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The model of analog recurrent neural networks (ARNN) is typically perceived as
based on either the practical powerful tool of automatic learning or on biological
metaphors, yet it constitutes an appealing model of computation. This paper
provides rigorous foundations for ARNN, when they are allowed to exhibit
stochastic and random behavior of discrete nature. Our model is an extension of
the von Neumann model of unreliable interconnection of components and incor-
porates a generalization of Shannon’s random-noise philosophy. In the general case
the computational class (P/poly) is associated with both deterministic and
stochastic networks. However, when the weights are restricted to rational numbers,
stochasticity adds power to the computation. As part of the proof, we show that
probabilistic Turing machines that use a coin with a real probability rather than an
exactly random (2) coin, compute the nonuniform version BPP/log* instead of the
recursive class BPP. We also show that in the case of real probabilities only their
first logarithmic number of bits are relevant for the computation.  © 1999 Academic
Press

1. INTRODUCTION

This paper examines the effect of random coins on the complexity of par-
ticular continuous computational systems, the analog recurrent neural
networks (ARNN). The networks consist of multiple assemblies of basic
processors interconnected in an intricate structure. Each basic processor, or
“neuron,” computes a scalar non-linear function of its input. The scalar
value produced by a neuron affects other neurons, which then calculate
new scalar values of their own. This describes the dynamical behavior of
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parallel updates. The network is analog in that it is defined on a con-
tinuous domain (as opposed to the discrete models of digital computers).
The adjective “recurrent” emphasizes that the interconnection is general,
rather than layered or symmetrical. Such an architecture, with possible
loops, allows the system to evolve for a flexible amount of time by incor-
porating memory into the computation. This architectural property makes
the network a candidate for a strong uniform computational model.

Randomness is a basic characteristic of large distributed systems. It
may result from the activity of the individual agents, from unpredictable
changes in the communication pattern among the agents, or even just from
the different update paces. Most previous work that examined stochasticity
in networks, e.g., [VN56, Pip90, Ade78, Pip88, Pip89, DO77a, DO77b],
studied only acyclic architectures of binary gates, while we study general
architectures of analog components. Due to these two qualitative differen-
ces, our results are totally different from the previous ones and require
alternative proof techniques.

Our particular stochastic model can be seen as a generalization of the
von Neumann model of unreliable interconnections of components: “the
basic component has a fixed probability ¢ for malfunction at any step
[VN56].” In contrast to the von Neumann model, here because the
neurons have continuous values, it is natural to allow for real probabilities
in & rather than the value 1/2 only. Furthermore, because we consider
recurrent computation it is natural to let ¢ not only be a constant, as in the
von Neumann model, but also a function of the history and the neigh-
boring neurons. The latter, referred to as the “Markovian model,” provides
a useful model for biologically motivated stochastic computation.

The element of stochasticity, when joined with exact known parameters,
has the potential to increase the computational power of the underlying
deterministic process. We find that it indeed adds some power, but only in
some cases. To state the results precisely we need to describe the model.

1.1. Deterministic Analog Recurrent Networks

Analog recurrent neural networks (ARNNSs) are finite collections of
neurons. The activation value, or state, of each neuron is updated at times
t=1,2,3, .., according to a function of the activations (x;) and the inputs
(u;) at time £ — 1, and a set of real weights (a;, b, c;). The network consists
of N neurons; the input arrives as a stream of letters, and each letter
appears on M input channels; each neuron’s state is updated by the
equation
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where o is a “sigmoid-like” function called the saturated-linear function:

0 if x<0
g(x):=<x if 0<x<l1 (1)
1 if x>1.

A subset of p out of the N neurons (the output neurons) is used to com-
municate the outputs of the network to the environment. Similarly to the
input, the output is also a stream of letters, transferred on p channels. With
this input—output convention, the evolution of the ARNN can be inter-
preted as a process of computation. This model of ARNN is “uniform” in
the sense that the same structure is fixed for computing on inputs of all
different lengths.

Previous studies [Sie99] show that the deterministic network is a
parametric model of computation: altering its constitutive parameters allows
the model to coincide with other models which are computationally and
conceptually different. In particular, the computational power depends on
the type of numbers utilized as weights. When the weights are integers, the
network is a finite state machine only. When the weights are rational num-
bers, the network is equivalent (in power and computation time) to the
Turing model ([SS91, SS95]). Finally, when the weights require infinite
precision, the finite networks are proved to be stronger than the Turing
model and to compute, under polynomial time, the class P/poly. (The class
P/poly, defined in Section 2, includes all P and, moreover, some of EXP
and even a few non-recursive functions, e.g., a unary encoding of the halt-
ing problem. However, this class of functions consists of a very small frac-
tion of all binary functions.) An infinite hierarchy of computational classes
was associated with networks having weights with increasing Kolmogorov
complexity; P and P/poly were recognized as the two extremes of that
hierarchy [ BGS97].

1.2. Main Results

In the cases of real weights and integer weights, the incorporation of
random coins does not change the computational power of the underlying
deterministic network. It does increase the power, however, when the
weights are rationals.

In order to characterize stochastic networks with rational weights, we
formulate a new-result in complexity theory, namely that a probabilistic
Turing machine which uses real probability coins computes the nonrecursive
class BPP/log#+ rather than the class BPP, which is computed by Turing
machines that use rational probability coins. We then associate stochastic
networks with probabilistic Turing machines, thus characterizing their
computational power.
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It is perhaps surprising that real probabilities strengthen the Turing
machine, because the machine still reads only the binary values of the coin
flips. However, a long sequence of coin flips allows indirect access to the
real-valued probability, or more accurately, it facilitates its approximation
with high probability. This is in contrast to the case of real weight
networks, where access to the real values is direct and immediate. Thus, the
resulting computation class (BPP/logx) is of intermediate computational
power. It contains some nonrecursive functions but is strictly weaker than
P/poly. Because real probabilities do not provide the same power as real
weights, this work can be seen as suggesting a model of computation which
is stronger than a Turing machine, but still is not as strong as real weight
neural networks.

It was proven in [ SS94] that, although real weight neural networks are
defined with unbounded precision, they demonstrate the feature referred to
as “linear precision suffices.” That is, up to the gth step of the computation,
only the first O(gq) bits, in both weights and activation values of the
neurons, influence the result. This means that for time-bounded computa-
tion, only bounded precision is required. This property can be viewed as
time-dependent resistance (“weak resistance”) of the networks to noise and
implementation error. Complementary to the feature of “linear precision
suffices” for weights, we prove that for stochastic networks “logarithmic
precision suffices” for the coins’ probabilities; that is, for up to the gth step
of the computation, only the first O(log ¢) bits in the probabilities of the
neurons influence the result. We note that the same precision characterizes
the quantum computer [ BV93].

1.3. Noisy Models

The notion of stochastic networks is closely related to the concept of
deterministic networks influenced by external noise. A recent series of work
considered recurrent networks in which each neuron is affected by an
additive noise [ Cas96, OM98, MS99, SR98a]. This noise is characterized
by a transition probability function Q(x, A) describing the transit from the
state x to the set of states 4. If the update equation of the underlying deter-
ministic network is of the form x* =(x, u), where ueX is the current
input, then this system first moves from x to y(x, #) and then is dispersed
by the noise according to the transition probability function Q. The prob-
ability that it reaches a state in A is defined by Q(y(x, u), A). Although it
was assumed in [ OM98, MS99] that the noise is additive and Q(x, 4) has
a density ¢(x, y) with respect to some fixed (i.e., Lebesgue) measure y, in
later work [SR98a, SR98b] these assumptions were relaxed to include
much larger classes of noise. Typically, the resulting networks are not
stronger than finite automata [Cas96, OM98, RGS99], and for many



STOCHASTIC ANALOG NETWORKS 455

types of noise they compute the strict subset of the regular languages called
the definite languages [ MS99, SR98b, SR98a]: Let X2 be an arbitrary
alphabet L = 2* is called a definite language if for some integer r any two
words coinciding on the last r symbols are either both in L or neither
in L. The ability of a computational system to recognize only definite
languages can be interpreted as saying that the system forgets all its input
signals, except for the most recent ones.

The underlying mechanism which leads to the generation of definite
languages was revealed in [ SR98b]. This theory, which builds on [ RR99,
Paz71], introduces a general model of “Markov computational systems.”
These systems can be defined on any arbitrary state space, and their evolu-
tion is described by the flow of their state distributions. That is, if the dis-
tribution of initial states is y,, then the state distribution on the (n+ 1)tk
computational step (after receiving the input string w=wy, .., w,) is
defined by P, uo=P,, - P, o, Where P, is a Markov operator corre-
sponding to input u € 2. Particular cases of Markov computational systems
include Rabin’s probabilistic automata with cut-point [Rab66], the
probabilistic automata by Paz [Paz71], and the noisy analog neural
network by Maass and Sontag [MS99] and Maass and Orponen
[OMO98]. Interestingly, Markov systems also include many diverse com-
putational systems, such as analog dynamical systems and neural networks
with an unbounded number of components, networks with non-fixed
dimensions (e.g., “recruiting networks”), hybrid systems that combine dis-
crete and continuous variables and time evolution, stochastic cellular
automata, and stochastic coupled map lattices.

It is proved in [ SR98b] that any Markov computational system which
is weakly ergodic can recognize only the class of definite languages. This
computational power is an inherent property of weakly ergodic systems and
is independent of the specific details of the system, whether defined by finite
or infinite dimension, discrete or continuous variables, finite or infinite
alphabet, or stochasticity specified in terms of a Lebesgue-like measure. In
addition, a stability theorem concerning language recognition under small
perturbations is proved there for weakly ergodic computational systems. In
[SR98a] the principle of weak ergodicity is applied for various systems
which generate definite languages. This includes deterministic systems,
many kinds of noisy systems where the noise can be a function of the input
and the state of the system, aggregates of probabilistic discrete-time
models, and probabilistic hybrid computational systems. In [ RGS99] an
underlying mechanism leading to the generation of regular languages is
identified as an extension of [RR99] and [ OM98§].

The stochastic networks considered in this paper can be thought of as a
special case of noisy networks where the noise is characterized by a discrete
probability which is nonzero for two domain points only: it is 1 — p in 0
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and p for some nonzero value. When such stochasticity is applied to some
of the neurons, it can only increase the computational power. Therefore,
the term “noisy” is not a good characterization of this network, and we
prefer the term “stochastic.”

1.4. Organization of the Paper

This paper is organized as follows: Section 2 provides the required
preliminaries of computational classes. Section 3 defines our stochastic
networks, distinguishing them from a variety of stochastic models.
Section 4 states the main results. Sections 5-7 include the proofs of the
main theorems. We close with Section 8, restating our model as a network
of stochastically unreliable (biologically motivated) neurons.

2. PRELIMINARIES: COMPUTATIONAL CLASSES

Let us briefly describe the computational classes relevant to this work.
2.1. Probabilistic Turing Machines

The basis of the operation of the probabilistic Turing machine, as well
as of our stochastic neural networks, is the use of random coins. In con-
trast to the deterministic machine, which acts on every input in a specified
manner and responds in one possible way, the probabilistic machine may
produce different responses for the same input.

DerFiniTION 2.1 ([BDG90, Vol. I]). A probabilistic Turing machine is a
machine that computes as follows:

1. Every step of the computation can have two outcomes, one chosen
with probability p and the other with probability 1 — p.

2. All computations on the same input require the same number of
steps.

3. Every computation ends with reject or accept.

All possible computations of a probabilistic Turing machine can be
described by a full (all leaves at the same depth) binary tree whose edges
are directed from the root to the leaves. Each computation is a path from
the root to a leaf, which represents the final decision, or equivalently, the
classification of the input word by the associated computation. A coin,
characterized by the parameter p, chooses one of the two children of a
node. In the standard definition of probabilistic computation, p takes the
value 3.

A word w is said to be accepted by a probabilistic Turing machine .#
if its acceptance probability is high (above 1) or, equivalently, if its error
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probability e ,(w) is low. PP is the class of languages accepted by polyno-
mial-time probabilistic Turing machines with e, <3. A weaker class
defined by the same machine model is BPP, which stands for bounded-error
probabilistic polynomial time. BPP is the class of languages recognized by
polynomial-time probabilistic Turing machines whose error probability is
bounded above by some positive constant ¢ < 1. The latter class is recursive
but it is unknown whether it is strictly stronger than P.

2.2. Nonuniform Turing Machines

Nonuniform complexity classes are based on the model of advice Turing
machines [ KL807]; these, in addition to their input, receive also another
sequence that assists in the computation. For all possible inputs of the
same length n, the machine receives the same advice sequence, but different
advice is provided for input sequences of different lengths. When the dif-
ferent advice strings cannot be generated from a finite rule (e.g., Turing
machine) the resulting computational classes are called nonuniform. The
nonuniformity of the advice translates into noncomputability of the corre-
sponding class. The length of the advice is bounded as a function of the
input and can be used to quantify the amount of noncomputability.

Let 2 be an alphabet and $ a distinguished symbol not in 2; X5 denotes
Zu {$}. We use homomorphisms /* between monoids like 2§ and X* to
encode words. Generally these homomorphisms are extensions of
mappings /# from Xy to 2*, inductively defined as follows: h*(¢) =¢ and
h*(aw) = h(a) h*(w) for all ae X'y and we 2§, For example, when working
with binary sequences, we usually encode “0” by “00,” “1” by “11,” and $
by “01.”

Let we2* and v: N - 2* Define 2} ={w$1(|o|) |weZ*} <« Z¥; the
suffix v(|w|) is called the advice of the input w. We next encode 2'* back
to X* using a one-to-one homomorphism /4* as described above. We
denote the resulting words by <, v(|w|)) € 2*.

DEerFINITION 2.2 (Nonuniformity). Given a class of sets C and a class of
bounding functions H, the class C/H is the class of all the sets A for which
there exist a set Be C and a function ve H such that

VneN, VoelX™ weA<=<w,v(n))eB

Some frequent H’s are the space classes poly and log.

We next concentrate on the special case of prefix nonuniform classes
[BHM92]. In these classes, v(n) must be useful for all strings of length up
to n, not only those of length n. This is similar to the definitions of “strong”
[Ko91] or “full” [ BHMO92] nonuniform classes. Furthermore, v(n;) is the
prefix of v(n,) for all lengths n, <n,.
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DerFINITION 2.3 (Prefix Nonuniformity). Given a class of languages C
and a class of bounding functions H, we say that 4 € Pref-C/H if and only
if there is Be C and a prefix function ve H such that Vne N and Yo e 2™

. wed<<w,v(n))eB, and
2. VYkzn {w,v(k)) e B<{w,v(n))eB.

For the sake of brevity, we use the notation of C/H* for the prefix advice
class.

A special case is that of a Turing machine that receives polynomially
long advice and computes in polynomial time. The class obtained in this
fashion is called P/poly, and in this case P/poly = P/poly*. When exponen-
tial time and advice are allowed, any language on {0, 1} is computable.
Every such language can be recognized in the following form: just prepare
a table of length 2” whose entries are associated with all the binary sequen-
ces of length n, in the lexicographic order. In each entry (sequence) write
the bit “1” if the sequence is in the language, and “0” if it is not. Con-
catenate all 2" bits into a sequence and use it as the advice for inputs of
length n. This sequence encodes all the required information for accepting
or rejecting any input sequence of length 7.

Recall the probabilistic class BPP from Subsection 2.1. We will later
focus on the class BPP/log=. It is not hard to see that BPP/logx is a strict
subset of BPP/log . Any tally set is in P/1 (and thus is clearly also in P/log
and BPP/log ). Let S be a tally set, whose characteristic sequence is com-
pletely random (say, Kolmogorov random). It can not be in any class
Recursive/log* because there is not enough information in O(log n) bits to
get the nth bit of S. As a special case S is not in BPP/logx.

3. STOCHASTIC NETWORKS

Four main questions arise to be addressed when considering stochastic
networks: How do we model stochasticity? What type of random behavior
(or errors) should be allowed? How much randomness can be handled by
the model? Finally, stochastic networks are not guaranteed to generate the
same response in different runs of a given input; thus, how do we define the
output of the network for a given input?

Modeling Stochasticity. The first question, how to model stochasticity,
was discussed by von Neumann [vN56] and quoted by Pippenger
[Pip907]:
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The simplest assumption concerning errors is this: With every
basic organ is associated a positive number € such that in any opera-
tion, the organ will fail to function correctly with the (precise)
probability ¢. This malfunctioning is assumed to occur statistically
independently of the general state of the network and of the
occurrence of other malfunctions.

We first adopt von Neumann’s statistical independence assumption. This
assumption is also consistent with the works of Wiener [ Wie49] and
Shannon [ Sha48], where the “noise”—which is the source of stochasticity—
is modeled as a random process with known parameters. Note that in this
model, the components are stochastic in precisely the amount ¢ and “are
being relied upon to behave unreliably in this exact amount” [ Pip90] (see
also [ DO77a, DO77b, Pip89]). Similarly, in our work we assume either
full knowledge of ¢ or only knowledge of the first O(log T') bits of &, where
T is the computation time of the network. We show these two options to
be equivalent. We then continue and expand to a Markovian model of
stochasticity in which ¢ depends on the neighboring neurons and the recent
history of the system.

Types of Randomness. As for the second question, regarding the type of
randomness, we consider any type of random behavior that can be modeled
by augmenting the underlying deterministic process, either with independent
identically distributed binary sequences (i.i.d.) or with Markovian sequen-
ces. We then abandon the stochastic coin model and substitute it with asyn-
chronicity of update and with various nondeterministic responses of the
neurons themselves. This will be described in Section 8, where we discuss
stochastically amnesic neurons (each neuron forgets its activation value with
some probability; this forgetting is modeled as resetting the activation value
to “0”), the persevering neurons, and also the effect of probabilistic changes
in the interconnections between neurons.

Amount of Randomness. The next question we consider is the amount
of stochasticity allowed in the model. Von Neumann assumed a constant
failure probability ¢ in the various gates, independent of the size of the
network. Furthermore, he allowed all components to behave randomly.
Thus, larger networks suffer from more unreliability than do smaller ones.
In contrast, many later models allowed ¢ to decrease with the size of the
net (see discussion in [ Pip90]), and others assumed the incorporation of
fully deterministic/reliable components in critical parts of the network (see,
e.g., [Kir70, MG62, Ort78, Uli74]). It is not hard to verify that when ¢ is
constant and all neurons are unreliable, no function requiring non-constant
deterministic time 7(n) is computable by the network. This obviates the
use of long term memory, an otherwise attractive property of recurrent
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networks. We thus focus on networks which combine both reliable/deter-
ministic neurons with unreliable/stochastic neurons characterized by fixed
&'s (It is interesting to know about tradeoffs between error-rate, network
size, and reliable computation time, but that is outside of our current
scope.)

Defining the Output Response. As for the question of defining an output
for the probabilistic process, we adopt the bounded error approach. Given
e <3, we only consider networks that yield a wrong output on at most a
fraction ¢ of the possible computations.

3.1. The Model

The underlying deterministic network is as introduced in Subsection 1.1.
The following definition endows the network with stochasticity.

DerFINITION 3.1. A stochastic network has additional input lines, called
stochastic lines, that carry independent identically distributed (iid) binary
sequences, one bit per line at each tick of the clock. The distributions may
be different on the different lines. That is, for all time >0, the stochastic
line /; has the value 1 with probability p; (0 <p;<1), and 0 otherwise.

Equivalently, stochastic networks can be viewed as being composed of
two types of components, analog deterministic neurons and binary
probabilistic gates/coins. A probabilistic gate is a binary device which out-
puts “1” with probability pe[0, 1].

Yet another way to view the same model is to consider it as a network
of neurons, part of which function deterministically while others have
“well-described faults;” that is, their faulty behavior can be described by a
neural circuit. More on this and on other equivalent models appears in
Section 8.

We define the recognition of a language by a stochastic network using
the bounded error model as in BPP. We assume that the number of steps
in all computations on an input  is exactly the same. The classification of
an input w in a computation run is the reject or accept decision at the end
of that computation. The final decision on w considers the fraction of reject
and accept classifications of the various computations.

DEerFINITION 3.2. Let 7 N — N be a total function on natural numbers.
We say that the language L<={0,1}" is e-recognized in time T by a
stochastic net /" if every we {0, 1} * is classified in time 7(|w|) by every
computation path of 4" on w, and the error probability in deciding w
relative to the language L is bounded: ¢ ,-(w) <& < 3. An equivalent defini-
tion is that, for any given run on an input w, if w is not accepted in time
T(|w]|) then it is rejected.
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A relatively standard lemma shows that, for probabilistic models of
computation, the error probability can be reduced to any desired value
[ Par93]. This indicates that the following complexity class is well-defined.

DerNITION 3.3.  S-net is the class of languages that are ¢-recognized by
stochastic networks for any ¢ < 1.

4. THE MAIN RESULTS

Now that we have defined the model, we are ready to state the theorems
about stochastic networks and compare them with deterministic networks.
Proofs appear in the following sections.

4.1. Integer Networks

In the deterministic case, if the networks are restricted to integer weights,
the neurons may assume only binary activations and the networks become
computationally equivalent to finite automata. Similar behavior occurs for
stochastic networks.

THEOREM 1. The class S-net, of languages that are e-recognized by
stochastic networks with integer weights is the set of regular languages.

The case of integer weights is considered only for the sake of complete-
ness. Rational and real stochastic networks are of greater interest.

4.2. Rational Networks

In deterministic computation, if the weights are rational numbers the
network is equivalent in power to the Turing machine model. Two different
I/O conventions are suggested in [ SS957; in the first, input lines and out-
put neurons are used, and, in the second, the discrete input and output are
encoded as the states of two pre-fixed neurons.

In Section 2.2 we introduced nonuniform computational classes; in par-
ticular, Definition 2.3 described the special case of prefix nonuniformity.
We will next focus on the class BPP/log*. Because it includes nonrecursive
functions, just like other nonuniform classes, the following theorem that
states the equivalence between rational stochastic networks and the class
BPP/log is of special interest.

THEOREM 2. The class S-nety[ p] of languages e-recognized by rational
stochastic networks in polynomial time is equal to BPP/logx.
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TABLE 1

The Computational Power of Recurrent Neutral Networks

Weights Deterministic Stochastic
z regular regular
Q P BPP/log*
R P/poly P/poly

COROLLARY 4.1 (of Both Theorem 2 and the Proof of Lemma 6.3). Up
to the Tth step of the computation, only the first O(log T(n)) bits of the
probabilities are significant in a probabilistic computation.

Remark 4.2. As a special case of this theorem we note that if the
probabilities are all rational then the resulting polynomial-time computa-
tional class is constrained to the recursive class BPP. Recall that BPP is
recursive; it is included both in P/poly ([ BDG90, p. 144, Cor. 6.3]) and in
2, n1Il, ([BDGY0, p. 172, Theorem 8.6). It is still unknown whether the
inclusion P = BPP is strict or not.

4.3. Real Networks

Deterministic real networks compute the class P/poly in polynomial time
[SS94]. The addition of stochasticity does not yield a further increase in
the computational power.

THEOREM 3. Denote by netgx(T(n)) the class of languages recognized by
real networks in time T(n), and by S-netg(T(n)) the class of languages
e-recognized by real stochastic networks in time T(n). Then

netx(7(n)) = S-netx(T(n))
S-net x(T(n)) S net x(n* +nT(n)).

The results for polynomial stochastic networks are summarized in
Table L.

5. INTEGER STOCHASTIC NETWORKS

In this section we prove Theorem 1, which states the correspondence
between probabilistic automata and integer stochastic networks. The classi-
cal definition of a probabilistic automaton (see [ Paz71], for example) is as
follows:
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DerFINITION 5.1. A probabilistic automaton .7 is the 5-tuple o7 =(Q, 2,
P, 4o, F), where Q is a finite set of states, 2 is the finite input alphabet,
go € Q is the initial state, and F< Q are the accepting states. The
probabilistic transition function p(m, ¢, a), where m,qge Q, and aelX,
specifies the probability of getting into state m from a state ¢ with input
symbol a. This transition function satisfies that, for all ¢ and q,

Y. plm, q,a)=1.
meQ

We consider the double-transition probabilistic automaton which is a spe-
cial case of probabilistic automata: the transition function may transfer
each state-input pair into exactly two states. That is, for all ge Q and a e X,
there are exactly two states m,,, m,,, such that p(m,,,, q, a), p(m,y,, q,
a)>0 and p(m,,,, q, a) + p(my,,, q,a)=1. It is easy to verify that this
automaton is indeed equivalent to the general probabilistic automaton (up
to a reasonable slowdown in the computation). The proof is left to the
reader.

A double-transition probabilistic automaton can be viewed as a finite
automaton with |Q| |2| additional input lines of iid. binary sequences;
these lines imply the next choice of the transition. From the equivalence of
deterministic integer networks and finite automata, we conclude the equiv-
alence between probabilistic automata and integer stochastic networks.

Rabin showed that bounded error probabilistic automata are computa-
tionally equivalent to deterministic ones [ Paz71, p. 160]. Thus, stochastic
networks with integer weights are computationally equivalent to bounded
error probabilistic automata, and S-net is the class of regular languages.

6. RATIONAL STOCHASTIC NETWORKS

This section is devoted to the proof of Theorem 2 which places rational
stochastic networks in the hierarchy of super-Turing computation.

We use a generalization of the classical probabilistic Turing machine
[BDG90] that substitutes the random coin of probability 3 by a finite set
of real probabilities. (A set of probabilities is required in order to describe
neurons with different stochasticity.)

DEFINITION 6.1.  Let S={py, p,, .., p,} be a finite set of probabilities.
A Probabilistic Turing machine over the set S is a nondeterministic machine
that computes as follows:

1. Every step of the computation can have two outcomes, one chosen
with probability p and the other with probability 1 — p.
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2. All computations on the same input require the same number of
steps.

3. Every computation ends with reject or accept.

We denote by BP[ S, T'] the class of languages recognized in time 7" by
bounded error probabilistic Turing machines with probabilities over S. We
use the shorthand notation BPP[ S]=BP[S, poly]. Similarly, we denote
S-nety[ S, T] as the class of languages recognized by rational stochastic
nets in time 7, with probabilities from S.

LEMMA 6.2. Let S be a finite set of probabilities, then BP[ S, T] and
S-nety[ S, T] are polynomially time related.

Proof. (1) BP[S, T]<=S-nety[S, O(T)]. Let .4 be a probabilistic
Turing machine over the set S that computes in time 7. We simulate .#
by a rational stochastic network ./ having stochastic streams /; of
probabilities p; € S. Consider the program

Repeat
If (/;,=0) then NextStep(0, cur-state, cur-tapes)
else NextStep(1, cur-state, cur-tapes)
Until (final state),

where NextStep is a procedure that, given the current state of the Turing
machine, the current tapes, and which of the two random choices is made,
changes deterministically to the next configuration of the machine. This
program can be compiled into a network that computes the same function,
having no more than a linear slowdown [ Sie95].

(2) S-nety[ S, T]<=BP[S, poly(T)]. It is easy to verify that if a
rational stochastic network /" has s i.i.d. input channels, then it can be
simulated by a probabilistic Turing machine over the same s probabilities.

Next, we differentiate the case in which all probabilities of the set S are
rational numbers from the case where S contains at least one real element.

6.1. Rational Set of Choices

Consider probabilistic Turing machines with probabilities over the set S,
where S consists of rational probabilities only. Zachos showed that, in the
error bounded model, if the transition function decides its next state
uniformly over k choices (k is finite but can be larger than 2) this model
is polynomially equivalent to the classical probabilistic Turing machine
with k=2 [Zac82]. When the probabilities are rational we can substitute
them all by a common divisor which is written as 1/k’ for an integer k'.
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This process increases the number of uniform choices and implies polyno-
mial equivalence between probabilistic Turing machines with one fair coin
and probabilistic machines over a set S. We conclude Remark 4.2 which
states the computational equality between the class S-nety[ poly] and the
class BPP. Thus, rational stochasticity adds power to deterministic rational
networks if and only if the class BPP is strictly stronger than P. Note that
S-nety[ poly] must be computationally strictly included in netg[ poly],
because BPP is included in P/poly ([ BDG90, p. 144, Cor 6.3]).

6.2. Real Set of Choices

Lemma 6.2 relates probabilistic Turing machines to stochastic neural
networks. The lemma below completes the proof of Theorem 2 by showing
the equivalence between real probabilities and log prefix advice in the
probabilistic Turing model. We define BPx(7') =, 0,17 BPP[{p}, T] as
the class of languages recognized by probabilistic bounded error Turing
machines that use coins of real probability and compute in time 7.
BP,(T)/log* is similarly defined, with the addition of prefix advice. Note
that BPy(poly)/logx =BPP/logs .

LemMA 6.3, The classes BPg(T) and BPy(T)/logs are polynomially
related.

Proof. (1) BPR(T)=BPy(O(Tlog T))/log* . Let .4 be a probabilistic
Turing machine over the probability pe[0, 1] that e-recognizes the
language L in time 7(n). We show a probabilistic Turing machine .#" hav-
ing a fair coin, which, upon receiving prefix advice of length log(7(n)),
&'-recognizes L in time O(T(n)log(7(n))). We now describe the algorithm
for the simulation and then bound its error probability:

Let p' be the rational number which is obtained from the log(T(n))
most significant bits of the binary expansion of p. The advice of M’
consists of the bits of p' starting from the most significant bits. One
coin flip by M can be simulated by a binary conjecture of M', which
is based on log(T(n)) coin flips of its fair coin. .M’ tosses log(T(n))
times and compares the resulting guessed string with the advise to
make a binary conjecture. If the guessed string precedes the advice
in the lexicographic order, .#' conjectures “0”; otherwise, .M#' con-
Jectures “1.”

The error probability of .#' is the probability that it generates a
sequence of conjectures which would yield a wrong decision. Denote by
r=ryry---rp, r; €40, 1} a sequence of T binary bits. Let

Prp(r) :pzllerk(l _p)T—ZkT:Hk
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be the probability that r is the sequence of random choices generated by
the coin of .#, and let

Prp,(r) :p'zlz;l k(1 _p')T_lezlrk

be the probability that .#’ generates this sequence of binary choices during
its computation.

For all r, if p’ <p, we denote g=1—p and ¢' =1 — p’, so that ¢’ > ¢, and
calculate a connection between the two probabilities:

Pr,(r) =mPrp(r) < <Z,>TPrp(r) (3)

and use the approximation of small x,
l+x=xe”, (4)
to obtain the formula
Pr,(r) <e@ =99 TPy (r). (5)

Denote by B the set of T(n)-long binary sequences which are “bad,” i.e.,
are misleading conjectures. The error probability of .#" is Pr,(r € B), which
is estimated as

Pr, (re B)< e =9/ TPr, (reB).
If p’ approximates p with first log(7') bits, then ¢' —¢ <a/T and
Pr, (re B)<e“Pr, (reB).

The error probability of ./’ is thus bounded by the constant &' = e,
(2) BPy(T)/logx = BP g( O(T?)). Given a probabilistic Turing

machine .#, having a fair coin and a logarithmically long prefix advice 4

that e-recognizes a language L in time 7(n), we describe a probabilistic

Turing machine .#' with an associated real probability p that &'-recognizes
L in time O(T?*(n)).

The probability p is constructed as follows: The binary expansion
of p starts with “.01,” i.e., s<p <3, the following bits are the advise
of M.

M' computes in two phases:
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Phase 1—Preprocessing. M' estimates the advise sequence A of
M by tossing its unfair coin z=cT?*(n), c=1 times.

Phase 11—Simulating the computation of M. .H' simulates each
flip of the fair coin of M4 by up to 2T(n) tosses using the following
algorithm:

(a) Toss the unfair coin twice.

(b) If the results are “01” conjecture “07; if they are “10” con-
Jecture “17.

(c) If the results are either “00” or “11” and (a) was called
less than T(n), go to (a).

(d) Here (a) was called T(n) times and the decision was not
yet made: conjecture “0.”

We first bound the error of the estimated advice. Let #1 be the number

of I’s found in z flips, and define the estimation

. #1

p=—

V4

which will be used as an estimation of the advice. The Chebyshev formula
states that for any random variable x with expectation x4 and variance v,
and V4>0, Pr(|x—u|)>4)<v/4* Here x is the sum of iid. random
variables. The expectation of such z independent Bernoulli trials is u = zp,
and the variance is v=zp(1 — p). We conclude that, for all 4> 0,

1—
Pr(jzp—zpl > 4) < U ZP)
Because p(1 — p) <1, by choosing 4 =./cz, for a constant ¢ (¢ >1) we get

1
Pr <|ﬁ—p| >f><.
z 4c

Thus, if in the first phase .#' tosses its coin z=cT?(n) times, then the
advice is reconstructed with logarithmically many bits and with an error
probability ¢, bounded by 1/4c (the first two bits “01” are omitted from the
guessed advice).

We next prove the correctness of phase II, which is based on von
Neumann’s technique [ VINS1]. We compute the probability of .#’ to guess a
bad sequence of coin flips. As above, we denote by r the sequence of binary
conjectures of length 7(n) generated by .#' during the algorithm and by B
the set of misleading guesses. As the error of .# is bounded by ¢ and .#
uses a fair coin, the cardinality of B is bounded by 27", We conclude that

Pr (re B) < |B| max Pr (r =b) <2T¢ max Pr (r=0) (6)

beB beB



468 HAVA T. SIEGELMANN

The string with maximum probability is 07. This probability can be
estimated as follows:

o The probability of getting the values “00” or “11” in two successive
coin flips is p’ = p*>+ (1 — p)> Thus, the probability of ending a coin flip
simulation in step (d) of the algorithm is bounded by p” = p'T™. Since
1<p <3, we conclude that p’ <3 and p” < 37™.

e The probability of ending one coin flip simulation with the conjec-
ture “0” is (1 —p")+p" =3+ (p"/2).

We thus conclude

1 pr/ T(n)
max Pr (r=b) < Pr (r=0"") = <2+z> (7)
and we can substitute Eq. (7) in Eq. (6) to get
1 pr\T™ -
Pr(reB)<2""g <2+2> <e(1 4 p") T x go TS, (8)

which is bounded by a small error ¢, for small enough ¢. The error prob-
ability &' of .#' is bounded by

Pr (“wrong advice sequence”) + Pr (“bad guess sequence”) <é&; + é&,,

which is also bounded by 1. |

Remark 64. So far we have discussed stochastic networks defined by
adding choices to deterministic networks. We can similarly define the
stochastic nondeterministic network by adding choices to nondeterministic
networks. When weights are rationals, the latter class is similar to the
framework of interactive proof systems [ BDG90, Vol. I, Chapt. 11].

7. REAL STOCHASTIC NETWORKS

In this section we prove Theorem 3 and show that stochasticity does not
add power to real deterministic networks. It is trivial to show that
stochasticity does not decrease the power of the model; we thus focus on
the other direction and prove that S-netg[ poly ] = Netg[ poly].

We prove this inclusion in two steps. Given a real stochastic network 4"
that ¢-recognizes a language L, the first step describes a nonuniform family
Z of feedforward networks that recognizes L; this creates only a constant
slowdown in the computation. The second step describes a deterministic
recurrent network .# that simulates the family %, with a polynomial slow-
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down of n?2+nT(n). (We could skip the first step with a more elaborate
counting argument in the second step, but we prefer this method for its
simplicity of representation.)

Lemma 7.1 (Step 1) Let 0<e<?, and let L be a language that is
e-recognized by a real stochastic network N of size N in time T. Then, L can
also be recognized by a family of nonuniform feedforward real networks
{Z,} 2, of depth T(n)+1 and size ¢cNT(n)+ 1, where

B 8¢In?2
"‘[(1—28)4'

Proof. The technique used in this proof is similar to the one used in the
proof that BPP = P/poly [ BDG90].

Let 4" be a real network that ¢-recognizes a language L as above. We
show the existence of a family of networks that recognizes L. Let r be the
number of probabilistic gates g,, 1 <k <r; each outputs “1” with probabil-
ity p,. For a given input of length n, by unfolding the network to 7(n)
layers, each a copy of .47, we get a feedforward network with 7,=T(n)r
probabilistic gates. Denote this feedforward stochastic net by .17,.

We pick a string

pi’”=pli,0§ ...p;ne{(), ]}Fn

at random, with probability p(;moa ) that pjis “1.” Let N {p*"} be a deter-
ministic feedforward net similar to ./, but with the string p>” substituting
the probabilistic gates (i.e., p} substitutes g; o4, in level (jdivr). We now
pick cn such strings

2,n cn,n)

plnl=(p"" p>", . p

at random. The feedforward net %, consists of the cn subnetworks
N {pt"t (i=1---cn) and one “majority gate” in the final level. The
majority gate takes the output of the cn subnetworks as its input. That is,
for each n, the network %, computes the majority over ¢n random runs of
the stochastic net /"

We next compute the probability that %, outputs incorrectly on an input
o of length n. By the definition of 4", each ./,{p""} has the probability
¢ of being wrong. Thus, picking p[#n] at random, the probability of %, to
fail is bounded by B(cn/2, cn, ¢); this is the probability of being wrong in
at least cn/2 out of ¢n independent Bernoulli trials, each having the failure
probability e.
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We use the bound B(cn/2, cn,e) <(4e(1 —¢))*? from [Par93], and
choose ¢=[(8¢1n 2)/(1 —2¢)>7 to get

B <C;, cn, e> <27

This is a bound on the error probability for any input of length n. Thus,
the sum of failures for all the inputs of length » is less than 1. Hence, there
must be at least one choice of random strings p[#] that makes %, correctly
recognize any input of length n. |

The above lemma of the two-step algorithm introduces a family % of
deterministic feedforward networks that decides L. This specially structured
family will be shown in the next step to be included in P/poly. More
specifically, in the following lemma we complete the proof of Theorem 3
with a construction of a real deterministic network .# that simulates .

LeMMA 7.2 (Step 2). Any language that is recognized by the real family
{7} 2| described above can also be recognized by a real deterministic
recurrent network M. Furthermore, an input of length n that was recognized
by the network %, having depth T(n) can be recognized by M in time
O(n* +nT(n)).

Proof. We remind the reader that the whole family & was constructed
from a single recurrent neural network; call it ./". Each family member %,
can thus be described by the tuple

(A", n, p[n])

where 4" is the underlying deterministic recurrent network, n is the index
of the network, and p[n] e {0, 1}
Let ./ be any binary encoding of 4" and p be the infinite string

p=pl1] 2 p[2] 2 p[3] 2---.

Let a=oya,---€4{0,1,2}* and denote by ofs the value Y9,
((20; 4 1)/6i). This encoding is Cantor-like, and a network can read weights
of this form letter-by-letter in O(1) time each (see [ SS95]). We next con-
struct the recurrent network ./# that has the weights 1| and j|s and
recognizes the language L. .4 operates as follows:

1. . reads the input w and measures its length.

2. M retrieves the encoding p[n] from the constant j|¢. (This takes
Yi<n|p[j11 < O(n?) as proven in [ SS94]).
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3. ./ executes the code:

Func Net (o, p[n], n, /);
Var Yes, No, z: Counter,
A: Boolean,
p: Real;
Begin
z=1;
Repeat
p < retrieve(p, i, n) Y%retrieving p*”
A « simulate(.V, p, ®)
If A=1 then Increment(Yes) else Increment(No)
Increment(z)
Until (z> cn)
Net « Return(Yes > No)
End

We know that the command “simulate” is feasible from the constructive
Turing machine simulation in [SS95]. Furthermore, it was shown in
[Sie95] how to construct a net from this type of high-level language. This
program, as well as the associated network, takes nT(n) steps. Thus .#
fulfills the requirements of Lemma 7.2 and Theorem 3 is proved. ||

8. UNRELIABLE NETWORKS

In this section we provide a different formulation of stochastic networks.
Our von-Neumann-like modeling captures many types of random behavior
in networks. It can describe the probabilistic “amnesic” (i.e., forgetting)
neuron,

+ _ |regular update with probability 1 —p; )
L0 with probability DPis
as well as the probabilistic “persevering” (i.e., frozen) neuron,
o {regular update with probability 1 —p; (10)
R with probability DPis

and the probabilistic “disconnecting” neuron x;, which is defined by the
update equation



472 HAVA T. SIEGELMANN

where

aij_

o {af; with probability 1—p, (n

0 with probability Dy

We generally allow not only for these three types of errors but for more
general faults. Each stochastic neuron computes one of d functions which
may be more complicated than the above examples.

DerFINITION 8.1. A neuron g is said to have a well-described fault if it
computes d different functions f; each with a probability p,, (3¢ ; pu=1)
such that all the f;’s are deterministically computable by a net in constant
time.

It is not difficult to verify the following:

Lemma 8.2. A stochastic network that consists of both well-described
faulty and deterministic neurons can be described by our stochastic modeling.

The proof is left to the reader.

Remark 8.3. Note that if all neurons are stochastic (“catastrophic
nets”) the stochasticity can no longer be controlled, and the networks
cannot compute more than definite languages, as discussed in Subsec-
tion 1.3. Introducing a varying error rate or a nonuniform architecture
allows one to overcome the catastrophe.

Similarly, we can define the “Markovian” model of unreliability: unlike
the model of independent erroneous neurons, let us consider devices whose
unreliable behavior depends on the last ¢ choices of all devices and the last
¢ global states in the network. This better models biological phenomena
such as dying neurons, toxification, and the Korsakoff syndrome [ SF99].
Note that this model is not strictly Markovian because transitions do not
depend only on the global states but on the choices as well.

DerFINITION 8.4. Let g be a well-described faulty neuron with d choices.
Let x(i)e[0, 1]V be the activation vector in time i, and let the vector

F,,=(x(t—c¢), .. x(t—1))€[0, 1]V

represent the activation values of the neurons in the previous c¢ steps.
Similarly, let j(i)e{l,2,..,d}" be the vector of choices made by all
neurons in time i, and let the vector

Jo ,=(j(t—c), j(t—c+1), ., j(t—1))e{l,2, ..d}N
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represent the choices made by all neurons in the previous ¢ steps. Observe
that only x(¢r—c) in F,., is necessary: the rest can be computed from
x(t—c) and the choices J,,. We use this redundancy for simplicity of
presentation.

A c-Markov network 1s a network with some unreliable neurons, for
which the probabilities p,; are functions of J., and F_,; there exist dN
stochastic subnetworks that, upon receiving p,;(¢) as input, output “1” with
this probability.

We state without proof:

THEOREM 4. For any well-described default and any constant ¢>1,
c-Markovian networks are computational equivalent to networks of inde-
pendent unreliability.

One final equivalent model that we note is the asynchronous model. To
characterize the behavior of the asynchronous neural networks, we adapt
the classical assumption of asynchronous distributed systems: no two
neurons ever update simultaneously. An asynchronous network is a network
with an additional N-level probabilistic gate, g, where level /; appears with
probability p, (3°; p;=1). At each time ¢, only processor g(¢) updates, and
the output is interpreted probabilistically.
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