
640 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

Multiprocessor Document Allocation:
A Genetic Algorithm Approach

Ophir Frieder, Senior Member, IEEE, and Hava T. Siegelmann

Abstract —We formally define the Multiprocessor Document Allocation
Problem (MDAP) and prove it to be computationally intractable (NP
Complete). Once it is shown that MDAP is NP Complete, we describe
a document allocation algorithm based on genetic algorithms. This
algorithm assumes that the documents are clustered using any one of
the many clustering techniques. We later show that our allocation
algorithm probabilistically converges to a good solution. For a
behavioral evaluation, we present sample experimental results.

Index Terms —Genetic algorithms, information systems, information
retrieval, multiprocessor, parallel processing, data placement, data
allocation.

———————— ✦ ————————

1 INTRODUCTION

INFORMATION retrieval is the selection of documents that are po-
tentially relevant to a user’s information needs. Given the vast
volume of data stored in modern information retrieval systems,
searching the document database requires vast computational
resources. To meet these computational demands, various re-
searchers have developed parallel information retrieval systems.
As efficient exploitation of parallelism demands fast access to the
documents, data organization and placement significantly affect
the total processing time. We describe and evaluate an algorithm
that derives an allocation that supports efficient access to a clus-
tered document collection.

Formally, the Multiprocessor Document Allocation Problem
(MDAP) is defined as follows:

GIVEN:
• A distributed memory architecture with:

} Nodes (PEs): X = {Xi|0 £ i £ n - 1};
} Communication cost: Mij, (0 £ i, j £ n - 1);

• A clustered document domain with:
} Documents: D = {Di|0 £ i £ d - 1};
} Clusters: C = {Ci|0 £ i £ c - 1,

 Ci Í D};
• A real value bound: B.

DERIVE:
An allocation mapping

A : D ° X
of the documents to the processors that satisfies the following
conditions:

1) Let Xi be a node. Define the number of documents mapped
onto this node by the allocation A as

mA
 (Xi) = |{Dj Î D|A(Dj) = Xi}|,

where, for all i (0 £ i £ n - 1), mA
 (Xi) £ d

n .

2) Let Cj be a cluster of documents. Define the diameter of this
cluster under a given allocation A as:

diameterA
 (Cj) = max{ |))M D Dk lA A((Dk , Dl Î Cj

}.

Then,

diameter C Bj
j

c

A () ≤
=

−

∑
0

1

.

THEOREM 1. MDAP is NP-Complete.

To prove that MDAP is complete in NP, we reduce the NP-
Complete problem, Binary Quadratic Assignment Problem [5] to
MDAP in polynomial time. Details are found in [11].

Since MDAP is NP-Complete, obtaining an optimal allocation
of documents onto the nodes is not computationally feasible. The
heuristic algorithm proposed here is based on genetic algorithms
[7]. Related document mapping algorithms and multiprocessor
information retrieval efforts are found in, for example [1], [2], [3],
[4], [6], [8], [9], [10], [12].

ALGORITHM:

Initialization Phase:

1) Create a permutation matrix, Pi,j (0 £ i £ p - 1, 0 £ j £ d - 1).
Every row of P, Pi, (0 £ i £ p - 1) is a complete permutation
of all documents Dj, (0 £ j £ d - 1). For example, if p = 3 and
d = 6, a possible permutation matrix is P.

0 1 2 3 4 5

0 1 0 2 5 3 4

P =
1 0 2 4 1 3 5

2 4 5 3 2 1 0

2) Define the document to node mapping function Ai : D ® X
for any given row of P, Pi, (0 £ i £ p - 1) as Ai(Dk) = j mod n,
where j is the index in row Pi of document Dk, (0 £ k £ d - 1).
If n = 3, row P0 implies that documents 0 through 5 are
mapped to nodes 1, 0, 2, 1, 2, 0, respectively.

Reproduction Phase:

3) Given the mapping function Ai for a given row Pi, (0 £ i £

p - 1), determine the cluster diameter, Ri,j, (0 £ j £ c - 1) for

each cluster association list array entry, Cj. Rij =

Max{
),)

M
Dk DlA Ai i((, where 0 £ k, l £ d - 1, and Dk, Dl Î Cj}. If

Concise Papers_____________________________

1041-4347/97/$10.00 © 1997 IEEE

————————————————

• O. Frieder is with the Faculties of Computer Science and Computer Engi-
neering, Florida Institute of Technology, Melbourne, FL 32901. He is
currently on leave from the Department of Computer Science of George
Mason University. E-mail: ophir@cs.fit.edu.

• H.T. Siegelmann is with the Faculty of Industrial Engineering and Man-
agement, Technion, Haifa 32000, Israel. E-mail: iehava@ie.technion.ac.il.

Manuscript received 22 Feb. 1995.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number K97022.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997 641

0 1 2 0 1 3 4 5

0 0 2 4 C =

M = 1 0 2
1 2 0 1

2 4 1 0

then R is

0 1

0 4 1
R =

1 4 2

2 4 4

4) Define an evaluation function, E. This function measures
the “goodness” of the allocation defined by a row Pi, (0 ≤ i ≤
p − 1), and the corresponding mapping function A i. In our
case,

E P R i pi ij
j

c

() = ≤ ≤ −
=

−

∑ 0 1
0

1

.

5) Create a biased roulette. Compute the reciprocal of each
E(Pi), (0 ≤ i ≤ p − 1). Call them E−1(Pi). Bias the roulette pro-
portionally to E

−1(Pi). Assign each allocation an interval on
the unit vector 0 to 1 based on the corresponding biased
probability. In the above example, E(P0) = 5, E(P1) = 6, and
E(P2) = 8, resulting in the following roulette wheel.

Thus, permutations P0, P1, and P2, are weighted at a prob-
ability of 0.40, 0.34, and 0.26, and are assigned the intervals
[0.0, 0.40), [0.4, 0.74), [0.74, 1.00], respectively.

6) Replace the permutation matrix P. Randomly choose p
numbers from within the interval [0.0, 1.0]. For each of the
p random values obtained, copy the allocation permutation
whose assigned interval corresponds to the random value
generated into row Pi, (0 ≤ i ≤ p − 1). To insure the survival
of successful document allocations (permutations), the
lowest cost allocation is always kept. Therefore, if the per-
mutation corresponding to the largest interval, say Pj, (0 ≤ j
≤ p − 1), is not selected within the first p − 1 selections, Pj is
assigned to row Pp−1. In the example, if 0.23, 0.92, and 0.36
were the random numbers obtained, then P would be

0 1 2 3 4 5

0 1 0 2 5 3 4
P =

1 4 5 3 2 1 0

2 1 0 2 5 3 4

Crossover Phase:

7) While maintaining a copy of the lowest-cost permutation,

say ′Pi , randomly pair up the rows in P. If p is odd, ignore

the unpaired row. For each pair of rows in P, say A and B,

randomly generate two integer values, i and j, such that 0 ≤ i

≤ j ≤ d − 1. Position-wise exchange Ai, Ai+1, Ai+2, ..., Aj−1, Aj,

with Bi, Bi+1, Bi+2, ..., Bj−1, Bj, respectively within the two

strings. Replace the highest cost permutation with ′Pi . The

replacement of the resulting highest cost permutation by ′Pi

guarantees the survival of the “most-fit” parents. For exam-

ple, A = P1, B = P2, i = 3, j = 4, mapping string A to string B

exchanges the 2 and 5 and the 1 and 3 in row B while map-

ping string B to string A swaps the 5 and 2 and 3 and 1 in

row A. In this example, P0 is the minimum-cost permuta-

tion. The resulting P is

0 1 2 3 4 5

0 1 0 2 5 3 4
P =

1 4 2 1 5 3 0

2 3 0 5 2 1 4

Mutation Phase:

8) Mutate the permutation periodically to prevent premature loss
of important notions [7]. Randomly choose a number from
the interval [0, 1]. If the number falls outside the interval
[1 − q, 1], where q is the probability of mutation, then termi-
nate the mutation step. Otherwise, select a random number
between 1 and r, that designates the number of mutations
that occur in the given step. For each of the mutations, select
three random integer values i, j, k, such that 0 ≤ i ≤ p − 1, 0 ≤
j, k ≤ d − 1, j − k, and position-wise exchange Pi,j with Pi,k.
Given q = 0.01 and r = 1, a randomly generated value of
0.006, i = 0, j = 1, and k = 5, then P would be

0 1 2 3 4 5

0 1 4 2 5 3 0
P =

1 4 2 1 5 3 0

2 3 0 5 2 1 4

Control Structure:

9) Repeat steps 3 through 8. The precise number of iterations is
dictated by an early termination condition (all allocations
are identical) or by a maximum iteration count. Upon ter-
mination, evaluate the “goodness” of the allocation defined
by a row Pi, (0 ≤ i ≤ p − 1), and the corresponding mapping
function Ai. Choose the best allocation.

As with any other heuristic algorithm, the above algorithm is
not assured to yield an optimal solution. However, we can still
characterize its behavior and prove its likelihood to convergence
to a good allocation [11]. Convergence was demonstrated by gen-
eralizing the schema notation to include permutations.

As a limited comparison study of the algorithm, we experi-
mented with a small dataset and noted the average observed val-
ues of five runs. The greedy algorithm is deterministic and hence
only one run was needed. For fairness, the random algorithm was

642 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 9, NO. 4, JULY/AUGUST 1997

executed for the same duration of time as was our genetic algo-
rithm. The comparison results are shown in Table 1 for four differ-
ent architectural structures. The values represented are in terms
of message hops. The lower the total number of hops (value),
the better is the allocation. For additional experimental results,
see [11].

TABLE 1
BEHAVIORAL COMPARATIVE EVALUATION

Genetic
Algorithm

Random
Algorithm

Greedy
Algorithm

Hypercube 23 25 24

Mesh 16 - by - 1 29 76 56

Mesh 8 - by - 2 23 43 32

Mesh 4 - by - 4 19 33 32

ACKNOWLEDGMENT

This work is supported, in part, by the National Science Founda-
tion NYI program, under Contract No. IRI 935-7785.

REFERENCES
[1] I.J. Aalbersberg and F. Sijstermans, “High-Quality and High Per-

formance Full-Text Document Retrieval: The Parallel Infoguide
System,” Proc. IEEE Conf. Parallel and Distributed Information Sys-
tems, pp. 142–150, Dec. 1991.

[2] S.H. Bokhari, “On the Mapping Problem,” IEEE Trans. Computers,
vol. 30, no. 3, pp. 207–214, Mar. 1981.

[3] J.K. Cringean, R. England, G.A. Manson, and P. Willett, “Parallel
Text Searching in Serial Files Using a Processor Farm,” Proc. ACM
SIGIR, pp. 413–428, Sept. 1990.

[4] P. Efraimidis, C. Glymidakis, B. Mamalis, P. Spirakis, and
B. Tampakas, “Parallel Text Retrieval on a High Performance Su-
per Computer Using the Vector Space Model,” Proc. ACM SIGIR,
July 1995.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[6] D. Grossman, O. Frieder, D. Holmes, and D. Roberts, “Integrating
Structured Data and Text: A Relational Approach,” J. Am. Soc. In-
formation Science, Jan. 1997.

[7] D.E. Goldberg, Genetic Algorithms in Search Optimization and Ma-
chine Learning. New York: Addison-Wesley, 1989.

[8] D. Hawking, and P. Thistlewaite, “Searching for Meaning with
the Help of PADRE,” Overview Third Text Retrieval Conf. (TREC 3),
Apr. 1995.

[9] C.A. Pogue, E.M. Rasmussen, and P. Willett, “Searching and
Clustering of Databases Using the icl Distributed Array Proces-
sor,“ Parallel Computing, vol. 8, pp. 399–407, Oct. 1988.

[10] G. Salton and C. Buckley, “Parallel Text Search Methods,” Comm.
ACM, vol. 31, no. 2, pp. 202–215, Feb. 1988.

[11] H.T. Siegelmann and O. Frieder, “Document Allocation in Multi-
processor Information Retrieval Systems,” Lecture Note Series in
Computer Science: Advanced Database Concepts and Research Issues,
N.R. Adam and B. Bhargava, eds., Springer-Verlag, 1993.

[12] C. Stanfill, “Partitioned Posting Files: A Parallel Inverted File
Structure for Information Retrieval,” Proc. ACM SIGIR, pp. 413–
428, Sept. 1990.

