
Reinforcement Learning

Andrew G. Barto

Department of Computer Science

University of Massachusetts, Amherst MA 01003

Running Head: Reinforcement Learning

Correspondence:

Andrew G. Barto

Deptartment of Computer Science

140 Governors Drive

University of Massachusetts

Amherst, MA 01003-4610

Phone: 413 545-2109

Fax: 413 545-1249

email: barto@cs.umass.edu



Barto: Reinforcement Learning 2

Introduction

The term reinforcement comes from studies of animal learning in experimental psychol-

ogy, where it refers to the occurrence of an event, in the proper relation to a response, that

tends to increase the probability that the response will occur again in the same situation.

Although not used by psychologists, the term “reinforcement learning” has been widely

adopted by theorists in artificial intelligence and engineering to refer to learning tasks and

algorithms based on this principle of reinforcement. The simplest reinforcement learning

methods use the commonsense idea that if an action is followed by a satisfactory state

of affairs, or an improvement in the state of affairs, then the tendency to produce that

action is strengthened, i.e., reinforced. The ideas of reinforcement learning have been

present in engineering for many decades (e.g., Mendel and McClaren 1970) and in arti-

ficial intelligence since its earliest days (Minsky 1954, 1961; Samuel 1959; Turing 1950).

It is only relatively recently, however, that development and application of reinforcement

learning methods have occupied a significant number of researchers in these fields. Fuel-

ing this interest are two basic challenges: 1) designing autonomous robotic agents that

can operate under uncertainty in complex dynamic environments, and 2) finding useful

approximate solutions to very large-scale dynamic decision-making problems.

Reinforcement learning is usually formulated as an optimization problem with the

objective of finding a strategy for producing actions that is optimal, or best, in some

well-defined way. In practice, however, it is usually more important for a reinforcement

learning system continue to improve than it is for it to actually achieve optimal behavior.

Reinforcement learning differs from the more commonly studied paradigm of supervised

learning, or “learning with a teacher,” in significant ways that we discuss in the course of

this article. It also differs significantly from various forms of unsupervised learning. The



Barto: Reinforcement Learning 3

article REINFORCEMENT LEARNINING IN MOTOR CONTROL contains additional

information. For a more detailed introductory treatment, the reader should consult

Sutton and Barto (1998); for a more in-depth mathematical treatment, the reader should

consult Bertsekas and Tsitsiklis (1996).

The Reinforcement Learning Problem

Think of an agent interacting with its environment over a potentially infinite sequence

of discrete time steps t = 1, 2, 3, . . .. At each time step t, the reinforcement learning

agent receives some representation of the environment’s current state, st ∈ S, where S

is the set of possible states, and on that basis executes an action, at ∈ A(st), where

A(st) is the set of actions that can be executed in state st. One time step later, the

agent receives a reward, rt+1, a real number, and finds itself facing a new state, st+1 ∈ S

(Fig. 1). The reward and new state are not only influenced by the agent’s action, they

are also influenced by the state, st, in which the action was taken, and they can depend

on random factors as well. Throughout this article we assume that S and A(s), s ∈ S,

are finite sets, but extension to infinite sets is possible, as is extension to continuous-time

formulations.

The rule the agent uses to select actions is called its policy. It is a function, often

denoted π, that for each state assigns a probabilty to each possible action: for all s ∈ S

and all a ∈ A(s), π(s, a) is the probability that the agent executes a when in state

s. While intereacting with its environment, a reinforcement learning agent adjusts its

policy based on its accumulating experience to try to improve the the amount of reward

it receives over time. More specifically, it tries to maximize the return it receives after

each time step. The most commonly-studied type of return is the discounted return. If



Barto: Reinforcement Learning 4

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

Figure 1: A Reinforcement Learning Model. A reinforcement learning

agent and its environment interact over a sequence of discrete

time steps. The actions are the choices made by the agent; the

states provide the agent’s basis for making the choices; and the

rewards are the basis for evaluating these choices.

rt+1, rt+2, rt+3, . . ., denotes the sequence of rewards received after time step t, then the

discounted return for step t is

∞∑

k=1

γk−1rt+k, (1)

where γ ∈ [0, 1) is the discount factor. A reinforcement learning agent adjusts its policy

to try maximize the expected value of quantity for all t ≥ 0.

The discount factor determines the present value of future rewards. If γ = 0, the

agent is only concerned with maximizing immediate rewards: its objective would be to

learn how to act at each time step t so as maximize only rt+1. But in general, acting to

maximize immediate reward can reduce access to future rewards so that a longer-term

return may actually be reduced. As γ approaches one, the objective takes future rewards

into account more strongly: the agent becomes more far-sighted. Discounting is used

because it is mathematically the simplest way to deal with cases in which the agent and



Barto: Reinforcement Learning 5

environment can interact for an unbounded number of time steps. In many problems only

finite numbers of steps can ever happen in each learning trial so that γ can be set to one.

These are called episodic problems. Other definitions of return have been extensively

studied as well.

This model of the reinforcement learning problem is based on the theory of Markov

decision processes (MDPs), which has been extensively developed in decision theory and

stochastic control (see, e.g., Bertsekas 1987). An MDP has the property that the environ-

ment satisfies the Markov property, which means that environment state at any time step

t > 0 provides the same information about what will happen next as would the entire

history of the process up to step t. A full specification of an MDP includes the proba-

bilistic details of how state transitions and rewards are influenced by states and actions,

i.e., a full probabilistic model of the environment and how it is influenced by the agent’s

actions. The objective is to compute an optimal policy, i.e., a policy that maximizes

the expected return from each state. In theory, this can be done using any of several

stochastic dynamic programming algorithms, although their computational complexity

makes them impractical for large-scale problems.

Reinforcement learning has much in common with this traditional study of MDPs,

but it emphasizes approximating optimal behavior during on-line behavior instead of

computating optimal policies off-line on the basis of known probabilistic models. In

particular, the objective in reinforcement learning is actually not to compute an optimal

policy; it is instead to allow the agent to receive as much reward as possible during its

behavior. This does not always require a policy that is optimal for all possible states

since the agent may not visit all of these states while it is behaving.

Following are some key observations about the reinforcement learning problem:



Barto: Reinforcement Learning 6

1. Uncertainty plays a central role in reinforcement learning. The agent’s environment

and its own behavior can be subject to random fluctuations so that the outcomes

of decisions cannot be known beforehand with complete certainty. An accurate

probabilistic model of the these uncertainties may, or may not, be available to the

agent.

2. The reward input to the agent can be any scalar signal evaluating the agent’s be-

havior. It might indicate just success when a goal state is reached, just failure while

not reaching a goal state, or it might provide moment-by-moment evaluatuations

of on-going behavior (as, for example, in giving the amount of energy currently

being consumed while a task is being accomplished). Moreover, multiple evalua-

tion criteria can be combined in various ways to form the scalar reward signal (for

example, via a weighted sum).

3. An important difficulty faced by a reinforcement learning system is the credit-

assignment problem (Minsky 1961): How do you distribute credit for success among

the many decisions that may have been involved in producing it? (See also REIN-

FORCEMENT LEARNING IN MOTOR CONTROL.)

4. A reinforcement learning system often has to forgo immediate reward in order to

obtain more reward later or over the long run. This kind of “sacrificing” behavior

arises because the agent’s actions influence not only each reward input but also

the environment’s state transitions. An action may be preferred because it sets the

stage for a large reward later rather for its immediate reward.

5. The reward signal does not directly tell the agent what action is best; it only

evaluates the action taken. A reward input also does not directly tell the agent



Barto: Reinforcement Learning 7

how to change its actions. These are key features distinguishing reinforcement

learning from supervised learning, and we discuss them further below.

6. Reinforcement learning algorithms are selectional processes. There must be variety

in the action-generation process so that the consequences of alternative actions can

be compared to select the best. Behavioral variety is called exploration; it is often

generated through randomness, but it need not be.

7. Reinforcement learning involves a conflict between exploitation and exploration. In

deciding which action to take, the agent has to balance two conflicting objectives:

it has to exploit what it has already learned to obtain high rewards, and it has

to behave in new ways—explore—to learn more. Because these needs ordinarily

conflict, reinforcement learning systems have to somehow balance them. In control

engineering, this is known as the conflict between control and identification.

8. Some researchers think of reinforcement learning as a form of supervised learning

(because the reward input is a kind of supervision), and others think of it as a form

of unsupervised learning (because the reward input is not like the label of an exam-

ple). There is some truth to each of these views, but reinforcement learning is really

different from both. A key distinguishing feature is the presence in reinforcement

learning of the conflict between exploitation and exploration. This is absent from

supervised and unsupervised learning unless the learning system is also engaged in

influencing which training examples it sees.



Barto: Reinforcement Learning 8

Value Functions

The most commonly studied reinforcement learning algorithms are based on estimating

value functions, which are scalar functions of states, or of state-action pairs, that tell how

good it is for the agent to be in a state, or to take an action in a state. The notion of

“how good” is the return expected to accumulate over the future, which is well-defined

if the Markov property holds and the agent’s policy is specified.

If the agent uses policy π, then the state value function V π gives the value, V π(s),

of each s ∈ S, which is the return expected to accumulate over the time period after

visiting s, assuming that actions are chosen according to π. For the discounted return

defined by Eq. ??, the value of state s is

V π(s) = Eπ[
∞∑

k=0

γkrt+k+1|st = s], (2)

where Eπ is the expected value given that policy π is followed. A state’s optimal value,

V ∗(s), is the return expected after visiting s assuming that actions are chosen optimally,

i.e., it is the largest expected return possible after visiting s.

Similarly, the action value of taking action a in state s under a policy π, denoted

Qπ(s, a), is the expected return starting from s, taking the action a, and thereafter

following policy π:

Qπ(s, a) = Eπ[
∞∑

k=0

γkrt+k+1|st = s, at = a]. (3)

The optimal action value of taking action a in state s, denoted Q∗(s, a), is the expected

return starting from s, taking the action a, and thereafter following an optimal policy.

Value functions are useful because of several properties of MDPs. If V ∗ is known,

optimal policies can be found by looking ahead only one time step. That is, if st is the



Barto: Reinforcement Learning 9

state at step t, then an optimal action is any a ∈ A(st) that maximizes the expected value

of rt+1 + γV ∗(st+1). Thus, given V ∗ and an accurate model of the immediate effects on

the environment of all of the actions, acting optimally does not require deep lookahead

because V ∗ summarizes the effects of future behavior. If Q∗ is known, then finding

optimal actions is even easier. An optimal action at step t is any action that maximizes

Q∗(st, a). In this case, it is not necessary to look ahead one step, so that no model is

needed of the effect of actions on the environment. This is what makes reinforcement

learning algorithms that use action-value functions a popular choice in many applications.

Any such one-step ahead maximizing action for a state value function, or a maximizing

action for an action-value function, is called a greedy action with respect to that function.

Value functions that depend on a policy, that is, V π and Qπ, are useful for improving

behavior because of the policy improvement property. Suppose the agent is deciding

which action to execute in a state. It could pick an action using its current policy, π,

or it could select some other action. If it picks an action that is greedy with respect to

V π, and otherwise follows π, then its performance is guaranteed to be at least as good

as it would have been under π, and possibly better. This fact is the basis of the policy

improvement, or policy iteration, dynamic programming algorithm, and it motivates

many reinforcement learning algorithms as we explain below.

A fundamental property of value functions is that they satisfy particular consistency

conditions if the Markov property holds. For any policy π and any state s the following

is true (for the discounted return case):

V π(s) = Eπ[
∞∑

k=0

γkrt+k+1|st = s]

= Eπ[rt+1 + γ
∞∑

k=0

γkrt+k+2|st = s]



Barto: Reinforcement Learning 10

= Eπ[rt+1 + γV π(st+1)|st = s]. (4)

An analogous consistency condition holds for values of Qπ. Similarly, V ∗ satisfies the

following equation for all s ∈ S:

V ∗(s) = max
a

E[rt+1 + γV ∗(st+1)|st = s, at = a], (5)

and Q∗ satisfies

Q∗(s, a) = E[rt+1 + γ max
a′

Q∗(st+1, a
′)|st = s, at = a], (6)

for all pairs (s, a), s ∈ S, a ∈ A(s).

If a model is available giving the probabilistic details of how the environment re-

sponds to actions, then these equations (or more precisely, these sets ofequations) are

completely specified and can in pr inciple be solved using one of a variety of methods

for solving systems of linear equations (to obtain V π or Qπ) or nonlinear equations (to

obtain V ∗ or Q∗). These are often called Bellman Equations, after Richard Bellman

who introduced the term dynamic programming to refer to a collection of solution meth-

ods (Bellman 1957). There are many books that explain dynamic programming, e.g.,

Bertsekas, 1987.

Solving Bellman equations is therefore one route to finding optimal policies. Unfor-

tunately, in many problems of interest one does not have the complete Markov model of

the environment needed to fully define the Bellman equations, or the state set may be so

large that it is not computationally feasible to exactly solve the Bellman equations. Un-

less some special additional structure can be exploited, one has to settle for approximate

solutions.



Barto: Reinforcement Learning 11

Reinforcement Learning based on Value Functions

Value functions are used in several different ways in reinforcement learning. One approach

uses the actor-critic architecture, which maintains a representation of both a value func-

tion and a policy (Fig. 2). To select actions, an agent using this architecture consults

its current policy, represented by the actor component. The policy might be represented

by a lookup table, by an artificial neural network with its input coding the current state

and its output coding the action to be taken, or by some other means. To evaluate the

action just taken, the critic component is consulted, which maintains an estimate of the

value function of the current policy. The action is considered to be “good” (“bad”) to the

extent that it leads to a next state with a value higher (lower) than that of s, both state

values being estimated by the critic. Upon receiving this evaluation, the actor updates

the policy by making a good action more likely to be selected upon revisiting s, or a bad

action less likely, thus implementing a version of Edward Thorndike’s famous “Law of

Effect” (Thorndike 1911). The critic component then updates its value function estimate

using a temporal difference learning algorithm of the kind described below.

Barto, Sutton, and Anderson (1983) used this architecture for learning to balance

a simulated pole mounted on a cart. Their perspective was that the critic provides

an internal reinforcement signal—changes in estimated values—that provides immediate

action evaluations, even though the goal is to maximize reward over the long-term. To

the extent that the critic’s value estimates are correct given the actor’s current policy, the

actor actually learns to increase the total amount of future reinforcement. This method

thus relies on the policy improvement property. Although not a failsafe approach from a

theoretical perspective, it is often successful in improving the agent’s behavior.

Another type of reinforcement learning algorithm that uses value functions main-



Barto: Reinforcement Learning 12

Policy

internal reward




Environment

Value
Function

reward

state action

Actor

Critic

Figure 2: Actor-Critic Architecture. The critic provides an internal reward

signal to an actor which learns a policy for interacting with the

environment.



Barto: Reinforcement Learning 13

tains an estimate of the current policy’s value function but does not keep an explicit

representation of the current policy. Instead, it selects actions solely by consulting its

current value function estimate. At each time step, the agent selects an action that is ei-

ther greedy with respect to its current estimate of the value function, or is an exploratory

action chosen on some other basis (see below). If state values are being estimated, finding

a greedy action requires projecting ahead one step using an environment model; if action

values are being estimated, no look-ahead is required, as explained above. Like actor-

critic methods, this approach also relies on the policy improvement property, but since

there is no separate policy representation and no separate policy update rule, it is more

closely related to various dynamic programming algorithms and is therefore somewhat

easier to understand.

Estimating Value Functions

The simplest method for estimating the value function of the current policy while the

agent is behaving is to average an ensemble of returns actually observed. For example, if

an agent follows policy π and maintains, for each state s encountered, an average of the

actual returns that have followed that state, then the averages will converge to V π(s) as

the number of times that state is encountered approaches infinity. If separate averages

are kept for each action, a, taken in a state, then these averages will similarly converge

to the action values, Qπ(s, a). This is easiest to do in episodic problems where return is

accumulated over finite numbers of time steps. Methods like this are sometimes called

simple Monte Carlo value estimation methods.

Another class of value estimation methods are called temporal difference (TD) al-

gorithms (Sutton 1988). The most basic TD algorithm, called tabular TD(0), estimates



Barto: Reinforcement Learning 14

V π while the agent is behaving according to π and is applicable when the state set is

small enough to store the state values in a lookup table with a separate entry for the

value of each state. Suppose the agent is in state s, executes action a, and then observes

the resulting reward r and the next state s′. TD(0) updates the current estimate of the

value of state s, V (s), using the following update:

V (s) ← V (s) + α[r + γV (s′) − V (s)], (7)

where α is a positive step-size parameter. TD algorithms are based on the consistency

condition expressed by the Bellman equations. This TD algorithm is designed to move

the term r + γV (s′) − V (s), called the TD error, toward zero for every state. If the

expected TD error could be made to equal zero for every state, then the corresponding

Bellman equation (Eq. ??) would be satisfied. An update of this general form is often

called a backup because the value of a state is moved toward the current value of a

successor state, plus any reward that is received on the transition.

This algorithm converges to the correct state values under certain conditions (Sutton

1988). This and other TD algorithms have been extended to include eligibility traces,

which allow values to be backed up over more than one time step. When so extended,

these are called TD(λ) algorithms, where λ is a parameter determining the temporal

characteristics of the backups: λ ranges from 0 (no eligibility traces as above) to 1

(resulting in a simple Monte Carlo method). Forms of this TD algorithm are also known

as adaptive critic algorithms.

Another TD algorithm, known as Q-learning, was proposed by Watkins in 1989 (see

Sutton and Barto 1998). This algorithm directly estimates Q∗ without relying on the

policy improvement property. Its tabular form works as follows. Suppose the agent is in

state s, executes action a, and then observes the resulting reward r and the next state s′.



Barto: Reinforcement Learning 15

The Q-learning algorithm updates the action value estimate, Q(s, a), of the pair (s, a)

using the following backup:

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)], (8)

where α is a positive step-size parameter. If α decreases appropriately with time and

each state-action pair would be visited infinitely often in the limit, then this algorithm

converges to Q∗(s, a) for all s ∈ S and a ∈ A(s) with probability one. Unless it is known

that the environment is deterministic, the “infinitely often” requirement is necessary for

this kind of strong convergence of any method that is based, as this one is, on sampling

environment state transitions and rewards. Letting the agent sometimes select actions

randomly from a uniform distribution is one simple way to help the agent maintain

enough variety in its behavior in order to try to satisfy this condition. Otherwise, the

agent executes actions that are greedy with respect to its current estimate of Q∗.

Closely related to Q-learning is the Sarsa algorithm. Suppose the agent is in state

s, executes action a, observes reward r and the next state s′, and then executes action

a′. Then the Sarsa update is

Q(s, a) ← Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)], (9)

which is the same as the Q-learning update (Eq. ??) except that instead of taking the

maximum over the actions available in s′, it uses the action, a′, which was actually

executed. (This requirement of s, a, r, s′, a′ is what accounts for the algorithm’s name.)

Notice that if actions are always greedy with respect to the current estimate of Q∗,

then Sarsa is the same as Q-learning. Despite this similarity, Sarsa and Q-learning

have somewhat different properties (see Sutton and Barto 1998). Whereas Q-Learning

converges to Q∗ independently of the agent’s behavior (as long as the conditions for



Barto: Reinforcement Learning 16

convergence are satisfied), Sarsa converges to an action-value function that is optimal

given the agent’s mode of exploration. Like the TD algorithm for state values described

above, both Q-learning and Sarsa can be extended to include eligibility traces.

TD algorithms are closely related to dynamic programming algorithms, which also

use backup operations derived from Bellman equations. There are two main differences.

First, a dynamic programming backup computes the expected value of successor states

using the state-transition distribution of the MDP, whereas a TD backup uses a sample

from this distribution. (TD backups are sometimes called sample backups, in contrast

to the full backups of dynamic programming.) A second difference is that dymanic

programming uses multiple exhaustive “sweeps” of the MDP’s state set, whereas TD

algorithms operate on states as they occur in actual or simulated experiences. These

differences make it possible to use TD algorithms on problems for which it is not feasible

to use dynamic programming.

Function approximation

Instead of storing the estimated values of states or state-action pairs in lookup tables, it is

possible to represent them more compactly. This is an important feature of reinforcement

learning because it enables its use for problems whose state sets are too large to allow

explicit representation of each value estimate, and hence too large for text-book dynamic

programming algorithms to be feasible. Very large state sets often arise due to com-

binatorial explosions in representing states that are configurations of discrete objects.

They also arise when multi-dimensional continuous spaces are discretized (prompting

Bellman to coin the familiar phrase “curse of dimensionality”). For example, the game

of Backgammon, to which reinforcement learning has been applied with striking success



Barto: Reinforcement Learning 17

(Tesauro 1992), has more than 1020 states.

Any of the TD backup rules described above can be used to derive an update rule

for a parameterized function approximation method of the type developed for supervised

learning. Many reinforcement learning applications have used multi-layer artificial neural

networks and error backpropagation (see BACKPROPAGATION). To do this requires

representing states or state-action pairs as feature vectors. Training examples are ex-

tracted from the agent’s behavioral trajectory. For example, suppose one approximated

the value of any state s by a function of a feature vector ~φ(s) and parameter vector ~θ:

V (s) = f(~φ(s), ~θ). Then the agent’s experience of observing state s, followed by reward

r and successor state s′, would yield the training example consisting of input vector ~φ(s)

and the target output r + γf(~φ(s′), ~θt). A gradient-descent update of ~θ derived from

Eq. ?? is

~θt+1 = ~θt + α[r + γf(~φ(s′), ~θt) − f(~φ(s), ~θt)]∇~θt
f(~φ(s), ~θt).

Notice that unlike the case in supervised learning, the target output also depends on the

parameter vector. This complicates the behavior and analysis of this type of learning

rule. Convergence results have been derived for TD(λ) algorithms in the case of function

approximators that are linear in ~θ, and counterexamples to convergence have been pre-

sented for Q-learning. The reader should consult Sutton and Barto (1998) and Bertsekas

and Tsitsiklis (1996) for discussions of these results. Despite a shortage of theoretical

guarantees, many reinforcement learning systems using nonlinear function approxima-

tors have demonstrated good performance, and much current research is examining these

issues.



Barto: Reinforcement Learning 18

Exploration

Reinforcement learning agents have to explore: they have to sometimes select actions

that appear to be suboptimal according to their current state of knowledge (e.g., current

value and/or policy estimates). Otherwise, behavior can become irretrievably suboptimal

as the knowledge base comes to reflect only limited experiences. Balancing exploration

with the exploitation of current knowledge is a subtle problem that has been extensively

studied. In principle it is possible to optimally balance exploration and exploitation by

solving an MDP whose states are belief states that summarize the agent’s entire history

of observations and actions. But this approach is not feasible for most tasks of interest.

Several simple heuristic exploration methods are usually used in applications of re-

inforcement learning. In the simplest, the agent selects ε-greedy actions. This means

that with probability 1− ε, the agent exploits its current knowledge by selecting a greedy

action, that is, an action that is optimal given its current value estimates, and with

probability ε, it selects an action at random, uniformly, independently of its of its cur-

rent value estimates. Somewhat more complicated is the softmax method which selects

actions according to a Boltzmann distribution based on the current action values. This

gives actions with higher estimated values higher probabilities of being selected, with a

“temperature” parameter determining how much an action’s estimated value influences

its selection probability. More sophisticated methods monitor the degree of certainty

involved in action choices and direct exploration accordingly. How to design methods

for balancing exploration and exploitation that are practical, effective, and amenable to

theoretical treatment is an important research area.



Barto: Reinforcement Learning 19

Direct Policy Search

Not all reinforcement learning methods use value functions. It is possible to search di-

rectly in the space of policies. For example, the amount of reward that a policy yields

can be estimated by running the policy for some number of time steps, possibly repeat-

ing many times from different initial states. This provides an evaluation of the entire

policy that can be used to direct search in policy space. The success of the approach

usually depends on suitably parameterizing policies by vectors of real numbers so that

the search can be conducted in parameter space using any of a large number of optimiza-

tion algorithms. Some of these algorithms require estimates of the gradient of the policy

evaluation with respect to the parameters, which can be also be extracted from sample

policy executions.

If the agent-environment interaction is approximately Markov, TD can methods take

advantage of local consistency conditions to obtain state-localized information about

how to improve a policy. On the other hand, direct policy search does not depend

on the Markov property and so can be used when state information is not close to

being available. Direct policy search methods also do not require the use of function

approximation methods to represent value functions. Offsetting these advantages of

direct policysearch methods, however, is the more coarse form of credit assignment that

is possible and the difficulty of efficiently evaluating entire policies. Which type of method

is to be recommended is highly problem dependent. The actor-critic architecture can be

considered to combine aspects of value function and direct policy search algorithms, and

there is considerable interest in this hybrid approach.



Barto: Reinforcement Learning 20

Using Environment Models

Algorithms like Q-learning and Sarsa do not need a model of the agent’s environment.

They can learn from the agent’s actual experience as the agent behaves in the real

world. However, many reinforcement learning systems do take advantage of environment

models. For example, algorithms like Q-learning and Sarsa are often applied to experience

generated as the agent interacts with a simulation of its environment. This not anly

allows much faster learning (since simulations can run much faster than real time), it

eliminates the potential of catastrophic consequences that can occur in some domains

when a learning system is given control over a real system.

Sutton and Barto (1998) called models that can support learning from simulations

sample models. In contrast, stochastic dynamic programming algorithms need distri-

bution models which explicitly represent the environment’s state-transition and reward

probabilities. Since sample models can sometimes be much easier to construct than

distribution models, their ability to form policies through simulation is an important

advantage of reinforcement learning methods for some applications. It is also easy to

devise algorithms that learn from both real and simulated experience. Other reinforce-

ment learning algorithms take advantage of distribution models by using full, instead of

sample, backups, while still applying backups to states encountered along simulated or

actual behavioral trajectories. This approach makes each backup more informative than

a sample backup but avoids the exhaustive sweeping of dynamic programming.

Determining a policy from an environment model—either a distribution or a sample

model—is a form of planning. Reinforcement learning algorithms that use models are

not clearly distinct from some types of planning algorithms. Their main distinguishing

characteristic is probably that they often do not fully complete a planning process before



Barto: Reinforcement Learning 21

committing to actions. The planning process is extended over time, with knowledge in

the form of a value function and/or a policy accumulating as behavior continues. Model-

based reinforcement learning is closely related to decision theoretic planning in artificial

intelligence, which also makes use of the MDP formalism.

Elaborations and Extensions

Among the many topics being addressed by current reinforcement learning research are:

extending theoretical results to include parameterized function approximation methods;

understanding how exploratory behavior is best introduced and controlled; learning un-

der conditions in which the environment state cannot be fully observed (related to the

theory of Partially Observable MDPs, or POMDPs); exploiting structure present when

states and/or actions are represented as vectors giving the values of descriptive variables

(formalised in terms of factored or structured MDPs); introducing various forms of ab-

straction such as temporally-extended actions and hierarchy (which rely strongly on the

theory of Semi-Markov Decision Processes, or SMDPs). Finally, researchers are studying

the relationship of computational reinforcement learning theories to brain reward mecha-

nisms. Strong parallels exsit between TD learning and the activity of dopamine neurons

(Schultz 1998; DOPAMINE, ROLES OF).



Barto: Reinforcement Learning 22

REFERENCES

Barto, A. G., R. S. Sutton, and C.W. Anderson, 1983. Neuronlike elements that can

solve difficult learning control problems, IEEE Transactions on Systems, Man and

Cybernetics, 13:835-846. Reprinted in Neurocomputing: Foundations of Research,

(J. A. Anderson and E. Rosenfeld, eds.), Cambridge, MA: MIT Press, 1988, pp. 535-

549.

Bellman, R. E. 1957. Dynamic Programming. Princeton, NJ: Princeton University

Press.

* Bertsekas, D. P. 1987. Dynamic Programming: Deterministic and Stochastic Models.

Englewood Cliffs, NJ: Prentice-Hall.

* Bertsekas, D. P. and J. N. Tsitsiklis, 1996. Neuro-Dynamic Programming. Belmont,

MA: Athena Scientific.

Mendel, J. M. and R. W. McLaren, 1970. Reinforcement learning control and pattern

recognition systems, in Adaptive, Learning and Pattern Recognition Systems: The-

ory and Applications, (J. M. Mendel and K. S. Fu, eds.), New York: Academic

Press, pp. 287-318.

Minsky, M. L. 1954. Theory of Neural-Analog Reinforcement Systems and its Applica-

tion to the Brain-Model Problem, Ph.D. thesis, Princeton University.

Minsky, M. L. 1961. Steps toward artificial intelligence. Proceedings of the Institute of

Radio Engineers, 49:8-30. Reprinted in Computers and Thought, E. A. Feigenbaum

and J. Feldman, eds.), New York: McGraw-Hill, 1963, pp. 406-450.



Barto: Reinforcement Learning 23

Samuel, A. L. 1959. Some studies in machine learning using the game of checkers.

IBM Journal on Research and Development, 210-229. Reprinted in Computers and

Thought, E. A. Feigenbaum and J. Feldman, eds.), New York: McGraw-Hill, 1963,

pp.71-105.

Schultz, W. 1998. Predictive reward signal of dopamine neurons. Journal of Neuro-

physiology, 80:1-27.

Sutton, R. S. 1988. Learning to predict by the method of temporal differences. Machine

Learning, 3:9-44.

* Sutton, R. S., and A. G. Barto, 1998. Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Tesauro, G. J. 1992. Practical issues in temporal difference learning. Machine Learning,

8:257-277.

Thorndike, E. L. 1911. Animal Intelligence, Darien, CT: Hafner.

Turing, A. M. 1950. Computing machinery and intelligence. Mind, 59:433-460. Reprinted

in Computers and Thought, E. A. Feigenbaum and J. Feldman, eds.), New York:

McGraw-Hill, 1963, pp. 11-35.



Barto: Reinforcement Learning 24

FIGURE CAPTIONS

Figure 1. A Reinforcement Learning Model. A reinforcement learning agent and its

environment interact over a sequence of discrete time steps. The actions are the choices

made by the agent; the states provide the agent’s basis for making the choices; and the

rewards are the basis for evaluating these choices.

Figure 2. Actor-Critic Architecture. The critic provides an internal reward signal to

an actor which learns a policy for interacting with the environment.


