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Abstract—We present a method for autonomous on-line dis-
covery of motor primitives for Markov decision processes with
high-dimensional continuous action spaces. These biologically-
inspired motor primitives require overhead to compute but form
a compressed representation of the action set that allows for
improved performance on subsequent learning tasks that have
similar dynamics.

I. INTRODUCTION

In this paper we combine the work of neuroscientists
studying motor primitives in animals with recent advances in
reinforcement learning research. Specifically, policy gradient
coagent networks [29] allow researchers to create artificial
learning systems that mimic the motor primitives observed
in animals. We begin by formalizing the problem and dis-
cussing why these motor primitives are beneficial before
describing how they can now be discovered efficiently. Finally,
we provide a preliminary study where motor primitives are
discovered that compress a 30-dimensional continuous action
space into a 4-dimensional one.

A continuous-state Markov decision process (MDP) with
discrete time and continuous actions is a tuple, M =
(S,A,P,R, d0, γ), where S ⊆ Rm is a set of possible states
called the state space and A ⊆ Rn is a set of possible actions
called the action space. Individual actions a ∈ A are called
primitive actions. P(s, a, s′) = fst+1(s′|st=s, at=a), where
fY denotes a probability density function over the random
variable Y , s, s′ ∈ S, a ∈ A, and t ∈ N0 is the current time
step, where N0 denotes the natural numbers including 0. The
uniformly bounded scalar reward for taking action at in state
st is rt = R(st, at), d0 is a distribution over initial states, and
γ is a discount parameter. An agent’s goal is to find a decision
rule, π, called a policy, where π(s, a) = fat(a|st=s), which
results in maximum expected discounted sum of future reward.
Each such policy, π∗, is called an optimal policy and satisfies

π∗ ∈ arg max
π∈P

E

[ ∞∑
t=0

γtrt

∣∣∣π,M] , (1)

where P is the set of all possible policies. We only consider
MDPs for which at least one optimal policy exists.

In this paper, we are interested in the problem of searching
for approximations of optimal policies for MDPs with high-
dimensional continuous action spaces, i.e., large n. We restrict
the set of MDPs considered to control tasks where the state
s can be broken into two components, s = (x, xG), where

x ∈ X and xG ∈ X are the current and desired states of the
system, and X is the space of system states. For example, if
controlling a 5 degree-of-freedom robotic arm, the current state
of the arm is x ∈ R10, which contains the joint angles and their
time derivatives. The state of the MDP contains the current
state of the arm as well as the desired position, xG ∈ R10,
so S = R20. We consider problems without this restriction in
Section VI.

Modern reinforcement learning (RL) methods have achieved
impressive results for these problems [8], [21], [27]. However,
in terms of learning speed, performance still pales in compar-
ison to animals’ ability to learn. As the dimension, n, of the
action space increases, the search over the space of policies,
P, becomes more difficult. In this paper we draw inspiration
from the way animals, for motor control problems, reduce the
dimension of the action space so that the space of policies can
be more efficiently searched.

II. MOTOR PRIMITIVES: ANIMAL AND ARTIFICIAL

Consider the task of controlling an animal’s upper or lower
extremity (arm or leg) by selecting stimulation levels for
each muscle individually. For animals with many muscles per
extremity, this is a control problem with a high-dimensional
continuous action space. Research suggests that, rather than
selecting stimulation for individual muscles, animal brains
select seemingly real-valued activation levels for a smaller
number, k ≤ n, of motor primitives [17]–[20]. These motor
primitives each result in a pattern of stimulation over many
muscles, where simultaneous activation of multiple motor
primitives results in the resulting endpoint forces summing
vectorially [17]–[20]. For simplicity, we assume that the
patterns of muscle stimulation from the motor primitives, and
not just the resulting endpoint forces, also sum vectorially.
This is not unreasonable since research suggests that the
relationship between muscle stimulation and endpoint force
is approximately linear after the transient effects of rising and
falling muscle activation have abated [35].

We assume that the pattern of muscle stimulation from each
motor primitive varies depending on the current extremity
position and velocity, x, but not the goal, xG. Hereafter, we
refer to x, which contains both the position and velocity of
the system, as the phase. Hence, each motor primitive, Mi,
i ∈ 1, ..., k, can be viewed as a function taking the current
phase to an action, Mi : X → A. The agent then selects a
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Fig. 1. Interactions between the agent, environment, and motor primitives.
Notice that w is a vector and wi are its scalar components while ui is a
vector, so wiui denotes scalar-vector multiplication.

weight vector, w ∈ Rk, which encodes the activation level for
each motor primitive. The final vector of muscle stimulations,
a, is given by a =

∑k
i=1 w

iMi(x). This model is identical
to the one proposed by Mussa-Ivaldi and Bizzi [19] for frogs,
except that, as it has been suggested for motor primitives in
cats [18], our motor primitives are time invariant.

When using motor primitives, the action space is com-
pressed from n to k dimensions, as the agent need only select
w, the activation levels for the motor primitives, which we call
an agent-action, and not a primitive action, a, which gives the
stimulation level for each muscle. The interactions between the
agent, environment, and the motor primitives are depicted in
Figure 1, where ui = Mi(x). This approach is reminiscent of
a Mixture of Experts [12] or Product of Experts [10] in that
it combines the knowledge of several experts—in this case
motor primitives.

For each phase, x, the motor primitives span a subspace
of the action space. We define the space of actions spanned
by a set of motor primitives, M = {M1,M2, ...,Mk}, for a
particular phase, x, to be Ā(x,M):

Ā(x,M) =

{
a ∈ A : a =

k∑
i=1

wiMi(x) for some w ∈ Rk
}
.

(2)
We call Ā(x,M) the spanned action space for phase x.
Ā(x,M) is the k-dimensional Euclidean subspace within the
n-dimensional action space that contains the origin and the
k points, Mi(x), i ∈ {1, ..., k}. For various xG, there are
different optimal actions. The hope is that Ā(x,M) will
include these actions or actions close to them. As k decreases
the spanned action space shrinks and it becomes less likely
that a subspace exists that contains good actions for all xG.

We define the set of policies, P̄(M), spanned by a set of
motor primitives, M , to be

P̄(M) =
{
π ∈ P : (∀s ∈ S) (∀a ∈ A)[

(π(s, a) > 0)⇒
(
a ∈ Ā(x,M)

) ]}
. (3)

Given M , the agent’s policy is a distribution over w given
s. Each w corresponds to an a ∈ Ā(x,M) and every a ∈
Ā(x,M) can be produced by some w. Hence, distributions
over w induce distributions over a ∈ Ā(x,M), and vice versa.

So, P̄(M), as defined in Equation 3, is the set of policies that
can be represented with motor primitives M .

In this paper, while learning a policy for a problem, we
sacrifice some learning speed to also search for a set of k motor
primitives, M∗, that allow the agent to achieve maximum
expected return:

M∗ ∈ arg max
M

(
max

π∈P̄(M)
E

[ ∞∑
t=0

γtrt

∣∣∣π,M]) . (4)

M∗ are thus the primitives that compress the action space to k
dimensions while sacrificing as little performance as possible.
We forgo searches for global optima and instead search for a
locally optimal set, M̂∗.1

For subsequent problems with the same state and action
spaces, the agent can search for policies in P̄(M̂∗) that perform
well. If the problems are similar enough, we expect good
policies for the new problem to remain in P̄(M̂∗). As k gets
smaller, P̄(M̂∗) becomes smaller, and thus so does the chance
that good policies for the new problem remain in P̄(M̂∗).
Hence, k results in another trade off, this time between the
compression of the action space and expected performance on
future problems.

III. RELATED WORK

The notion of compressing the set of available actions, and
thus the policy space to be searched, is not novel to RL,
as it is central to hierarchical RL (HRL) methods like the
options [24] and MAXQ [7] frameworks. An agent can learn
skills, sometimes called options, and then select actions at
the level of these skills. Each skill may execute for multiple
time steps before terminating. Most applications of skills
involve small discrete action spaces, however, the number of
possible sequences of actions grows exponentially with the
length of the action sequence. Whereas our proposed motor
primitives compress the action space, skills compress the set
of action sequences by allowing the agent to select between
a small number of skills rather than this large number of
possible action sequences. Another benefit of skills and motor
primitives is that, once skills and motor primitives have been
acquired, the smaller set of possible actions makes random
exploration at the level of skills or motor primitives more
directed than random exploration at the level of primitive
actions. This benefit has been discussed for skills [24] as well
as motor primitives [31].

Skills and motor primitives also share several disadvantages.
Like motor primitives, with which an optimal policy may not
be representable, an agent using skills may only be able to
represent a recursively optimal policy and not a truly optimal
policy [7], [9]. Also, the overhead associated with generating
skills may outweigh their benefits on a single MDP. However,
this cost can be amortized when skills are used to solve several
related MDPs [9]. In Section IV we make a similar argument

1The local optimality of M̂∗ is for some parameterization of the motor
primitives. Also, M∗ and M̂∗ may not exist.



regarding amortization of the cost associated with discovering
motor primitives.

Another related field is that of learning using dynamic
motion primitives (DMPs [22], which are sometimes also
called motor primitives [11]). DMPs are a form of policy
representation particularly suited to robotics applications be-
cause they have few tunable parameters and produce stable and
smooth trajectories. DMPs can be compared to a single fixed
set of motor primitives in that both produce a low-dimensional
policy space for subsequent learning. However, DMPs and
motor primitives represent policies in fundamentally different
ways: a DMP is a complete policy representation, while motor
primitives are components of policies that can be combined
in different ways to produce different policies. That is, the
output of a DMP is meant to be an agent’s action, whereas
the output of a single motor primitive is not meant to be an
agent’s action, but rather a component thereof. Also, whereas
the space of policies representable using DMPs is fixed, in
this paper we consider the higher-level task of motor primitive
discovery: how to search the space of motor primitives for
problem-specific ones that produce a low-dimensional policy
space that includes good policies.

While there is a wealth of literature regarding applications
of DMPs and using DMPs to learn new primitive actions for
a robot (e.g., [15]), the field of motor primitive discovery for
on-line model-free reinforcement learning remains relatively
unexplored. Alessandro and Nori [1] present motor primitives
(also called synergies) very similar to ours and consider the
question of how to discover them given trajectories from a
provided policy. This differs from our approach where the
motor primitives and policy are learned concurrently. They
suggest finding the motor primitives that could best reproduce
observed trajectories from the provided policy. In contrast, we
suggest finding the motor primitives that directly optimize the
original objective of expected sum of discounted reward.

IV. THE SEARCH FOR MOTOR PRIMITIVES

It is well known that solving a control task and simulta-
neously learning structure is harder than solving the control
problem without learning structure [34]. However, by paying
an additional cost on one learning task to discover structure—
in our case motor primitives—subsequent problems can be
simplified. We propose accepting slower learning on one
simple learning task to discover motor primitives, after which
subsequent and potentially more difficult problems will be
lower dimensional, and therefore easier. In essence, we are
breaking the curse of dimensionality on sequences of tasks by
only paying the full cost on the first problem.

In order for the system to learn, we must allow it to explore.
We therefore add exploration at the level of the motor primitive
outputs. This changes our definition of motor primitives so
that each motor primitive is a distribution over the primitive
actions, ut ∼ Mi(·, x), rather than a deterministic function
taking phases to actions, ut = Mi(x). We assume that the
motor primitives include only a little exploration (they are
low variance distributions). This allows us to think of them

as approximations to deterministic motor primitives, which
necessarily include some exploration to facilitate learning.

We must also make the problem-specific engineering de-
cision of how to represent the motor primitives and agent.
We choose to parameterize each motor primitive Mi with
parameter vector θi so that changes to θi change Mi smoothly.
The details of how we parameterize Mi with θi are provided in
Appendix A. Because our goal is to allow the agent in Figure
1 to solve future problems at the level of agent-actions, w,
rather than primitive actions, we allow it to explore as well. So,
exploration occurs at two levels: the motor primitives explore
at the level of primitive actions while the agent explores at
the level of different state-dependent weightings for the motor
primitives. The details of how we parameterize the agent’s
distribution over w with parameters θπ are also provided in
Appendix A.

Let θ = (θ1, . . . , θk, θπ), so that θ contains all of the
parameters that influence the choice of at at each time step.
We can view θ as the parameters for a modular policy [29],
π(s, a, θ). A modular policy is one consisting of several inter-
acting modules, each of which has a parameterized distribution
over its output given its input (i.e., each includes exploration).
In our case, the modules are the motor primitives and the
agent. We can phrase the optimization problem described in
Equation 4 as arg maxθ J(θ), where

J(θ) = E

[ ∞∑
t=0

γtrt

∣∣∣θ,M] . (5)

Notice that Equations 4 and 5 are not equivalent, since not
all policies may be representable by the parameterized policy.
That is, there may be some policies that do not correspond to
any θ. We have therefore changed the objective so that we now
search for the optimal motor primitives that are representable
with some parameters, θ.

Policy gradient methods [26], [36] modify θ to ascend the
policy gradient, ∇J(θ). Their typical update is of the form

θ ← θ + β∇J(θ), (6)

where β is a (possibly decaying) step size. They typically
assume that J is Lipschitz and that ∂π(s, a, θ)/∂θ always
exists and can be computed. Under certain conditions, these
gradient based methods are guaranteed to reach a locally
optimal θ [3].

Due to the multiple levels of exploration, ∂π(s, a, θ)/∂θ is
difficult to compute and computationally expensive to estimate
numerically. Policy gradient coagent networks (PGCNs) [29]
take existing policy gradient methods and modify them to al-
low for the computation of the policy gradient without explicit
knowledge of ∂π(s, a, θ)/∂θ. We relegate the technical details
of the PGCN algorithm we use to Appendix B.

Prior to the advent of PGCNs, our simple approach to
motor primitive discovery would have been intractable. Finite
difference methods such as Policy Gradients with Parameter-
based Exploration with Symmetric Sampling (PGPE-SyS)
[23], Policy Learning by Weighting Exploration with the



Fig. 2. DAS1, the two-joint, six-muscle biomechanical arm model used. Each
muscle was broken into five controllable muscle elements in a biologically
implausible manner, resulting in 30-dimensional actions. Antagonistic muscle
pairs are as follows, listed as (flexor, extensor): monoarticular shoulder
muscles (a: anterior deltoid, b: posterior deltoid); monoarticular elbow muscles
(c: brachialis, d: triceps brachii (short head)); biarticular muscles (e: biceps
brachii, f: triceps brachii (long head)).

Returns [14], and Policy Improvement with Path Integrals
[27], perturb policy parameters to directly search parameter
space. These methods would be applicable since they do not
require computation of ∂π(s, a, θ)/∂θ. However, they perform
poorly when initial states are drawn from a wide distribution.
To verify their unsuitability for this project, our case study
compares performance of a PGCN to that of PGPE-SyS. We
selected PGPE-SyS because its base algorithm, PGPE, has
recently been proven to produce lower variance policy gradient
estimates than the classical REINFORCE method [37].

V. CASE STUDY

In this section, we present an empirical study of the efficacy
of motor primitive discovery. We attempt to control a planar
model of a human arm with 30-dimensional actions by com-
pressing the 30-dimensional action space to just 4 dimensions.
The planar arm model used is a version of the Dynamic
Arm Simulator 1 (DAS1) [5], a model used in previous RL
studies [28], [32], which we modified to split each of the
six controllable muscles into five independently controllable
muscle elements. This results in a 30-dimensional action space.
For comparison, a real human arm has over 20 muscles that
could potentially be split into over 100 controllable muscle
elements [6].

The phase of the system is defined by two joint angles,
φ1 and φ2, and their time derivatives, φ̇1 and φ̇2, as shown
in Figure 2. The state of the MDP contains the current
and goal states. Because it is always zero, the goal velocity
can be dropped. The resulting states are of the form s =
(φ1, φ2, φ̇1, φ̇2, φ

G
1 , φ

G
2 ), where φGi are the goal joint angles.

Each episode starts with random initial and goal phases, both
with zero angular velocities, and lasts for two seconds. The
reward provided is identical to that used by Thomas et al. [33].
It is proportional to the negative sum of the squared joint angle
errors, plus a term that punishes large muscle stimulations.

To increase the action dimension from 6 to 30, the agent
interacts with 5 simulated muscle elements to control each
of the 6 muscles. Each muscle element has a different
contribution to the final muscle stimulation, depending on

the current joint angles. No attempt was made to achieve
biological accuracy. An action for the MDP therefore has 30
components, aij , i ∈ {1, 2, ..., 6}, j ∈ {1, 2, 3, 4, 5}, which
are used to compute the 6-dimensional muscle stimulations,
â = (â1, â2, ..., â6) by:

âi = T
(1

2

[
T
(
ai1 cos(φ̂1)

)
+ T

(
ai2 cos(φ̂2)

)
+ (7)

T
(
ai3 cos(φ̂1 + φ̂2)

)
+ T

(
ai4φ̂1

)
+ T

(
ai5φ̂2

) ])
,

where φ̂i = (φi + φmin
i )/(φmax

i − φmin
i ), φmax

i and φmin
i

are the maximum and minimum values of φi, and T (x) =
min(1,max(x, 0)). The threshold and scaling ensure that
muscles stimulations are restricted to the range [0, 1] and
that one muscle element cannot achieve maximum muscle
stimulation on its own, necessitating the use and coordination
of at least two muscle elements per muscle.

The resulting MDP has state space S = R6 and action space
A = [0, 1]30, where [0, 1] denotes an interval of real numbers.
The agent learned motor primitives on this task involving
endpoint manipulation (moving the hand to a goal location)
and we then tested its ability to learn on two new endpoint
manipulation tasks given the previously learned motor prim-
itives. Each task was modeled as an MDP. We compare our
results using motor primitives to those of a natural actor-critic
algorithm, NAC-S, without motor primitives. NAC-S, which
is described in Appendix B, is the base algorithm from which
our PGCN algorithm was constructed, making it a suitable
choice for comparisons.

We selected k = 4 because, even though trials with only 2
motor primitives were able to produce near-optimal policies,
learning speed increased with k = 4. For both methods, we
used grid searches to optimize the learning parameters (learn-
ing rates, exploration magnitude, policy update frequency, etc.)
to maximize expected return during the last 500 episodes
of a 20,000 episode lifetime. We used this objective, which
focuses on final performance, to generate good final motor
primitives. The resulting learning curves, which show the
cost of discovering motor primitives, are provided in Figure
3. Notice that both perform similarly during the final 500
episodes.

An example of 4 motor primitives found after 20,000
episodes is depicted in Figure 4. See the caption for Figure
4. Consider, for example, the left-most tip of subplot a. The
vector at this location represents the direction of hand move-
ment resulting from stimulation of the first motor primitive
if the hand where initially at rest at this position. That is,
stimulation of the first motor primitive (w1 > 0) results in the
hand moving up along the y-axis if the hand is at the left-
most position. The red color denotes that, if the goal were
where the white circle is, the agent would select w1 ≈ 1.
For comparison, subplot f suggests that inhibition of the third
motor primitive results in the arm moving up and to the right
in this position. The blue heat-map at this position suggests
that the agent would select w4 ≈ −1 if the endpoint were in
this position and the goal was at the white circle.
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Fig. 3. Mean learning curves for NAC-S with motor primitives (prim) and
without (flat) on the original MDP. Each point is averaged over 50 trials and
standard error bars are provided. The learning parameters were optimized for
only the final 500 episodes, during which both perform equally well.

Notice that, together, the motor primitives provide a good
movement basis by allowing the hand to move in any direction
within the colored region (which represents the area within
which the start and goal endpoint positions must be). This sug-
gests that these motor primitives will be useful for any similar
problems: problems that involve controlling the position of
the endpoint. However, we would not necessarily expect the
motor primitives to help for problems that involve control of
the elbow position.

To evaluate performance on a new MDP, we changed the
state representation to s = (φ1, φ2, φ̇1, φ̇2, φ1−φG1 , φ2−φG2 ).
Although the state space, S, is similar, the meaning of the
states changes, so this amounts to a different reward function.
We optimized learning parameters for this new MDP for both
NAC-S without motor primitives and NAC-S with the learned
motor primitives. For this optimization, we maximized the
mean lifetime reward for lifetimes of 20,000 episodes. The
resulting performance is depicted in Figure 5. As expected,
learning is faster with the discovered motor primitives, and
the agent achieves higher average lifetime reward. Parameters
may exist for learning with motor primitives that achieve
slightly worse initial performance but better final convergence,
so the higher variance in final performance is an artifact of
the objective of the parameter optimization. This experiment
is biased towards methods using motor primitives because the
optimal motor primitives are the same for both the original
and modified problems. We therefore consider a more difficult
second modified MDP.

For the second MDP, we augment the state with an addi-
tional two values, xhot, yhot ∼ U(−2, 2), where U denotes the
continuous uniform distribution, which specify the coordinates
of a hot object (assuming each arm segment is one unit
long). The hot object does not move, but is randomly placed
for each episode. The agent receives a punishment inversely
proportional to the hand’s squared distance from the hot
object, which is similar in magnitude to the reward for being
close to the goal. A state for this problem is of the form
s = (φ1, φ2, φ̇1, φ̇2, φ

G
1 , φ

G
2 , xhot, yhot).

Once again, we optimized the learning parameters for the

Fig. 4. Each motor primitive is shown by two vector fields depicting
the direction of hand movement, one for activation, wi > 0, and one for
inhibition, wi < 0, superimposed on a heat map that shows wi if the goal
position is the white circle. The vector fields for activating M1, M2, M3,
and M4 are depicted in a, c, e, and g respectively, while b, d, f , and h are
for inhibition. The motor primitives can produce different output depending
on the hand velocity. These plots show only the slice where the hand velocity
is initially zero. Recall that the motor primitives (represented by the vector
fields) are independent of the goal position. However, the agent’s choice of w
does depend on the goal position. The heat map represents what the agent’s
activation for each motor primitive would be if the goal position were the
white circle.

agent without motor primitives and with the motor primi-
tives learned from the original MDP. The objective for the
optimization was the mean lifetime reward. Figure 6 shows
the resulting learning curves. As expected, motor primitives
improve learning speed. Notice that the random initial policies
perform better when using the discovered motor primitives.
That is, the quality of a random policy in P̄(M) is better than
a random policy in P.

Notice that the original and first modified tasks were con-
siderably easier than this one, as evidenced by the difference
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Fig. 5. Mean learning curves for NAC-S on the modified MDP without motor
primitives (flat) and using the pre-learned motor primitives (prim). Each point
is averaged over 300 trials and standard error bars are provided. Notice the
logarithmic scale of the horizontal axis.
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Fig. 6. Mean learning curves for NAC-S on the second modified MDP
without motor primitives (flat) and using the pre-learned motor primitives
(prim). Each point is averaged over 100 trials and standard error bars are
provided. Notice the logarithmic scale of the horizontal axis.

between the performance of Flat in Figures 5 and 6. Using
motor primitives, we paid the additional cost of learning motor
primitives on an easier problem and then used them to speed
up learning on two subsequent problems, one of which was a
more challenging problem.

To verify that our approach to discovering motor primitives
is not feasible using PGPE-SyS, we attempted to discover
motor primitives on the original MDP using PGPE-SyS rather
than the PGCN. To do so, the policy was made determin-
istic by making the motor primitive and agent-actions equal
to the mean of their normal distributions. We implemented
PGPE-SyS using a moving average baseline. We performed
a grid search over the algorithm parameters to maximize
average return during the final 500 episodes of a 20,000
episode lifetime (as in the optimizations for Figure 3). The
grid search tried all combinations of nφ, nϕ ∈ {2, 3},
α ∈ {1, .5, .1, .01, .001, .0005, .0001, .00005, .00001}, β ∈
{0, .001, .01, .05, .1, .5}, N ∈ {1, 10, 20, 50, 100, 300}, and
σ ∈ {.001, .005, .01, .05, .1, .5, 1.0, 5.0}, where nφ and nϕ
are the orders of the Fourier bases for linear representation
of the agent and motor primitive policies respectively, α is
the learning rate, N is half the number of episodes before the
policy is updated, σ is the initial standard deviation for each

parameter, and β is the learning rate for the moving average
baseline. The mean of all parameters and the baseline were
initialized to zero. PGPE-SyS did not achieve a mean reward
greater than −3 during the last 500 episodes of a 20,000
episode lifetime using any of the tested parameter sets (cf.
the PGCN achieved −0.2 as shown in Figure 3).

VI. GENERALIZATION OF THEORY

In the previous sections, we described motor primitives for a
restrictive case in which the state is of the form s = (x, xG),
where x is the current phase and xG is the desired phase.
In this section, we generalize the formal definition of motor
primitives to encapsulate a much larger class of problems.
Consider MDPs with state space S = Rm, and no other
restrictions on S. We can then give each motor primitive any
subset of the m components of the state, so Mi : Rmi → A,
where mi ≤ m, and i ∈ {1, 2, ..., k}. These motor primitives
can be broken into two classes. When all mi < m, the agent
may have to use more than one motor primitive. However,
when mi = m for some i, the optimal ith motor primitive
can be an optimal policy, so the agent need not use any
other motor primitives. This case is still interesting when a
single parameterized motor primitive is not able to represent
an optimal policy sufficiently well. Actions are still composed
as a =

∑k
i=1 w

iMi(x
i), where now xi ∈ Rmi .

VII. CONCLUSION

We began by describing how biologically inspired mo-
tor primitives can be used to simplify MDPs with high-
dimensional actions spaces. We proposed learning motor prim-
itives on one problem that is simple yet representative of
future problems and then using the learned motor primitives,
which induce a lower-dimensional action space, to improve
performance on subsequent problems. We formalized the prob-
lem of searching for optimal motor primitives and discussed
the theoretical ramifications of using motor primitives. We
presented an algorithm for finding motor primitives that reduce
the dimension of the action space while sacrificing as little
performance as possible, where performance is measured in
terms of expected discounted sum of rewards. We concluded
with a case study that supported the theoretical discussion and
showed the practical utility of motor primitives.

There are many possible extensions to this work that stem
from modification of the objective function in Equation 4.
There may be an objective that sacrifices performance on the
current problem in favor of motor primitives that are more
likely to transfer to other problems. Also, some policies are
not representable when using motor primitives. This is not
necessarily bad, as it could be used to exclude regions of policy
space that are known to contain undesirable policies, such as
policies that might damage a robot. Currently, the objective
function only considers the best policy under each set of motor
primitives. An alternate objective function might consider the
average or worst case policy for each set of motor primitives,
in order to explicitly encourage motor primitives that exclude
undesirable regions of policy space.



We also provided only intuition regarding how similar two
MDPs must be for motor primitives to transfer. Future work
might attempt to better quantify the necessary conditions for
motor primitives that were learned on one MDP to be useful
(increase expected lifetime return) on a different MDP.
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APPENDIX A: POLICY PARAMETERIZATION

Each motor primitive has n outputs, each of which we
sample from a normal distribution. The parameters θi consist
of n parameter vectors, θi = {θ1

i , θ
2
i , . . . , θ

n
i }, each of which

parameterizes the mean of one of these n normal distributions.
Because the output of Mi should change when the phase
changes, the parameterized means must be a function of x.
So, the jth output of the ith motor primitive is sampled as
uijt ∼ N (θji ·ϕ(xt), σ

2
Mi

), where ϕ(xt) maps phases to feature
vectors and σMi is a constant. For our experiments, we used
the Fourier basis [16] for ϕ.

Similarly, we parameterize the agent such that wit ∼ N (θiπ ·
φ(st), σ

2
π), where φ takes states to feature vectors, wit is the



ith component of wt, and σπ is a constant. As with ϕ, we
used the Fourier basis for φ. We used the 3rd and 2nd order
Fourier bases for φ and ϕ, respectively.

APPENDIX B: PGCN DETAILS

The only previous PGCN algorithm [29] uses one of Bhat-
nagar’s actor-critics [4] due to its simplicity. This simplifies the
study of basic PGCN properties at the cost of slower learning.
Since motor primitive discovery is the first non-gridworld
application of PGCNs, we must derive a new PGCN algorithm
that sacrifices this simplicity in favor of improved learning
speed. In this appendix we derive the PGCN algorithm that
we use, which is based on a linear-time natural actor-critic
NAC-S [30], that performs comparably to the better known
cubic-time natural actor-critic using LSTD(λ) [21].

We begin with a brief review of prior work. To con-
form to prior work, we redefine some symbols. We assume
that the policy can be broken into η interacting modules,
A1, A2, . . . , Aη . The ith module has input xi, which may
contain elements of the state and outputs of other modules, real
or integer-valued output vector ai, policy parameter vector θi,
and policy πi(xi, ai, θi), which is a parameterized distribution
over outputs ai for each input xi. We assume that the modules
are connected to form an acyclic network. The output of
the entire network is drawn from a distribution, Γ, which
is parameterized by the state and the output of all modules:
at ∼ Γ(st, a

1
t , a

2
t , . . . , a

η
t ). Our motor primitive discovery

architecture (see Figure 1) fits this framework where the agent
and each motor primitive, Mi, are modules, for a total of
η = k + 1 modules. In this case, Γ is deterministic—it
computes the linear combination of the outputs of the motor
primitives that is specified by the agent module’s output.

Each module could treat the other modules as part of its
environment. That is, it could view the world that it sees, with
states xi and actions ai, as an MDP, the transition function of
which depends on the policies of the other modules. This MDP
is called a conjugate Markov decision process (CoMDP)2

[31]. Each module is called a coagent since it is solving
a CoMDP. The network of interacting modules is therefore
called a coagent network. If each agent ascends the policy
gradient for its CoMDP, the network is called a policy gradient
coagent network (PGCN). For a thorough treatment of PGCNs
see [29]. The principle result for PGCNs is that, if each module
computes and ascends its policy gradient, the entire coagent
network will ascend its policy gradient, allowing for weak
convergence guarantees in certain cases.

Amari [2] proposed the use of natural gradients, which
skew the gradient in a direction that often allows gradient
descent to converge more quickly. Kakade [13] showed how
this skew can be applied to policy gradients to produce the
natural policy gradient. Peters and Schaal [21] presented a
review of previous natural policy gradient research before de-
riving an actor-critic [25], called the Natural Actor-Critic using

2The states of the CoMDP actually include the full state of the original
MDP, and not just xi. However, the modules don’t require the full state if a
critic broadcasts the TD error to each module [29].

1 v0 ← 0, wi0 ← 0 for all i ∈ {1, . . . , η}
2 for episode = 0, 1, 2, . . . do
3 Draw initial state s0 ∼ d0(·)
4 ev−1 = 0, ei−1 = 0 for all i ∈ {1, . . . , η}
5 for t = 0, 1, 2, . . . until st is terminal do
6 Compute xit and ait for all i ∈ {1, . . . , η}.
7 at ∼ Γ(st, a

1
t , a

2
t , . . . , a

η
t )

8 st+1 ∼ P(st, at, ·)
9 rt ← R(st, at)

// Update the global critic:
10 δt ← rt + γvt · φ(st+1)− vt · φ(st)
11 evt ← γλevt−1 + φ(st)
12 vt+1 ← vt + αvδte

v
t

// Update the module critics:
13 for i = 1 to η do
14 eit ← γλeit−1 +

[
∇θ log πi(xit, a

i
t, θ

i
t)
]

15 wit+1 ←
wit +αw

(
δt − wt ·

[
∇θ log πi(sit, a

i
t, θ

i
t)
])
eit

16 end
// Update the module actors:

17 if t+ 1 mod k = 0 then
18 for i = 1 to η do
19 θit+1 ← θit + β

wi
t+1

||wi
t+1||2

20 end
21 end
22 end
23 end

Algorithm 1: PGCN using NAC-S.

LSTD-Q(λ) (NAC-LSTD), which ascends biased estimates of
the natural policy gradient. The NAC-S algorithm [30] can
be derived by substituting Sarsa(λ) [25] for the Least Squares
Temporal Difference (LSTD) component in NAC-LSTD. With
this simple substitution, the algorithm requires only linear
computation time per time step as opposed to the cubic time
of NAC-LSTD.

Algorithm 1 presents the algorithm for updating a PGCN
using NAC-S for each module, where αv, αw, and β are
learning rates for global value function approximation, local
advantage function approximation, and policy improvement
steps respectively, eit and evt are eligibility trace vectors [25],
wit are weights for linear advantage function approximation
using compatible features [26], vt is a weight vector for
linear value function approximation with basis φ, λ is an
eligibility decay rate, δt denotes the TD error and k is a
constant specifying the frequency of policy improvements.
Line 6 requires the execution of the modular policy. Since each
module ascends the natural policy gradient for its CoMDP, the
network ascends the decomposed natural policy gradient [29].


