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Abstract

Neural networks are frequently used as adaptive classifiers. This research represents an
attempt to measure the “neural complexity” of any regular set of binary strings, that is, to
quantify the size of a recurrent continuous-valued neural network that is needed for correctly
classifying the given regular set. Our estimate provides a predictor that is superior to the size of
the minimal automaton that was used as an upper bound so far. Moreover, it is easily
computable, using techniques from the theory of rational power series in non-commuting
variables.
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Counters; Complexity; Automata; Learning

1. Introduction

One of the current applications of recurrent neural networks is as classifiers, or
equivalently language acceptors. That is, given a string, the network’s output is used
to decide whether the string is in the language or not. This research represents an
attempt to measure the “neural complexity” of regular languages, that is, to quantify
the size of a recurrent neural network needed for acceptance of a given language.
Regular languages are those that can be represented by finite automata, and indeed,
our work can be thought of as parallel to the field of automata theory. There, a finite
automaton that is associated with a regular language is being looked for, and the
languages are ordered by the size of the minimal automata that accept them. Here we
look at a similar hierarchy but the measure is the minimal network.
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We first provide a technique for estimating the number of neurons necessary to
recognize a regular language by a linear activation net. This approach identifies
languages with power series, and associates with each of these series its Hankel matrix.
The rank of each of these Hankel matrices estimates the space complexity of regular
languages when using linear-activation networks. We provide a polynomial time
algorithm to bound this value and see, that roughly, this estimate is also an upper
bound for the saturated and sigmoid models, and is a far better predictor than the size
of minimal automaton that has been used as an upper bound so far. We then deviate
from the rigoruous mathematical approach; the bound is heuristically improved and it
is justified empirically.

1.1. The model

We focus on recurrent neural networks of finite size. Each neuron X is updated by
a rule of the type

N M
Xt +1) = ¢(Z D ai‘,-Ij(t)x,-(t)), k=1, ..,N, (1)

i=1j=1
where N is the number of neurons and M is the number of external input signals. The
input vector at each time ¢

I(t) = L) 1p(t) - Ine(2) € {0, 1}™

consists of (M — 1) 0’s and a single 1, where the location of the single 1 implies the
letter (i.e. unary representation). Note the multiplication I - x; these neurons compose
the so-called, “second-order networks.”

The transfer function ¢ can be one of the following:
e Linear #(x):= x
¢ Saturated function

0 if x <0,
nx):={x f0<x<]l,
1 if x>1.

e The classical Sigmoid

) =TT

e Heaviside (also called threshold)

0 if x<0,
1 if x>0

H(x):= {

Our model for accepting languages is a “real time” model in the sense that the
response to an input sequence appears s steps after reading it, where s is a fixed
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constant. The response of the network to the string = w,, @3, ..., W € Yx, TEprEs-
ented as the input sequence I(1),1(2), ...,I()), is the value x1(! + s). The network
accepts or recognizes a language L < X} if for every string w € Z¥

xil+s)2tewel, x(+s5)<twné¢l,

where 7 is a fixed real number, and a fixed initial state is assumed. That is, the language
accepted consists of all the input strings to which the network responds with a value
larger than t.

Our ultimate interest is in sigmoidal networks. Networks using the classical
sigmoid were reported as relatively easy to train (see e.g. [3]) using gradient descent
techniques, and hence have been popular in implementations. (Another reason to
focus on the sigmoid activation function stems from its biological plausibility of
describing the grade response of a neuron, and also from the fact that this function
describes mixture of Gaussians.) As part of this work, we study linear and saturated
networks as well.

1.2. Previous work

Previous work which dealt with finding the size of recurrent networks of threshold
neurons was described by [1,4], and recently there has been work on sigmoid
encodings [17, 18]. These works calculated the size S(N) of the largest (worst case)
network required to simulate any finite automaton of size N. We, on the other hand,
are not interested in the worse case but rather in the exact answer. We gain by dealing
directly with recognizing the regular language without going through automata
theory: our estimated bound is more natural for this domain and is much smaller than
the ones found through automata studies. The correlation between the values we
predict and the experimental values we obtain is good.

1.3. Paper organization

The remainder of this paper is organized as follows: Section 2 develops an upper
bound on the size of linear networks, this bound is tighter than any non-deterministic
finite-state automaton (NDFA) recognizing the language. This bound is based on the
rank of Hankel matrices associated with regular languages. Section 3 describes an
efficient algorithm to estimate the mathematical formula of Section 2. Section 4
compares different models of activation functions in terms of space complexity, thus
suggesting that the space bound from Section 3 can be used to roughly bound the
saturated and sigmoidal activation networks as well. From now, we deviate from the
rigorous mathematics. Section 5 describes a method to tighten this bound up for
saturated activation networks. In Section 6 we use the method from Section 5 as
a heuristic bound for sigmoidal networks and justify this bound by a series of
computer simulations.
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2. Space complexity in linear networks

Let X be an alphabet; a language L over X is a function Jo:Z* > {0,1}. A fuzzy
language over Z* is a function fr:Z* > R, where R denotes the real numbers. The
value fz(w) denotes the degree of ambiguity, or degree of membership of the string w in
the language. Another representation of fuzzy languages is as a formal power series
roverZ*r=%,..Cw,C,is equivalent to fx(w). In these same terms, an unambigu-
ous or characteristic series is one for which C,, e {0, 1} for all w € 2*; this is correlated
with a language. We say that a pair (r, 7), where r is a power series over £* and 7 ¢ R,
defines the language L = L(r, 7) by we L<>C, > 1. We also say that a power series
r which belongs to some pair (r, 7) defining L, is related to the language L. Similarly,
the response of the network .4 is a function SLr:Z* > R, which is a fuzzy language.
The language L accepted by a neural network A" is defined with respect to a threshold
teR.

In this section we define the I-complexity of a language L as the size of the smallest
linear-activation neural network accepting L with respect to some threshold 7 € R.
We leave for future work the interesting case where L is defined according to two
bounds 1,,7, such that the response of the network is never in the range {z,, 7,].

In what follows, we assume X = {0, 1}*. This is assumed for simplicity, but the
results hold for all number of input channels M > 2 in Eq. (1) as well.

Definition 2.1 (Salomaa and Soittola {8]). The Hankel matrix, H,, of the power
series r is the infinite matrix whose rows and columns are indexed by the strings over
{0, 1}* - listed in the lexicographic order — and is defined by H,(u, v) = C,, where uv
denotes the concatenation of the sequences u and v.

Example 2.2. The Hankel matrix H,(L) of the characteristic power series of L = 1* is
given in Fig. 1.

viu | A

Qo

01 10 00 0 0 0 O

Fig. 1. A Hankel matrix of the language 1*.
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Ifr is a power series related to a language L, than the matrix H, is associated with L.
Note that there are infinitely many Hankel matrices associated with L according to
the choice of 7 € R.

Definition 2.3. The H-complexity of a language L is
H-Complexity(L) = min,{rank(H,)|L = L(r, 7) for some 7 € R}.

Theorem 1. For every language L, I-complexity(L) = H-complexity(L). If L is regular,
these numbers are finite.

Proof. To prove the theorem, we first explain the equivalence between regular
languages and a particular subset of power series: the rational series: R™¢Z*Y. This
subset, the set of rational series is defined as the smallest rationally closed subset of the
power series over Z* which contains all polynomials. We consider the Schutzenberger
representation of a rational series and its relationship with the rank of the Hankel
matrix of the same series. We end the proof with identifying linear networks with
Schutzenberger representations, thus acquiring our result.

1. The regular languages over an alphabet X are the languages associated with the
unambiguous series of R™(Z*Y, the set of rational series.
To argue it, we first cite [8, Theorem (5.2)]; if r e R™{Z*) is unambiguous, then
L(r, 7) is regular for every 7 € R. (Of course, the only interesting case is 7 = 1,
or equivalently and t (0, 1]. See also [11, Theorem 2.3] for another proof.)
Conversely, Theorem (5.1) in [8] states: Let L be a regular language. Then,
1(L) is in R™¢Z*).

2. Given a word @ = u, -+ u,, we denote by @ its transpose, u, --- u;.

Lemma 2.4 (Salomaa and Soittola [8]). Let r be a power series over X*. Then,
r € R™{Z*) iff the rank of H, is finite. If H, has finite rank N, then there exists
a monoid representation (called Schutzenberger representation) R: Z* — R"*N gnd
vectors a e R¥*! such that

r= Y aR(W)bw. (2)

weZ*

Moreover, if also r =3, ... aR' (W)b'w with a’ e R**™, ' ¢ R™!, R'(W)e R™",
then m > N. Conversely, if there is any such representation then the rank of H, is
finite.

That is, let L be a language and r be a power series related to L. The power series
r admits a presentation (2} of size equal to the rank of H,, or none if the rank is
infinite. The smallest dimension of a representation of a power series related to
a language L, is equal to the H-complexity of the language. For regular languages,
this is finite by item 1.
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3. Lemma 2.5. The response of a linear-activation network to a strong w € Z* can be
written in the form aR(W)b, for some representation of the same size as the network.
Conversely, any power series admitting this representation is a response of some
linear-activation network of the same size.

To prove this lemma we describe a linear-activation network of size N as follows:
Each of the M = 2 possible input letters, I(z) j» is associated with a weight matrix 4 y
of size N x N. At time ¢, the network receives an input letter w(f), represented in
unary by I(t) and changes its state according to the corresponding associated
weight matrices:

2
x(t+1) =3 L(t)Ax(e).
i=1

That is, if I(¢) = (1, 0) or I(t) = (0, 1), then x(t+1)=Ax(t)or x(t + 1) = A,x(t),
respectively.

Given such a network, its output is designated by (without loss of generality) the
first neuron. Let a be the row vector N, a = (1,0,0, ... ,0); let the column vector b of
size N represent the initial state of the neural network. Assume that the input to the
system is w = wy, w,, ..., w,, where each letter w, € X is associated with the either
the matrix Ao or A;. Then, the response of the system to the input string w is
ad;, ... A, A,b. Wedenote R(w) = A, ... 4;,_ »Ai, and conclude that the responses
of this network can be represented as in the statement of the lemma.,

Conversely, given the Schutzenberger representation (2) for a power series, we
can choose a basis in the state-space so that g = (1,0,0, ...,0), and a linear-
activation network results. Hence, response of linear-activation networks and
power series are equivalent,

This completes the proof of Theorem 1. []

Comment. The representation suggested above was introduced first by Schutzen-
berger [9] and was rediscovered a few times later mainly in the context of stochastic
automata. Representatons are called sequential systems [16], generalized linear auto-
mata (6], and automata with multiplicities [2]. For a nice summary and discussion,
see [12].

3. Bounding the H-complexity

The H-complexity is the exact minimal size of linear-activation nets but it is not
easy to calculate. We are interested in a boungd that although less accurate, it is
efficiently computable.

We define the ¥-complexity as the size of the minimum linear-activation network
that is constrained to output binary values only:

€-complexity(L) = rank(H, ),
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where r(t) is the characteristic series of L. It is clear that H-complexity < -
complexity, as the new bound is the size of particular network out of the class of nets
included in the former bound. The gap between H-complexity and €-complexity,
however, can be arbitrarily large. This is easy to see from counting arguments. Indeed,
there are an uncountable number of languages with I-complexity equal to 2 — see for
instance (7, p. 311] - but it is easy to see that there are only a countable number of
languages with finite ¢-complexity.

This new bound is still tighter than the existing theory and even smaller than the
size of the minimal non-deterministic finite automata realizing the same language. The
reasoning is as follows: a non-deterministic finite automata can be realized as a bi-
linear system of the type

x(e+ 1) = Aox(t) + wO) Aix(t) = (1 — L(0) Aox(t) + I, (1) Ay x(2), &)

where x(t) is a vector of length N of the activations of all neurons, w = (1,0, 1,) is an
input considered as a binary scalar, Ao and A, are transition matrices for the w(it)=0
input and the w(r) = 1 input, respectively. Thus 4, and A, are matrices of binary
entries. In linear-activation nets, the entries of Ao and 4, can be general as long as the
output is binary. (Note that it is useful to assume a special “end of string” symbol to
handle the case that the NDFA resides in several finite states.) Hence, the NDFA is
a special case of the linear-activation net. We conclude that

H-complexity < #-complexity < INDFA|.

The #-complexity is of interest although not a very tight bound because it can be
computed efficiently. The algorithm we suggest is strongly based on system theory.
We next provide some of the required preliminaries as described in [12], but full
details are outside of the scope of this paper.

A system § = (X, P, Q, Xxo) is defined by a vector space X, maps P: X x X — X and
Q:Xx XY and x, € X. X denote an arbitrary set of input values and Y is the set of
output values. A system can equivalently be written as a set of equations

Xery = P(xt’ u,),
Ye=Q(x,, u,).

Our focus is on particular systems when

1
Xeyq = Z 0(W)Fix + 6;(w)G,,
i=0
) 4
ye= 3 &i(w)Hx,
i=0

where ; are piecewise-linear functions from X into R. This family of systems includes
our simple network from Eq. (3).

The system S is span-reachable iff X is the smallest affine manifold containing the
states that are reachable from x,, for all possible w € Z*. § is observable iff Q(x) are all
distinct. A system is span-canonical iff it is both span reachable and observable.
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Theorem 1.13 in [12] states that a system, for which P and Q are affine, is minimal (in
the dimension of X) iff it is span-canonical. The span-canonical representations of
a system are the same up to a morphism.

Sontag continues and provides a non-trivial algorithm that for a given system § of
the type in Eq. (4), it transfers it to a span-reachable one and then to an observable
one, until getting a minimal such a system that has the same input-output response as
S. Note that this algorithm is an involved generalization of the simple minimization
algorithm of linear systems as suggested by Kalman and is nicely summarized e.g in
[14, p. 91]. There, the “Kalman decomposition” transforms the linear system to
reachable (not span-reachable) and then to observable matrices — leading to a canoni-
cal representation (rather than span-canonical) which is minimum dimension. The
efficient and elegant algorithm of Sontag, on the other hand, is valid to much larger set
of systems. In short, Sontag’s algorithm is based on the generalized Hankel matrix:
Rows are indexed (lexicographically) by {0, 1}* and columns by the subset of {0, 1}*
that includes no word that starts with the letter 0. The details require wide under-
standing in system theory and thus we will use the algorithm of Sontag as a “black-box”
for our purpose and send the interested reader to the original paper for more [12].

Lemma 3.1. Given a regular language L represented as a regular expression, the
estimate ¢-complexity (L) is computable in polynomial time in the length of the
expression,

Proof. The following algorithm computes the %-complexity:

1. Given regular expression representing L, one can construct a nondeterministic
finite automaton (NDFA) (with “s-moves”) accepting it. The NDFA outputs 1 for
the strings in L, and 0 for those that are not in L. The constructed NDFA does not
have to be a minimal one.

2. The non-deterministic automaton is considered as the Schutzenberger representa-
tion of a rational series. (It is equivalent to a linear-activation network, for which
the activations of the neurons are non-negative integers, and the transition ma-
trices consist of binary entries only.) This gives rise to a linear-activation network
accepting L with 7 =4. This representation is not necessarily the smallest in
dimension.

3. Now we find the span-reachability matrix of the bi-linear realization. This was
shown in [12] to have a polynomial-time algorithm. Continue with the last system
and find its observability matrix. Again, this can be done in polynomial time [12].
See the related discussion in [13]. The resulting system is both span-reachable and
observable and thus is a minimum size bi-linear system, equivalent in its dynamics
to the original one. (The minimal network is not unique, but any two such
networks can be shown to coincide up to a change of basis in the space of neuron
states.)

The total algorithm takes time polynomial in the size of the regular expression. [J

In Fig. 2, the first to third columns (ignore the column labeled “experiment” for now),
we use nine languages to compare the size of the associated minimal DFA with the
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The Language DFA'’s Sige | C-Complexity Experiment
Tomital: 1* 2 1 1
Tomita2: (10%) 3 2 2
Tomita3:  no (1°%) followed by (0°%) 5 3 3
Tomitad: does not contain 600 substring 4 3 2
Tomita5: ((01+10] [o1+10))* 7 4 4
Tomita6: #1 - #0 is a multiple of 3 3 3 3
Tomita?: 0*1*0*1* 5 2 2
Parity: even number of 1’3 2 2 2
Dualparity: even number of 0%s, 1's 4 4 2

Fig. 2. Comparison of DFA, %-complexity, and experimental results.

€-complexity. The first seven are known by the name Tomita languages [15]; they
were used in past grammatical inference studies base on neural networks, e.g. [3]. The
last two languages are parity and dual-parity. The comparison with DFA sizes is
given here as much of previous literature used this quantity as an estimate of “neural”
complexity. (Clearly, the size of a minimal NDFA is bounded by that of the minimal
DFA)

Remark 3.2. In the more realistic case in which the language L is not available, and
the only data consists of training strings together with information regarding their
membership in the language, one can show that even the question of finiteness of rank
for the Hankel matrix is undecidable [11]. However, different heuristics might be
useful in this case, such as repetitively enlarging the Hankel matrix until no change in
its rank results after a few iterations. We experimented with such heuristics only for
too simple languages to be able to conclude favorite statements.

4. Bounds on networks with different activation functions

The space complexity of networks employing the sigmoidal activation function:
a(x) = 1/(1 + e ™), is in a sense bounded by the H-complexity: For any finite number
of strings, we may use a low-gain approximation so as to cause the sigmoid to be close
enough to the identity function in any given bounded domain. Thus, for any finite
sample of a strings, the number of neurons required to accept it in the sigmoidal model
is bounded by the number in the linear-activation one.

To estimate better the space required in the sigmoidal model, we experimented with
the sigmoid network as NECI [3] and compared the size of the sigmoid network
found there with the bound developed above. We trained networks of different size
with each of the regular-languages described in the first column and kept track of the
minimum network that was successfully trained for each language. Note that the size
found in the implementation is not necessarily the minimum possible for recognition,
but the best one found in training. That is, it is an upper bound of the minimal
network. The correlation between the values predicted by the €-complexity and the
experimental values for sigmoids is reasonable, especially in comparison ‘with the
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FSA

0-1 values
guaranteed
Threshold Linear

Neurons Neurons

Sigmoid Saturated
Neurons Neurons

Fig. 3. The space complexity relations in a second-order network.

values that would be predicted from minimal automata size. Using high-gain approxi-
mations, one can show that the space complexity of o nets is also bounded by the
complexity of the threshold neurons, on any finite sample.

Generally, the picture is given in Fig. 3. Here, solid arrows denote true relations and
dashed arrows stand for relations which hold for finite number of strings.

5. The size of saturated-linear networks

The ¢-complexity discussed above provides a bound on the size of both the
sigmoidal and the saturated nets, as for their “linearity” part around the origin.
However, this bound does not use the properties of these functions which stem at their
bounded range. Denote by n-complexity of a language L the size of a minimum
saturated recurrent network that accepts L. In [10] Siegelmann and Sontag showed
how to simulate a counter (also called a unary stack) along with its operation
— Increase, Decrease, Iszero — via a fixed number of neurons using a fixed time
quantum per operation. It is clear that a bounded-size counter (i.e., one that can count
up to a constant ¢ only) can test Isfull analogously to the test Iszero.

Many regular languages can be decomposed into counters and other, smaller
regular languages. Consider, for example, the language L which recognizes input
strings that include substrings of either 7 or 51 consecutive 1’s. Such L can be
decomposed into one 7-counter, one 51-counter, and a simple control L’ that manipu-
lates the counters. We call any language which is decomposed into counters and
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control in a non-trivial manner (i.e., the new control has less states than the original
one) by the name counting based language.

Let L be a counting-based regular language; L can be decomposed into counters
and a new regular language L'. (A similar idea of decomposing a language was
suggested before in relation to context-free languages. The decomposition was into
some super-counter language, named Dyck language, and a regular language, see [8].’
The “input letters” of L' are not the external input of L anymore, but rather the
Cartesian product of the external input along with the counters’ readings. We estimate

n-complexity (L) < z-v + H-complexity (L), (5)

where v is the number of counters required, and z is the fixed number of neurons
needed to simulate each counter. (The value of z is determined by the operations
defined on the particular counter and is typically between 2 and 5.) In practice, we
compute a bound on the n-complexity using a decomposition algorithm (to be
described below) that uses €-complexity (L) as a subroutine. We start with examples:

Example 1. Consider a language L < {0, 1}* that accepts a string if it contains
a substring of 23 or more 1s. We call it the “23-substring” language. The linear
complexity of this language is 24. We decompose it into L’ and one counter and show
that 4 neurons suffice. Generally, the family of n-counter languages

£ ={L,= {0, 1}*1"{0, }*|n = 1,2,3 ...}

has a linear complexity of n + 1 while its n-complexity is 4, independently of n. The
new language L, operates as shown in Fig. 4; its input consists of the pairs [counter-
status, input-bits]. Fig. 5 demonstrates the neural network that accepts Lyi.(Igand I,
are counted as “input neurons”.) []

Example 2. We now demonstrate languages that utilize multiple counter simulta-
neously. Dual-parity is the language that accepts strings consisting of even appearance
of both “0”s and “1”s. Triple-parity tests for parity of “0”s, “1”s, and “2”s, and so forth.
Fig. 6 demonstrates the difference in the complexity measure for the n-parity lan-
guages. The structure of the network suggested by the decomposition is described in
Fig. 7.

The Input Operation
[full.counter 0] | do nothing
(full.counter 1] | do nothing
[full.counter end] accept

[nonfull.counter () reset
(nonfull.counter 1] increment
[nonfull.counter end) reject

Fig. 4. The control L’ of the n-counter language.
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At +1) = 1r(A(t)+-2%Il(t)—Io(t))
B(t+1) = n(28A(f) - 22 + 23B(t))

Fig. 5. Network recognizing n-counter languages (L, ;).

The Language | C-Complexity n-Complexity
3-parity 8 7
4-parity 16 9
S-parity 32 11
n-parity 2" 2n+1

Fig. 6. Complexity of parity languages.

Notice that for multiple counters (i.e., Cartesian product of counters), the 7-
complexity is logarithmic in the size of the linear and threshold [4] bounds. Note that
the n-complexity is sensitive to the availability of precision in the neurons. It is,
however, very useful for a language class of practically used languages.

There is no one general algorithm to decompose regular languages into all possible
counters and a new, smaller controls. In Fig. 8 we demonstrate four specific patterns
which we transformed into counter-like forms. Many more patterns should be split for
minimization. We note that the symbol “1” could also be transformed to any regular
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Ci(t+1) = n(Li(t) + Ci(t) - 2L()Ci(t)) i=1... M

M
(1 -3 Ci(t)
=1

T(t+1)
Fig. 7. Network recognizing n-parity languages.

expression. In this case the variable z of Eq. (5) should be increased accordingly. We
would like to emphasize that the decomposition algorithm tracks only simple patterns
and, by no means, provides an optimal decomposition.

6. Simulation results with a sigmoid network

Let L be a regular language. We denote by g-complexity the size of a minimum
sigmoidal network that recognizes L. Sigmoidal networks are very popular in applica-
tions of learning in neural nets. However, they are hard to analyze. In [5], Kilian and
Siegelmann proved that sigmoidal networks (and a large class of sigmoidal-like nets)
are Turing universal as for their ability to simulate counters (via a fixed number of
neurons). In their construction, the time required to decide if a counter is empty grows
polynomially with the “history” of the counter; that is, in all operations executed to it.
This is mathematically true, however, in practice, one can simulate a counter in
real-time for any finite number of strings; see Fig. 3.

We take this counting-ability of sigmoidal nets, along with the speed-up of opera-
tions on counters to motivate our heuristic use of the n-complexity as an estimate of
the o-complexity. To verify our heuristic bound, we experimented with the sigmoidal
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2O -

(a) consecutive 1's: ...1“...

38 79

(b) nonconsecutive 1’s: ces (1+o*)". .e

O>» 0O

(c) count until full

1 ‘
(d) counting mod

Fig. 8. Counter heuristic: types of counters.

network developed by NECI [3]. As in Section 4, we trained networks of different size
with each regular language described below, and kept track of the minimum network
that was successfully trained for each language.

Training of the network was operated as follows: We started with a network of
random coefficients (weights) € [ —1, 1]. The network is trained to recognize a set of
1000 random strings of length {0... 18}. An extra bit implies whether the string is in
the language. The training utilizes the gradient descent technique. The network is
trained gradually by subsets of increasing sizes of the given training data until
generalizes well (up to strings of length 86). Only if it both converges well on the -
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Fig. 9. The Counter Languages. (a) Size of the minimal net found in practice in comparison to FSA size
and the counter bound; (b) Training time; (c) Generalization results.




342 H.T. Siegelmann, C.L. Giles Neurocomputing 15 (1997) 327-345

Recognizing The Parity Languages
% 1000 T T T T L a— Y T T 3
= E p
o t 4 p
3 -1
¢~ I
L A
A
£ : - ]
3 [ %" ]
& i ]
%
a 10 £
S > e et
5 r
-
& ~—&— FSASie
E 7
N 725 NN S R E N A Ry T
1 3 5 7 9
@) ORDER OF THE PARITY LANGUAGE (i)
Treining Time For The Parity Languages § Generalization Result For Parity Languages
PR o .g 1000 T T L aa ) T T 7
[ 7] - o
i :
. L ceec®-- mliniRim)
£ o —f— malis2ha3
g
(= L ]
5 mf :
- 3 f -
o - - T s e . i g a L gl g 13 ]
. = ° 2 © ® 0w 100
Order of the Parity Language (i) Length of Testing String
§ Geangeralization Result For Parity Languages § Generalization Result For Pasity Languages
'g 1000 17— ™ T T T T ) g 100 —~T1r7 T lll"lll!‘fiq
:‘g ] 1 [ cearDen eatiangRial
S wo S = ——— askixf Rl
4 [ ceee@en BdisbRunl 3 b —0— nedisfAmd
) N i 3 3 ceeideon nukinRnA
._E, %00 e} 2adizk Rin 2 _g @03 srasdhes DA AWM S
e ! 4 & [
E ol 1 £ wl ]
i [ ] § [ 1
L R b d -
5z N ] % 20 [ 2 ]
I A I NIV :
§ ° " i g o WA A 1 2 2 2 5 1
A o ® 10 z [ © 10

» © « 2 © '
Length of Testing String Leagth of Testing String

-
£

Fig. 10. The Parity Languages. (a) Size of the minimal net found in practice in comparison to the counter
bond; (b) Training time; () Generalization results.




H.T. Siegelmann, C.L. Giles/ Neurocomputing 15 (1997) 327-345 343

& Generalization Result For Parity Languages g Generalization Result For Parity Languages
1000 p~y=—y—r T ™7 ™TT 1000 T™tr—r T - Ty ™

: i 4 ‘

3 >r 3 "F P —r—" I

S L coee@es watiaioRu . 3

% b —E— a0 A2 g ol

5 3 e I ]

: | EREA :

§ ] é - ]

5 s ] 5 ]
[ ] y p

vy i -

I KAV, ¥4 M\A A E  Lou® coagpted Deioprdnrn 0 0 ]

= [] 100 z L] k] ® 0o

» © ® ®» © L
Length of Testing String Length of Testing String

Generalization Result For Parity Languages Generalization Result For Parity Languages

10 [ » 100

ﬁ 1000 [T 17 T T T L e o a 1000 [T T T T
7 L ] I
L3 L L -
] 3 5
3 = eene©ee maliall Real g -

% ) bl N eca) o pakisléRus)
g C ~—8— oeistiRun2 g L B RialbRm2
w0 W @
» N
33 N 4
A A :
gt - :
‘S w0 ‘S 2 .
N i 1k :
2 e St L 3 Laocfbormged Bo iy ad e 4
©)

» “ © » 0 © ©
Length of Testing String Length of Testing String

—

Fig. 10. Continued.

training data and generalizes well to a set of previously unseen strings, we conclude
success in the training.

Fig. %(a) demonstrates the size of the network that we managed to train for the
counter languages (thick line) in comparison with the linear bound (Section 3). In this
case, the size of the minimal FSA and threshold complexity have similar values to the
%-complexity. We experimented with counters of size up to 35. Although the -
complexity provides, in general, an upper bound, for this expected small size 4, the
sigmoid network matches the size predicted by the n-complexity.

The training time required for each language is described in Fig. 9(b). We see that,
for reasonably short sequences, the training time is not growing with the order of the
counter. In Fig. 9(c), we demonstrate the generalization capability of the networks on
strings which were unseen during the training phase. All these figures are averaged
over several runs.

Fig. 10(2) demonstrates the size of the network that we managed to train for the
parity languages, and compares it against the C-complexity and the z-complexity. We
experimented with i-parity for i = 1,2, ... ,9. Notice that the graph has a logarithmic
scale. This result demonstrates the accuracy of the n-complexity as a heuristic bound
for the sigmoidal nets.




344 H.T. Siegelmann, C.L. Giles | Neurocomputing 15 (1997) 327-345
7. Conclusions

In this work, we measure the complexity of regular languages by their minimal
networks, rather than the minimal finite automata, as is used in automata theory and
in previous works in neural networks. Prior to this work, conclusions were drawn
from the analysis of automata field and were too weak and artificial in recurrent
neural net content. Our results are preliminary and by no means are proved to be the
best possible, however, the direction is worth noting. An important applied problem is
to come up with a heuristic to estimate the required size of a network, given strings
rather than a full description of the language to accept.

The space complexity problem discussed here deals with existence and not with the
learning problem. We conjecture that the learning complexity is generally related to
the required number of neurons. However, some languages which, although having
a small space complexity, are likely to be difficult to learn. This might happen, for
example, when a very small set of weights is acceptable. The problem of learning
complexity is still open.
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