A. G. Barto's Publications
Following is a list of A.G. Barto's publications in reverse chronological order.
Click here for a comprehensive listing of all publications of the Autonomous Learning Laboratory.
To jump to a specific year:
2020 |
2019 |
2018 |
2015 |
2014 |
2013 |
2012 |
2011 |
2010 |
2009 |
2008 |
2007 |
2006 |
2005 |
2004 |
2003 |
2002 |
2001 |
2000 |
1999 |
1998 |
1997 |
1996 |
1995 |
1994 |
1993 |
1992 |
1991 |
1990 |
1989 |
1987 |
1986 |
1985 |
1983 |
1982 |
1981 |
1978 |
1976 |
1975 |
2020
- Barto, A. G., Sutton, R. S., & Anderson, C. W. (2020)
Looking back on the actor-critic architecture
IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 51(1), pp. 40-50.
[pdf]
- Santucci, V. G., Oudeyer, P. Y., Barto, A., and Baldassarre, G. (2020)
Intrinsically motivated open-ended learning in autonomous robots
Frontiers in Neurorobotics vol. 13, p. 115.
[html]
2019
- Thomas, P.S., Castro da Silva, B., Barto, A.G., Giguere, S., Brun, Y., and Brunskill, E. (2019)
Preventing undesirable behavior of intelligent machines
Science vol. 366, Issue 6468, pp. 999–1004.
[ link, supplementary materials, free access links]
- Barto, A.G. (2019)
Reinforcement Learning: Connections, Surprises, Challenges
AI Magazine vol. 40(1), pp. 3-15.
2018
- Frankenhuis, W.E., Panchanathan, K., and Barto, A.G. (2018)
Enriching behavioral ecology with reinforcement learning
Behavioural Processes
[pdf]
- Sutton, R.S., and Barto, A.G. (2018)
Reinforcement Learning: An Introduction. Second Edition
MIT Press.
[MIT Press Site for this book ] [More information here ]
2015
- Niekum, S., Osentoski, S., Atkeson, C.G., and Barto, A.G. (2015)
Online Bayesian changepoint detection for articulated motion models
IEEE International Conference on Robotics and Automation
[pdf]
- Niekum, S., Osentoski, S., Atkeson, Konidaris, G.D., Chitta, S., Marthi, B., and Barto, A.G. (2014)
Learning grounded finite-state representations from unstructured demonstrations
International Journal of Robotics Research, vol. 34(2), pp. 131-157
[abstract]
[freely accessible draft]
[video]
2014
- Niekum, S., Osentoski, S., Atkeson, C.G., and Barto, A.G. (2014)
Learning articulation changepoint models from demonstration
RSS Workshop on Learning Plans with Context from Human Signals
[pdf]
- Niekum, S., Osentoski, S., Atkeson, C.G., and Barto, A.G. (2014)
CHAMP: Changepoint detection using approximate model parameters
Technical report CMU-RI-TR-14-10, Robotics Institute, Carnegie Mellon University
[pdf]
- da Silva, B.C., Konidaris, G., and Barto, A.G. (2014)
Active learning of parameterized skills
Proceedings of the 31st International Conference on Machine Learning (ICML 2014)
[pdf]
- da Silva, B.C., Baldassarre, G., Konidaris, G., and Barto, A.G. (2014)
Learning parameterized motor skills on a humanoid robot
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA 2014)
[pdf]
[video]
2013
- Barto, A., Mirolli, M., and Baldasarre, G. (2013)
Novelty or surprise?
Frontiers in Cognitive Science, 11, doi: 10.3389/fpsyg.2013.00907
[Frontiers link]
- Barto, A.G., Konidaris, G.D., and Vigorito, C. M. (2013)
Behavioral hierarchy: exploration and representation
G. Baldassarre and M. Mirolli, editors,
Computatonal and Robotic Models of the Hierarchical Organization of Behavior,
pp. 13-46, Springer
[draft pdf]
- Levy, Y.Z., Barto, A.G., and Meyer J.S. (2013)
A computational hypothesis for allostasis: delineation of substance dependence, conventional therapies, and alternative treatments
Frontiers in Psychiatry 4:167. doi: 10.3389/fpsyt.2013.00167
[Frontiers link]
- Shah, A., Fagg, A., and Barto, A. (2013)
A dual process account of coarticulation in motor skill acquisition
Journal of Motor Behavior, vol. 45, pp. 531-549
[ DOI link]
[PubMed link]
- Neikum, S., Osentoski, S., Chitta, B., Marthi, B., and Barto, A. (2013)
Incremental semantically grounded learning from demonstration
Robotics: Science and Systems IX, Berlin
[ pdf ]
[ video ]
- Barto, A. (2013)
Intrinsic motivation and reinforcement learning
In G. Baldassarre and M. Mirolli (Eds.),
Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 17-47
Springer
|