
Application of expert networks for predicting proteins
secondary structure

Sarit Sivan a,*, Orna Filo a, Hava Siegelmann b

aDepartment of Biomedical Engineering, Technion, Israel Institute of Technology, IIT, Haifa 32000, Israel
bDepartment of Computer Science, University of Massachusetts Amherst, Amherst MA 01003, United States

Received 5 November 2006; received in revised form 5 December 2006; accepted 6 December 2006

Abstract

The present study utilizes expert neural networks for the prediction of proteins secondary structure. We use three independent networks, one for
each structure (alpha, beta and coil) as the first-level processing unit; decision upon the chosen structure for each residue is carried out by a second-
level, post-processing unit, which utilizes the Chou and Fasman frequency values Fa and Fb in order to strengthen and/or deplete the probability of
the specific structure under investigation. The highest prediction case was 76%.

Our method requires primitive computational means and a relatively small training set, while still been comparable to previous work. It is not
meant to be an alternative to the determination of secondary structure by means of free energy minimization, integration of dynamic equations of
motion or crystallography, which are expensive, time-consuming and complicated, but to provide additional constrains, which might be considered
and incorporated into larger computing setups in order to reduce the initial search space for the above methods.
# 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The knowledge of protein secondary structure is essential for
the understanding of both the mechanisms of folding and the
biological activity of proteins. X-ray diffraction has been
successful in elucidating the three dimensional structure of
many crystallized proteins. Although this method can be very
accurate, it is expensive and time-consuming. Furthermore
many membranes and ribosomal proteins have not yet yielded
suitable crystals, so that other approaches must be explored to
give the structural information required. Since experimental
evidence shows that the native conformation of a protein is
coded within its amino acid sequence (Anfinsen et al., 1961),
many efforts have been made to predict the protein secondary
and tertiary structure from the sequence data.

Following the pioneering work of Pauling and Corey (1951),
which suggests that proteins form certain local conformations

as helices and strands, many workers used different methods to
predict protein secondary structure (Szent-Gyorgyi and Cohen,
1957; Periti et al., 1967; Ptitsyn, 1969; Pain and Robson, 1970;
Robson and Pain, 1971). These methods exploit, in different
ways, the correlation between amino acid and the local
secondary structure, i.e. neighbors effect of no more than 10
amino acids away. The average success of these methods is 50–
53% on three types of secondary structures (alpha-helix, beta-
sheet, and coil) (Nishikawa, 1983; Kabsch and Sander,
1983a,b). Secondary structure predictions have been performed
by various methods. These methods make use of the
physicochemical characteristics of the amino acids (Lim,
1974; Ptitsyn and Finkelstein, 1983), sequence homology
(Levin et al., 1986; Nishikawa and Ooi, 1986; Zvelebil et al.,
1986), pattern matching (Cohen et al., 1983, 1986; Taylor and
Thornton, 1983; Rooman et al., 1989; King and Sternberg,
1990; Presnell et al., 1992), statistical analyses of proteins with
known structure (Wu and Kabat, 1971, 1973; Chou and
Fasman, 1974a,b; Nagano, 1977; Garnier et al., 1978; Maxfield
and Scheraga, 1979; Gibrat et al., 1987; Biou et al., 1988; Di
Francesco et al., 1997; Fasman, 1989; Garratt et al., 1991;
Muggleton et al., 1992), and neural network (Bohr et al., 1988,
1993; Qian and Sejnowski, 1988; Holley and Karplus, 1989;
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Kneller et al., 1990; Hirst and Sternberg, 1992; Maclin and
Shavlik, 1993; Stolorz et al., 1992; Zhang et al., 1992; Rost and
Sander, 1993a,b).

A promising approach in the area of secondary structure
prediction is the use of neural network methods (Bohm, 1996).
One of the first examples for this method used 48 proteins in the
learning dataset, in order to teach the relationship between
primary sequence and secondary structure to the neural network
(Holley and Karplus, 1989). The overall accuracies achieved in
this study and in a similar one (Qian and Sejnowski, 1988) were
63% and 64.3%, respectively, which had no major improve-
ment compared with traditional methods of secondary structure
prediction by statistical and knowledge-based methods.

Following the pioneeringwork ofQian andSejnowski (1988),
many new computational techniques involving neural networks
for the prediction of proteins secondary structure were
introduced (Holley and Karplus, 1989; Rost and Sander,
1993a,b, 1994; Hua and Sun, 2001; Armano et al., 2005; Lee
et al., 2006; Huang et al., 2005; Ceroni et al., 2005; Ruan et al.,
2005; Wood and Hirst, 2005; Meiler and Baker, 2003; Hering
et al., 2003; Cai et al., 2002, 2003; Kaur and Raghava, 2003;
Shepherd et al., 1999, 2003; Pal and Basu, 2001; Petersen et al.,
2000; Cuff and Barton, 2000; Chandonia and Karplus, 1995,
1996, 1999; Kawabata and Doi, 1997; Barlow, 1995; Salamov
and Solovyev, 1995); the average prediction accuracy achieved
varies between 70% and 80%. In order to improve prediction
accuracy, several studies applied sophisticated network struc-
tures such as hierarchical (Jordan and Jacobs, 1994; Huang et al.,
2005; Barlow, 1995), cascade (Wood and Hirst, 2005) and
multiple experts networks (Armano et al., 2005). Others
combined additional structural information in the network input,
for example, amino acid composition (Lee et al., 2006),
interaction graphs (Ceroni et al., 2005), tertiary (Meiler and
Baker, 2003; Chandonia andKarplus, 1995) and secondary (Rost
and Sander, 1993a,b; Shepherd et al., 1999) structure informa-
tion, information on the probabilities of residues buried in the
protein core or on the protein surface (Vieth et al., 1992) and
multiple sequence alignment profiles (Rost and Sander, 1993a,b,
1994; Cuff and Barton, 2000). Numerous methods involve pre-
processing of protein sequence data using Fourier transform
(Shepherd et al., 2003) and binaryword encoding (Kawabata and
Doi, 1997). Other approaches such as adaptive neuro-fuzzy
inference system (Hering et al., 2003) and nearest neighbor
algorithm (Salamov and Solovyev, 1995) combine additional
classification algorithms with neural networks. Decoding the
networks output in order to estimate the probability of finding a
secondary structure at a specific position (Chandonia and
Karplus, 1999) also provides more accurate prediction.

Our approach is to use three independent expert neural
networks, one for each structure (alpha, beta and coil) as the
first-level processing unit; decision upon the chosen structure
for each residue is carried out by a second-level, post-
processing unit, which utilizes the Chou and Fasman statistical
frequency values Fa and Fb. This architecture takes into
account the ‘neighbors’ effect and in turn, strengthens and/or
depletes the probability of any structure under investigation to
be part of a specific secondary structure.

Despite the simplicity of the networks presented in this
work, they have the ability to deal with complex classification
problems. This advantage was accomplished by separation of
the comprehensive problem into three sub-classification items.
Implementation of divide-and-conquer algorithms to deal with
a complex problem by dividing it into simpler problems whose
solutions can be combined to yield an answer to the complex
problem was suggested by Jordan and Jacobs (1994).

2. Methods

2.1. Database

The secondary structure assignment used in this study was based on the

work of Kabsch and Sander (1983a,b). Their DSSP program was used to

classify known structures in the Brookhaven Protein Data Bank (BPDB) as
helices and sheets. Residues that are neither helices nor sheets are classified as

coil. Following Qian and Sejnowski (1988), we selected a representative sample

of proteins that limited the number of almost identical sequence, such as the

similar types of hemoglobin.

2.2. Network formulation and training

Three expert nets were applied in this work; each structure (alpha, beta and

coil) is represented by a separate network (Fig. 1). All the networks used were

feed-forward nets utilizing the back-propagation algorithm and the Sigmoid-
Logistic as their activation function. Calculations were carried out using

MATLAB. The input vector for each expert net encodes a moving window

Fig. 1. A schematic description of the expert neural network used for the

prediction of proteins secondary structure.
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of 13 amino acids, in the protein’s amino acid sequence. Prediction of the
secondary structures was made for the central amino acid in this window. A

binary encoding scheme is used for the network input. In this scheme, each

amino acid at each window position is encoded by a group of 21 characters: one

for each possible amino acid type at that position and one to provide a null input
used when a moving window overlaps the edge of the protein. In each group of

21 characters, the input corresponding to the amino acid type is set to 1 and all

other inputs are set to 0. Thus, the input consists of 13 groups of 21 characters

each. The final output vector contains three output units, where each output
neuron represents a different secondary structure (alpha, beta or coil).

2.3. The alpha, beta and coil expert networks

The expert networks have one or two hidden layers and two output neurons.

The secondary structure is encoded in the output layers as follows:

! Alpha-expert: (1, 0) = (helix); (0, 1) = (not helix).
! Beta-expert: (1, 0) = (beta); (0, 1) = (not beta).
! Coil-expert: (1, 0) = (coil); (0, 1) = (not coil).

This encoding scheme is useful to prevent cases in which an amino acid might

be classified into more than one structure (Havsteen, 1966).

The proteins listed in Tables 1 and 2 were used as training sets for the alpha

and beta-expert nets, respectively; these proteins are non-homologous (com-
prises less than 17% identity in sequence). Training of the coil-expert net was

carried out with the proteins listed in Table 2. These training sets are composed

of %a = 49.8, %b = 4.4 and %coil = 45.8 for the a-expert net, and of

%a = 4.1, %b = 40.1 and %coil = 55.8 for both the beta and coil expert nets.
The size of these training sets (i.e. number of residues used for training) are

nearly identical (997 residues for the alpha-expert net and 946 residues for the
beta and coil expert nets). Each of the training sets was designed to give the

maximum accuracy by strengthening the fraction (%a or %b or %coil)

corresponds to the structure under investigation. In these training sets, for

each structure, emphasis was given to the positive channel since the negative
one is partially covered by the other expert networks. Moreover, the maximal

percentage of a specific structure is limited by its natural average frequency in

proteins.

All calculations at the training stagewere carried out using adaptive learning
rates in the following manner: if the new error exceeds the old one by more than

4%, the new weights, biases, outputs and errors are discarded and the learning

rate is decreased; otherwise, the new weights are kept. On the other hand, if the
new error is less than the old one, learning rate is increased by 5%. Initial

learning rate was 0.01 and initialization of the weights was in the range of

("1, 1).

2.4. Integration of the three expert networks

The results for each of the three expert networks were further processed
according to options 1–5 listed below. These options make use of the Chou and

Fasman frequency parameters Fa and Fb (Wu and Kabat, 1971, 1973; Chou and

Fasman, 1974a,b; Chou et al., 1972; Lewis and Scheraga, 1971), where Fa = fa/

hfai and Fb = fb/hfbi are the helix and beta-sheet conformational parameters,
respectively. fa and fb are the frequency of residues in the helix and beta

regions.hfai and hfbi are the average frequency of residues in the helix and beta
regions. Output from the expert nets was multiplied by Fa or Fb or by any other
combination of which according to options 1–5 (below) in order to strengthen

and/or deplete the probability of the specific structure under investigation. In all

cases studied, the maximal value obtained was chosen as the most suitable

structure for the central amino acid in the window.
The following options were applied:

1. Selecting the maximal value for one of three possible structures of the
positive channels with no further process.

2. Output from the alpha and beta-expert nets was multiplied by Fa and
Fb.

3. Output from the alpha and beta expert nets were multiplied by Fa and
Fb, respectively, whereas output from the coil-expert net was divided by
the average sum of Fa and Fb.

4. Output from the alpha-expert nets was multiplied by Fa # 0.7, output
from the beta-expert net was multiplied by Fb and output from the coil
expert net was divided by the absolute difference of Fa # 0.7 and Fb.

5. Output from the positive channels was processed as in option 4; in
addition, the negative channels were divided by the same factors used
for multiplication in option 4.

For all the above options, the suitable structure for the central amino acid in the

window was chosen using a decision tree.

2.5. Network testing procedure

In the integrated system, the output consists of three units, each representing

one of the possible secondary structures for the central amino acid. For a given

input and set of weights and biases, the actual computed output will be a set of
three numbers in the range 0–1. The secondary structure chosen was the output

with the highest value. By doing so, undesired cases of predicting more than one

possible structure for each amino acid were prevented. This problem evolves

whenever actual outputs are converted to predictions with the use of threshold
values (Ceroni et al., 2005). The non-homologous proteins (comprises less than

15% sequence identity) listed in Table 3 were used as the testing set, having a

similar percentage of alpha and beta.

2.6. Performance measures

The most commonly used performance measure is a simple success rate,

representing the positive successes. In this study, performancewas measured for

the three different expert networks as well as for the final integrated network.

Table 1

List of proteins used for as the training set of the alpha-expert net

PDB code Protein name No. of

residues

%a %b %Coil

1CPV Calcium binding parvalbumin B 108 48.1 5.6 46.3

256B Cytochrome B5 (oxidized) 85 24.7 24.7 50.6
251C Cytochrome C551 (oxidized) 82 45.1 0 54.9

1FDX Ferredoxin (Peptococus

aerogenes)

54 9.3 7.4 83.3

1PPT Avian pancreatic polypeptide 36 50 0 50
1GCN Glucagon (pH 6–7) 29 48.3 0 51.7

1INS Insulin (A and B chains) 51 43.1 5.9 53

7LZM Lysozyme (Hen egg white,

Triclinic)

129 29.5 7.8 62.7

1ECD Hemoglobin (Erythrocruorin

Deoxy)

136 71.3 0 28.7

2MHB Hemoglobin (Horse, Aquo Met) 287 67.2 0 32.8

Total 997 49.8 4.4 45.8

Table 2
List of proteins used as the training sets for the beta and coil expert nets

PDB code Protein name No. of residues %a %b %Coil

2PAB Prealbumin (human plasma) 114 7 49.1 43.9

1ALP Alpha lytic protease 198 3.5 42.9 53.6
1SGA Proteinase A

(Streptomyces griseus)

181 6.1 39.8 54.1

1EST Tosyl-Elastase 240 5.4 34.2 60.4
2SOD Cu–Zn super-oxide dismutase 151 0 38.4 61.6

1NXB Neurotoxin B 62 0 41.9 58.1

Total 946 4.1 40.1 55.8
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The success rate of each expert network is reported as Q1:

Q1 ¼
Ps

Ns
(1)

where Ns is the total number of the predicted residues of type s and Ps is the

number of correctly predicted secondary structures of type s.
The success rate of the integrated network is measured by the index, Q3,

defined as the percentage of correctly predicted residues for all three types of

secondary structures:

Q3 ¼
Pa þ Pb þ Pcoil

N
(2)

where N is the total number of the predicted residues and Pa, Pb and Pcoil are the
number of correctly predicted secondary structures of types alpha, beta and coil,

respectively.

Q3 refers to the ‘‘positive’’ successes in determining the secondary struc-

tures. For each data it can count up to 3 times if it is perfect. However, the
‘‘negative’’ successes, namely correct rejections are also considered as vital

information. Therefore an additional index, Q̃3, was defined:

Q̃3 ¼
PN

1 Ya;i þ Yb;i þ Ycoil;i

3N
(3)

where Ya,i Yb,i and Ycoil,i equal to 1 for true positive or true negative predictions
or 0 for false positive or false negative predictions for the ith residue andN is the

total number of the predicted residues.

In order to take over prediction into account and to give a more meaningful

measure in terms of each specific secondary structure, we calculated the
Matthew’s correlation coefficient (Szent-Gyorgyi and Cohen, 1957), for the

three different structures:

Cs ¼
psns " usosffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðns þ usÞðns þ osÞð ps þ usÞð ps þ osÞ
p (4)

where s is the alpha or beta or coil for helix, beta and coil, respectively; ps the

number of positive cases that were correctly predicted, for type s; ns the number

of negative cases that were correctly rejected, for type s; os the number of over-

predicted cases (false positive), for type s; us the number of under-predicted

cases (misses), for type s.

3. Results and discussion

Kabsch and Sander (1983a,b) classified protein secondary
structures into eight categories: three types of helices, two types
of beta structures, two types of turns, and one for coil. We used
only three structures: alpha-helix, beta-sheet, and coil. This
choice was based on the results reported by Sasagawa and
Tajima (1993), in which lower values of Q3 (32–34%) were
obtained with eight-structure classification compared to a three-
structure classification. Alpha, beta and coil expert networks
were trained and tested as independent ones (Fig. 1). Several
tests were performed to determine the performance of the
networks using the prediction accuracy measure, Q1 (Eq. (1)).
The results are presented in Table 4. One can see that for the a-
expert net, two hidden layers have no advantage over one
hidden layer. This is not the case for the coil expert; here, the
best results were obtained with 2 hidden layers and 10 neurons
in each layer. This is also the case for the beta-expert net.

The integrated system performance was assessed by the
prediction accuracy values, Q3 and Q̃3 and the Matthew’s
correlation coefficients for each of the five different options.
The Q3 index refers only to the ‘‘positive’’ successes in
determining the secondary structures. However, we believe that
the ‘‘negative’’ successes, namely correct rejections, should
also be considered as important information for first screening.
Therefore, we defined an additional index, Q̃3, in which true
negative cases are also accounted for. Results are presented in
Tables 5 and 6. As expected, better prediction rate (of up to
30%) was achieved with Q̃3 compared to Q3.

Table 3
List of proteins used for testing the nets

PDB code Protein name No. of

residues

%a %b %Coil

1FXC Ferredoxin (Spirulina platensis) 98 0 0 100
1PCY Plastocyanin 99 4 35.3 60.7

1LZM Lysozyme (bacteriophage T4) 164 50.6 8.5 40.9

2ACT Actinidin 218 25.7 18.3 56

1FAB Lambda immunoglubulin FAB 426 0 42.5 57.5
1GPD D-Glyceraldehyde-3-phosphate

dehydrogenase

333 21.6 22.2 56.2

2GRS Glutathione reductase 461 27.1 18.6 54.3

1HBL Leghemoglobin (acetate, met) 153 69.3 0 30.7
1OVO Ovomucoid third domain 56 17.8 21.4 60.8

Total 2008 22.7 22 55.3

Table 4

Summary of the results for a-expert networks with one hidden layer

Expert network type N1 N2 SSE Q1 (a or b or coil) Q1 (not a or not b or not coil)

Alpha 40 – 0.01 0.694 0.401
10 10 0.01 0.642 0.460

Beta 10 – 8 0.588 0.574

10 10 0.02 0.606 0.610

Coil 60 – 2 0.630 0.528

10 10 0.003 0.674 0.510

N1, N2: number of neurons in the first and second hidden layers, respectively; SSE: sum of squared errors; Q1: prediction accuracy value (Eq. (1)).

Table 5
Summary of results for the integrated system performance

Option Q3 Q̃3 Ca Cb Ccoil

Option 1 0.474 0.649 0.141 0.081 0.292
Option 2 0.536 0.691 0.117 0.220 0.268

Option 3 0.540 0.693 0.100 0.220 0.264

Option 4 0.551 0.701 0.114 0.238 0.258

Option 5 (decision tree) 0.560 0.701 0.121 0.247 0.258

Q3, Q̃3: prediction accuracy values; Ca, Cb and Ccoil are the correlation
coefficients for alpha, beta and coil, respectively.
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Integration of the three expert networks utilizes the Chou
and Fasman frequency parameters, Fa and Fb that were used as
statistical factors. The best prediction values Q3 and Q̃3

obtained using the integrated system were 56% compared to
70%, respectively (Table 5). When the prediction was carried
out for each of the testing sets, the best values of Q3 and Q̃3

obtained were 76% and 84%, respectively (Table 6). Values for
Q3 varied between 37% and 76%, compared to higher
prediction values obtained using Q̃3 (between 58% and
84%). The fact that in both cases prediction values varies
within a large range emphasizes the dependence of the results in
the characteristics of the testing set. Our best prediction value
(Q3 = 76%) is comparable to the average values obtained by
other prediction algorithms, e.g. multiple experts (Armano
et al., 2005), dihedral angles (Wood and Hirst, 2005) and
multiple sequence alignment (Kaur and Raghava, 2003; Cuff
and Barton, 2000; Rost and Sander, 1994) which all use a
significantly bigger training sets. In addition, accuracy of 59–
69% (Table 4) in the prediction of a specific structure can be
achieved by using each of the expert networks separately. This
is very useful whenever a determination of one structure is
needed.

In the work presented by Kneller et al. (1990), proteins were
subdivided into structural classes based on the knowledge of
their sequence. Ruggiero et al. (1993) predicted secondary
structure after classifying the tested protein into the appropriate
group according to its a-helix content. Here, no earlier
information for the prediction of secondary structure is
required.

The suggested system obtained apparently a ‘‘lower’’
average value of Q3 compared to the work of Qian and
Sejnowski (1988) for example. In their study, saturation was
achieved after training with about 8000 residues (9 times the
size of the training set we used). However, our results coincide
with those obtained by Qian and Sejnowski for a smaller
training set of 1000 residues, the size used in this work.
Therefore, since the improvement of prediction accuracy with
large database is known to give better results (Chandonia and
Karplus, 1995), we have the basis to believe that increase of the
training set will end up with better results of Q3 and of the
correlation coefficients values.

4. Conclusion

Using a simple expert neural networks, trained with a small
protein database, and followed by a post-processing unit which
utilizes the Chou and Fasman frequency values Fa and Fb, it is
possible to provide preliminary constrains, which are useful as
a first screening step toward the determination of protein
secondary structure of a given protein. Yet, in the future,
this architecture should be using a larger training and testing
protein sets.
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