘citizenship’’ commitment.

Receiving cells consider the total strength of signals received

and act in accordance with one of two thresholds: The higher

threshold provokes apoptosis and due to spatial regulations

affects mostly internal tumor parts; the lower threshold

accelerates normal cells’ replication rate to promote repopu-

lation of evacuated space. This process is inspired by similar

phenomena described in Drosophila which is mediated via

JNK and the Wingless signaling pathways [21].

Figure 2. The ‘‘I’m Dying’’ is necessary to complement the ‘‘Please Die’’ protocol. The closed loop of tumor cells’ death biases the system
toward killing tumor cells at internal parts of the cancer cluster and promotes normal cell repopulation.
doi:10.1371/journal.pone.0010637.g002
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The ‘‘please die’’ protocol can only cause removal of mutated

cells from the tumor periphery, which is not sufficiently realistic.

The signal ‘‘I’m dying’’ transfers the death messages deeper into

the tumor cluster (Figure 2). The combined protocol follows

cancer growth dynamically in real-time and is typically victorious

in its anti-tumor battle (Video S1).

Universality of the Solution
To confirm the robustness of the combined-protocol solution,

we tested the simulation with numerous parameter ranges, and

introduced tissue heterogeneity. The following were introduced:

varying tumor proliferation ratios, modifying external apoptosis

request parameters (signal strength, radius), tissue heterogeneity

for proliferation parameters in normal and tumor cells, changing

initial tumor volume, and increasing tumor cells’ resistance to

external apoptosis commands. The latter was viewed by both

deterministic and stochastic methods, which relate to resistance at

the system or the cell level, respectively. For the deterministic

method, resistance was defined by increasing the number of

requests required for tumor cells to comply with external apoptotic

requests. The results of several thousand computational runs are

presented in Figures 3a–c, showing high success rates which vary

between 62 and 100%. We interpret the high 100% of success as

correlating to a high potential of tumor removal in a natural

biological system. The higher response thresholds (6/6 and 6/16)

tested for parameter sets 4 and 5 lead to the same success rate as

the majority of lower thresholds despite cells needing to receive

significantly more signals to comply. This suggests that in most

cases variation in resistance to external apoptotic commands does

not have a substantial effect on rescue protocol success rates. As

proliferation ratios increase fewer experiments succeed; however,

the protocols are still able to remove all tumors in the majority of

the experiments. Not all rescue protocol parameters necessarily

give complete success, but there still exist choices for each

proliferation ratio that can lead to a majority of success in

removing tumor cells from the system.

For results represented in Figures 3a–c, it was assumed that the

rescue protocols start with an early recognition of cancer cells.

However, we also tested how the protocols would function if they

are held inactive until a particular volume of tumor cells was

reached (Figure 3d). The proposed protocols were still successful

even with up to 60% of the system occupied by tumor cells before

their activation. These results indicate a window of opportunity for

re-activation of inactive rescue protocols in our model in which

they can still successfully eradicate the tumors. Success rates

dropped significantly with initiation volumes above 60%

(Figure 3d).

For consideration of tumor resistance by stochastic analysis we

introduced parameters related to cancer cells ignoring some

external apoptotic signals (Figure 4a) or failing to emit some of the

‘‘I’m dying’’ reports (Figure 4b). Success rates above 55% were

measured for tumor cells ignoring up to 71% of received signals or

failing to emit up to 77% of ‘‘I’m dying’’ messages. This result

implies that the suggested protocols are so robust that they will

succeed even when the majority of their signals do not function

properly and many of the cells do not adhere to them. Only a

Figure 3. Challenging the rescue protocol with more aggressive tumors. Increased tumor resistance to apoptosis is defined by increasing
the threshold representing the number of signals required to induce apoptosis in both tumor and normal cells (written as tumor threshold/normal
threshold in graph legend). Protocol success rates (y-axis) are presented for increasing proliferation ratios [(a) 6, (b) 10, (c) 20, as described in the text]
for 5 different sets of rescue protocol parameters seen on the x-axis [‘‘I’m dying’’ signals (radius, strength), and ‘‘please die’’ signals (radius, strength),
as described in Table 1]. Since experiments are stochastic, 100% success denotes that all experiments with the same protocol parameters succeeded
in removing all tumor cells without significantly harming the healthy tissue. Each graph represents data from 570 experiments demonstrating that
success rates are high for a large range of parameters, between 62 and 100%. This shows robustness of the protocols for biological heterogeneity. A
range of threshold values are shown (graph legend) to demonstrate that even with a significant increase in number of signals necessary for tumors to
die, the protocols still have very similar success rates to the lower thresholds. This is counterintuitive, and shows robustness of the protocols to tumor
resilience and thus supports the correctness of the proposed mechanism. (d) When the cancer volume increases before a delayed initialization of the
rescue protocols, complete eradication of cancer cells can still be possible. As the initial volume increases, the success rate decreases; however, we
can still eradicate tumors for a high percentage of beginning tumor volumes. This signifies that our proposed signaling mechanisms can facilitate
tumor eradication even if they start late.
doi:10.1371/journal.pone.0010637.g003
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minority of cells adhering to the protocols is sufficient for saving

the system from tumor cells.

Discussion

This paper introduces a functional mathematical model where

algorithms provide a framework to describe biological events in an

active society of cycling cells. Biological occurrences are conceived

as propagation of information units, cell cycle events are described

as ‘‘basic life rules,’’ and extra-cellular events are presented as

‘‘communication protocols.’’ A phenotypic description requires that

normal cells use cell cycle check points to correct major damage or

induce self death, and cancer cells display inappropriate intrinsic

apoptosis signaling and relative resistance to external apoptosis

commands, ignorance of spatial regulations, and advantageous

proliferation. Curing in our system requires total cancer cell

disappearance and healthy system recovery, all specified in the anti-

cancer battle time frame. To the best of our knowledge this is the

first mathematical model to accommodate all of these consider-

ations, and to provide innovative solutions based on Artificial

Intelligence approaches. The main logical solution raised by the

model is that the optimal mechanism to induce selective tumor

apoptosis requires the acknowledgment and utilization of active

‘‘citizenship properties’’ of each cell, normal or tumor, to its best

availability. This mechanism is based on ‘‘rescue communication

protocols’’ where cells report their viability status and emit and

respond to external apoptotic requests, defined as ‘‘please die’’ and

‘‘I’m dying’’ signals. It is supported by tens of thousands of data runs

challenging the accommodation potential of the system and the

robustness of the identified logical solution for various cancer

conditions, all of which have met with success. The solution can be

viewed philosophically as a shared responsibility for system health:

each cell attempts to maintain its own health, and when major

cellular damage occurs the responsibility is shared by the society.

The solution is limited, however, by increasing initial tumor volume

(above 60% in our model) and elevated number of tumor cells

(above 71–77%) with absolute resistance to communication within

the system.

The role of the tumor microenvironment in cancer develop-

ment and progression as well as in clinical outcome is increasingly

acknowledged; furthermore it can now be viewed at the genomic

level (summarized in [26]). Specifically for the tumor-environment

interaction suggested in our model, there are emerging data to

support the significance of cancer cells reporting their death. In

vitro models further supported by clinical outcome data showed

that HMBOX1 release by tumor cells exposed to chemotherapy is

essential in mediating effective tumor eradication by different

chemotherapy agents and solid tumor models; HMBOX1 release

functions to report initial cell damage by chemotherapy to the

immune system and likely cooperates with additional messengers

released by dying cells as its artificial introduction does not lead to

the same effect [16,18]. The computerized ‘‘I’m dying’’ signal

likely parallels this biological mechanism.

The clinical significance of external apoptosis stimulation in

inducing selective tumor cell death is supported by early clinical

trials with the recombinant human apoptosis ligand 2/Tumor

Necrosis Factor-Related Apoptosis-Inducing Ligand as reviewed

by Ashkenazi et al [19]. Our artificial model results suggest that

optimal selective cancer cell eradication requires recognition of

cancer cell death messages, activation of the external apoptotic

pathway, and some residual compliance with apoptotic induction

to be coordinated. It is beyond the scope of this paper, however, to

test and prove biological and clinical co-equivalents to our

computational results.

There are several limitations to our work. First, findings, though

demonstrated by numerous system experiments, should be viewed

Table 1. Rescue Protocol Parameters.

Label Tumor I’m Dying Normal I’m Dying Normal Please Die

1 1/1 1/1 1/1

2 1/2 1/2 1/1

3 1/2 1/2 1/2

4 1/3 1/3 1/3

5 2/3 1/2 1/2

Each column shows radius/strength for the specified signal type. Radius
represents how far the signal propagates in cellular space units, strength shows
the starting value of the amount of signal observed by the receiving cells which
decreases over the given distance, and the label is for easy reference to a set.
doi:10.1371/journal.pone.0010637.t001

Figure 4. Stochastic presentation of tumor resistance to apoptosis induction. The rescue protocols are robust, as summarized from 665
random sampled experiments. (a) A system where cancer cells ignore up to 68% of signals still results in 100% success. (b) A system where cancer
cells do not send I’m Dying signals up to 72% of the time still results in 100% success. These results show that we do not necessarily need to assume
that tumor cells will follow the rescue protocols consistently, but that they can fail the majority of the time and still result in complete eradication of
tumor cells in the system. Only very high rates of failure complying with the rescue protocols within the cancer cells will result in a loss of tissue
integrity. We see a sharp decrease in success rates once the protocols reach that high failure level, demonstrating that once the point of protocol
break is crossed, any greater break will cause the system to deteriorate even faster.
doi:10.1371/journal.pone.0010637.g004
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with the limitation of a simplified model and in light of the basic

assumptions delineated in the introduction section. Still, as with all

models, it is this simplification that allows the establishment of

basic concepts essential for identification of fundamental elements

in complex biological systems. The model is currently mature

enough to incorporate multiple biological data (as demonstrated in

the tissue heterogeneity experiments) and in its next generation,

now under development, will incorporate the effects of angiogen-

esis and anti-cancer chemotherapy agents. Second, mechanisms

and experiments are all viewed by functionality, and require back

translation to proteins and genes with molecular proof. While

discussing biological and possible clinical co-equivalents, addition-

al work is necessary to determine the molecular and clinical fit to

our system solutions.

In conclusion, the system is built to test and identify solutions

beyond time series predictions and therefore give substantially

more than an analytical study of the data input. Our system can be

used conceptually for screening and comparing biological

experiments with only a minimal cost, and enables storage of

configurations with applications tested from any desired point. It

has determined specific ‘‘rescue protocols’’ that may be crucial for

selective apoptosis of tumor cells, which are activated naturally

and may be activated by external triggering as well. This model

simplifies the complexity of cancer occurrence, and when

combined with data driven techniques has the potential to

facilitate a novel step forward in recognizing optimized anti-

cancer interventions.

Supporting Information

Video S1 Simulation Movie. Growth of normal cells in the

model, followed by tumor growth when there are no rescue

signals, and then tumor growth with both rescue protocols. Time is

sped up from original simulation, but no other alterations have

been made.

Found at: doi:10.1371/journal.pone.0010637.s001 (1.83 MB

MOV)
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