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Abstract

Motivation is a key factor in human learning. We learn best when we
are highly motivated to learn. Psychologists distinguish between extrinsically-
motivated behavior, which is behavior undertaken to achieve some exter-
nally supplied reward, such as a prize, a high grade, or a high-paying
job, and intrinsically-motivated behavior, which is behavior done for its
own sake. Is an analogous distinction meaningful for machine learning
systems? Can we say of a machine learning system that it is motivated to
learn, and if so, is it possible to provide it with an analog of intrinsic mo-
tivation? Despite the fact that a formal distinction between extrinsic and
intrinsic motivation is elusive, this chapter argues that the answer to both
questions is assuredly “yes,” and that the machine learning framework of
reinforcement learning is particularly appropriate for bringing learning
together with what in animals one would call motivation. Despite the
common perception that a reinforcement learning agent’s reward has to
be extrinsic because the agent has a distinct input channel for reward, re-
inforcement learning provides a natural framework for incorporating prin-
ciples of intrinsic motivation.

1 Introduction

Motivation refers to processes that influence the arousal, strength, and direc-
tion of behavior. “To be motivated means to be moved to do something” (Ryan
and Deci 2000). Psychologists distinguish between extrinsic motivation, which
means doing something because of some externally supplied reward, and in-
trinsic motivation, which refers to “doing something because it is inherently
interesting or enjoyable” (Ryan and Deci 2000). Intrinsic motivation leads or-
ganisms to engage in exploration, play, and other behavior driven by curiosity
in the absence of externally-supplied rewards.

This chapter focuses on how to frame concepts related to intrinsic motivation
using the computational theory of reinforcement learning (RL) as it is studied
by machine learning researchers (Sutton and Barto 1998). It is a common per-
ception that the computational RL framework1 can only deal with extrinsic

1The phrase computational RL is used here because this framework is not a theory of
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motivation because an RL agent has a distinct input channel that delivers re-
ward from its external environment. In contrast to this view, this chapter argues
that this perception is a result of not fully appreciating the abstract nature of
the RL framework, which is, in fact, particularly well suited for incorporating
principles of intrinsic motivation. It further argues that incorporating computa-
tional analogs of intrinsic motivation into RL systems opens the door to a very
fruitful avenue for the further development of machine learning systems.

RL is a very active area of machine learning, with considerable attention also
being received from decision theory, operations research, and control engineer-
ing, where it has been called “Heuristic Dynamic Programming” (Werbos 1987)
and “Neuro-Dynamic Programming” (Bertsekas and Tsitsiklis 1996). There is
also growing interest in neuroscience because the behavior of some of the basic
RL algorithms closely correspond to the activity of dopamine producing neu-
rons in the brain, as described elsewhere in this volume. RL algorithms address
the problem of how a behaving agent can learn to approximate an optimal
behavioral strategy, usually called a policy, while interacting directly with its
environment. Viewed in the terms of control engineering, RL consists of meth-
ods for approximating closed-loop solutions to optimal control problems while
the controller is interacting with the system being controlled. This engineering
problem’s optimality criterion, or objective function, is analogous to the machin-
ery that delivers primary reward signals to an animal’s nervous system. The
approximate solution to the optimal control problem corresponds to an animal’s
skill in performing the control task. A brief introduction to RL is provided in
Section 2 below.

Providing artificial learning systems with analogs of intrinsic motivation is
not new. Lenat’s AM system (Lenat 1976), for example, included an analog
of intrinsic motivation that directed search using heuristic definitions of “inter-
estingness.” Schmidhuber (1991a, 1991b, 1997, 1999) introduced methods for
implementing forms of curiosity using RL algorithms, and Sutton’s (1991) “ex-
ploration bonus” is a form of intrinsic reward. The author’s efforts on this topic
began when he and colleagues realized that some new developments in RL could
be used to make intrinsically-motivated behavior a key factor in producing more
capable learning systems. This approach, introduced by Barto et al. (2004) and
Singh et al. (2005), combines intrinsic motivation with methods for temporal
abstraction introduced by Sutton et al. (1999). The reader should consult Barto
et al. (2004) and Singh et al. (2005) for more details on this approach.

Not all aspects of motivation involve learning—an animal can be motivated
by innate mechanisms that trigger fixed behavior patterns, as the ethologists
have emphasized—but what many researchers mean by motivated behavior is
behavior that involves the assessment of the consequences of behavior through
learned expectations (e.g., Epstein 1982, McFarland and Bösser 1993, Savage
2000). Motivational theories therefore tend to be intimately linked to theories
of learning and decision making. Because RL addresses how predictive values

biological RL despite what it borrows from, and suggests about, biological RL. Throughout
this chapter RL refers to computational RL.
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can be learned and used to direct behavior, RL is naturally relevant to the study
of motivation.2

The starting point for addressing intrinsic motivation using the RL frame-
work is the idea that learning and behavior generation processes “don’t care” if
the reward signals are intrinsic or extrinsic (whatever that distinction may actu-
ally mean!); the same processes can be used for both. Schmidhuber (1991a) put
this succinctly for the case of curiosity and boredom: “The important point is:
The same complex mechanism which is used for ‘normal’ goal-directed learning
is used for implementing curiosity and boredom. There is no need for devising a
separate system ...” As we shall see in what follows, this idea needs clarification,
but it underlies all of the approaches to using RL to obtain analogs of intrin-
sic motivation: it becomes simply a matter of defining specific mechanisms for
generating reward signals.

Although this approach is attractive in its simplicity and accords well with
prevalent—though controversial—views on the pervasive influence of brain re-
ward systems on behavior (e.g., Linden 2011), other theoretical principles—not
discussed here—have been proposed that can account for aspects of intrinsic mo-
tivation, e.g., Andry et al. (2004), Baranes and Oudeyer (2010), Friston et al.
(2010), Hesse et al. (2009). Further, contemporary psychology and neuroscience
indicate that the nature of reward signals is only one component of the complex
processes involved in motivation (Daw and Shohamy 2008). Despite these qual-
ifications, restricting attention to the nature of reward signals within the RL
framework illuminates significant issues for the development of computational
analogs of motivational processes.

Several important topics relevant to motivation and intrinsic motivation are
beyond this chapter’s scope. There has been a great increase in interest in affect
and emotion in constructing intelligent systems (e.g., Picard 1997, Trappl et al.
1997). Motivation and emotion are intimately linked, but this chapter does
not address computational theories of emotion because it would take us too far
from the main focus. Also not discussed are social aspects of motivation, which
involve imitation, adult scaffolding, and collective intentionality, all of which
play important roles in development (e.g., Breazeal et al. 2004, Thomaz and
Breazeal 2006, Thomaz et al. 2006).

This chapter also does not attempt to review the full range of research on
motivational systems for artificial agents, to which the reader is referred to
the extensive review by Savage (2000). Even research that explicitly aims to
combine intrinsic motivation with RL has grown so large that a thorough review
is beyond the scope of this chapter. The reader is referred to Oudeyer and
Kaplan (2007) and Oudeyer et al. (2007) for a review and perspective on this
research.

The concept of motivation in experimental and psychoanalytic psychology
as well as in ethology has a very long and complex history that is discussed
in many books, for example, those by Arkes-Garske (1982), Beck (1983), Cofer

2RL certainly does not exclude analogs of innate behavioral patterns in artificial agents.
The success of many systems using RL methods depends on the careful definition of innate
behaviors, as in the work of Grupen and colleagues described elsewhere in this volume.
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and Appley (1964), Deci and Ryan (1985), Klein (1982), Petri (1981), and
Toates (1986). This chapter only touches the surface of this extensive topic,
with the goal of giving a minimal account of issues that seem most relevant
to computational interpretations of intrinsic motivation and to describe some
of the old theories to which the recent computational approaches seem most
closely related.

This chapter begins with a brief introduction to the conventional view of
RL, which is followed by two sections that provide some historical background
on studies of motivation and intrinsic motivation. These are followed by two
sections that respectively relate RL to motivation in general and intrinsic mo-
tivation in particular. Discussion of what an evolutionary perspective suggests
about intrinsic motivation is next, followed by a brief summary, discussion of
prospects, and finally some concluding comments.

2 Reinforcement Learning

RL refers to improving performance through trial–and–error experience. The
term reinforcement comes from studies of animal learning in experimental psy-
chology, where it refers to the occurrence of an event, in the proper relation to
a response, that tends to increase the probability that the response will occur
again in the same situation (Kimble 1961). Although the specific term “rein-
forcement learning” is not used by psychologists, it has been widely adopted by
theorists in artificial intelligence and engineering to refer to a class of learning
tasks and algorithms. Early uses of this term were by Minsky (1961), Waltz and
Fu (1965), and Mendel and McLaren (1970) in describing approaches to learning
motivated in part by animal learning studies. The simplest RL algorithms are
based on the commonsense idea that if an action is followed by a satisfactory
state of affairs, or an improvement in the state of affairs, then the tendency
to produce that action is strengthened, i.e., reinforced, following Thorndike’s
(1911) “Law of Effect.”

The usual view of an RL agent interacting with its environment is shown
in Figure 1. The agent generates actions in the context of sensed states of this
environment, and its actions influence how the environment’s states change over
time. This interaction is typically viewed as happening in discrete time steps,
t = 1, 2, 3, . . ., that do not represent the passage of any specific amount of real
time. The environment contains a ‘critic’ that provides the agent at each time
step with an evaluation (a numerical score) of its ongoing behavior.3 The critic
maps environment states (or possibly state-action pairs or even state-action-
next-state triples) to numerical reward signals. The agent learns to improve
its skill in controlling the environment in the sense of learning how to cause
larger magnitude reward signals to be delivered from its environment over time.
The information the critic conveys to the agent corresponds to information

3The term critic is used, and not ‘teacher’, because in machine learning a teacher provides
more informative instructional information, such as directly telling the agent what its actions
should have been instead of merely scoring them.
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about what psychologists call primary reward, generally meaning reward that
encourages behavior directly related to survival and reproductive success, such
as eating, drinking, escaping, etc. The mapping from states to reward signals
implemented by the critic is called a reward function. In RL the reward function
is an essential component in specifying the problem the agent must learn to solve.

Agent

Environment

StatesActions

Rewards

Critic

Reward Signals!

Figure 1. Agent-Environment Interaction in RL. Primary reward signals are supplied to the
agent from a “critic” in its environment. Adapted from Barto et al. (2004).

The agent’s specific objective is to act at each moment of time so as to
maximize a measure of the total quantity of reward it expects to receive over
the future. This measure can be a simple sum of the reward signals it expects
to receive over the future, or more frequently, a discounted sum in which later
reward signals are weighted less than earlier ones. The value of this measure at
any time is the agent’s expected return. Because the agent’s actions influence
how the environment’s state changes over time, maximizing expected return
requires the agent to exert control over the evolution of its environment’s states.
This can be very challenging. For example, the agent might have to sacrifice
short-term reward in order to achieve more reward over the long-term. The
simplest RL agent’s attempt to achieve this objective by adjusting a policy,
which is a rule that associates actions to observed environment states. A policy
corresponds to a stimulus-response (S-R) rule of animal learning theory. But
RL is not restricted to simple S-R agents: more complicated RL agents learn
models of their environments that they can use to make plans about how to act
appropriately.

Note that since return is a summation, a reward signal equal to zero does
not contribute to it. Thus, despite the fact that the critic provides a signal at
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every moment of time, a signal of zero means “no reward.” Many problems are
characterized by reward signals for which non-zero values are relatively rare,
occurring, for example, only after the completion of a long sequence of actions.
This is called the problem of delayed rewards, and much of RL is devoted to
making learning efficient under these conditions.

The approach that has received the most attention focuses on RL agents that
learn to predict return and then use these predictions to evaluate actions and
to update their policies instead of using the primary reward signal itself. For
example, in one class of methods, called adaptive critic methods (Barto et al.
1983), the agent contains a prediction component—an adaptive critic—that
learns to predict return. An action that improves the likelihood of obtaining
high return, as predicted by the adaptive critic, is reinforced. An increase in
the prediction of return, then, acts as a reward itself. With these methods
learning does not have to wait until a final goal is achieved.4 This predictive
ability of an adaptive critic mimics the phenomenon of secondary, or conditioned,
reinforcement observed in animal learning (Mackintosh 1983). A secondary
reinforcer is a stimulus that has become a reinforcer by virtue of being repeatedly
paired in an appropriate temporal relationship with either a primary reinforcer
or with another secondary reinforcer. In other words, a secondary reinforcer is
a stimulus that has acquired, through a learning process, the ability to act as
reinforcer itself.

Before going further it is critical to comment on how this abstract RL for-
mulation relates our view of an animal or a robot. An RL agent should not be
thought of as an entire animal or robot. It should instead be thought of as the
component within an animal or robot that handles reward-based learning. Thus
the box labeled “Environment” in Figure 1 represents not only what is in the
animal or robot’s external world, but also what is external to the reward-based
learning component while still being inside the animal or robot. In particular,
the critic in Figure 1 should be thought of as part of an animal’s nervous system
and not as something in the animal’s external world. Similarly, an RL agent’s
“actions” are not necessarily like an animal or robot’s overt motor actions; they
can also be actions that affect the agent’s internal environment, such as the
secretion of a hormone or the adjustment of a processing parameter.

It is also important to note that although the critic’s signal at any time step
is usually called a “reward” in the RL literature, it is better to call it a “reward
signal” as it is labeled in Figure 1. The reason for this is that psychologists and
neuroscientists distinguish between rewards and reward signals. Schultz (2007a,
2007b), for example, writes: “Rewards are objects or events that make us come
back for more” whereas reward signals are produced by reward neurons in the
brain. It is much more appropriate to think of the critic’s signal as analogous to
the output of a brain reward system than as an object or event in the animal’s
external world. These observations are important for understanding how the
RL framework accommodates intrinsic reward signals and will be returned to

4It is important to note that the adaptive critic of these methods is inside the RL agent,
while the different critic shown in Figure 1—that provides the primary reward signal—is in
the RL agent’s environment.
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in Section 6 below.
Despite the fact that its roots are in theories of animal learning, RL is—

with some exceptions—a collection of computational tools for use in artificial
systems rather than a collection of animal behavioral models. A wide range
of facts about animal motivation are not usefully captured by the current RL
framework. Dayan (2001), for example, correctly comments as follows:

“Reinforcement learning (RL) bears a tortuous relationship with his-
torical and contemporary ideas in classical and instrumental condi-
tioning. Although RL sheds important light in some murky areas, it
has paid less attention to research concerning motivation of stimulus-
response (SR) links.”

A major reason for this neglect is that the mathematical framework of RL,
as it is conventionally formulated (Sutton and Barto 1998), takes the existence
of a reward signal as a given: the theory is not concerned with processes that
generate reward signals. All that a well-posed RL problem requires is the specifi-
cation of some (bounded) real-valued function from states to reward signals (or,
in some cases, from state-action pairs, or from state-action-next-state triples,
to reward signals). This not only sidesteps the entire subject of utility theory,
which relates scalar measures to agent preferences, it also sidesteps many of the
issues relevant to what (for an animal) would be called motivation.

Instead of being a shortcoming of the conventional RL framework, however,
this level of abstraction has been a distinct advantage. It has allowed the theory
of RL to progress in the absence of specific assumptions about how reward
signals are generated in special cases. As a result, RL has been useful for
a great many different types of problems, and it readily lends itself to being
incorporated into a wide variety of comprehensive architectures for autonomous
agents, in each of which different assumptions are made about how reward
signals are generated. The abstract nature of RL is perhaps a major reason
that it has been able to shed important light, as Dayan remarked, on some
murky areas of biological data. Luckily, an account of intrinsic motivation in
RL terms can be produced with only minor reduction in the framework’s level of
abstraction by introducing some assumptions about the nature of an RL agent’s
environment and reward signals. This is taken up in Section 6 below.

3 Motivation

Describing what the “hypothetical man on the street” means when asking why
someone has behaved in a particular way, Cofer and Appley (1964) list three
categories of factors: (1) irresistible external influences, (2) an internal urge,
want, need, drive, plan, etc. or (3) an external object or situation acting as a
goal, or incentive. The first of these exert their influence largely independently
of the internal state of the organism as, for example, a reflexive withdrawal from
a painful stimulus. The second two, in contrast, involve hypothesized internal
states regarded as being necessary to explain the behavior. Incentive objects
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are external, but are endowed with their behavior-controlling ability through the
assignment to them of a state-dependent value by the organism. Motivational
explanations of the strength and direction of behavior invoke an organism’s
internal state.

A clear example of the influence of internal motivational state on behavior
is an experiment by Mollenauer (1971) as described by Dickinson and Balleine
(2002). Rats were trained to run along an alleyway to obtain food. Rats in
one group were trained while hungry, being food deprived before each train-
ing session, while rats in another group were nondeprived. The hungry rats
consistently ran faster than did the sated rats. It might simply be that when
rats are trained while they are hungry, they tend to run faster when the re-
sults of learning are tested. But the second part of Mollenauer’s experiment
showed that a shift in deprivation state had an immediate effect on the rat’s
performance. Rats in a third group were trained while hungry but tested when
nondeprived. These rats immediately ran slower after this motivational shift.
Instead of having to experience reduced reward for eating in the nondeprived
state, their nondeprived state somehow exerted a direct and immediate influence
on behavior. The kind of rapid behavioral change illustrated in this experiment
and many others required theorists to postulate the existence of multiple in-
ternal motivational states. This experiment also illustrates the view taken by
psychologists studying animal learning about how motivation and learning are
intimately linked. Motivational factors can influence learning through their con-
trol over the effectiveness of reward and their control over how the results of
learning are expressed in behavior.

The starting point for including motivational factors in the RL framework is
to be clear about what we mean by an “internal state.” In an extensive review of
motivation for artificial agents, Savage (2000) focused on an “interactive view
of motivation,” attributed to Bindra (1978) and Toates (1986), that explains
motivation in terms of a central motive state that depends on the interaction of
an internal state and an external incentive factor:

central motive state = (internal state) × (incentive factor)

In Bindra’s (1978) account, a central motive state arises through the interaction
of an internal “organismic state” (such as arousal level, blood-sugar level, cel-
lular dehydration, estrus related hormonal levels) and features of an incentive
object (such as features indicating the palatability of a food object).

The elaboration of the RL framework in Section 6 below roughly follows the
interactive approach by factoring the RL problem’s state into two components:
a component internal to the animal or robot, and a component external to
the animal or robot. This means that the RL problem’s state at any time t is
represented as a vector st = (si

t, s
e
t ), where si

t and se
t are respectively the internal

(cf. “organismic”) and external state components (each of which can itself be
a vector of many descriptive feature values). The nature of the dependency
of reward signals on the internal dimensions is of particular importance for
including intrinsic motivational factors in the RL framework.
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There are certainly many grounds for disputing this view of motivation, but
at a commonsense level it should be clear what is intended. If an organism
is active in the sense of not being driven totally by environmental stimuli—a
view that by now must be universal—then the organism must not implement a
memoryless mapping from stimuli to responses, that is, there must be more than
one internal state. Going further, McFarland and Bösser (1993) argue that for
motivational descriptions of behavior to be meaningful, the agent has to have
some degree of autonomy, that is, it must be capable of self-control, by which
they mean that changes in behavior are the result of explicit decision processes
that weigh behavioral alternatives. Thus, it would not be useful to talk about
the behavior of a clockwork automaton in motivational terms even though it
may have many internal states.

Among the influential theories of motivation in psychology are the drive the-
ories of Hull (1943, 1951, 1952). According to Hull, all behavior is motivated
either by an organism’s survival and reproductive needs giving rise to primary
drives (such as hunger, thirst, sex, and the avoidance of pain) or by derivative
drives that have acquired their motivational significance through learning. Pri-
mary drives are the result of physiological deficits—“tissue needs”—, and they
energize behavior whose result is to reduce the deficit. A key additional feature
of Hull’s theories is that a need reduction, and hence a drive reduction, acts as
a primary reward for learning: behavior that reduces a primary drive is rein-
forced. Additionally, through the process of secondary reinforcement in which a
neutral stimulus is paired with a primary reward, the formerly neutral stimulus
acquires the reinforcing power of the primary reward. In this way, stimuli that
predict primary reward, i.e., a reduction in a primary drive, become rewarding
themselves. Thus, according to Hull, all behavior is energized and directed by
its relevance to primal drives, either directly or as the result of learning through
secondary reinforcement.

Hull’s theories follow principles adapted from the concept of physiological
homeostasis, the term introduced by Cannon (1932) to describe the condition
in which bodily conditions are maintained in approximate equilibrium despite
external perturbations. Homeostasis is maintained by processes that trigger
compensatory reactions when the value of a critical physiological variable de-
parts from the range required to keep the animal alive. This negative feedback
mechanism maintains these values within required bounds. Many other theo-
ries of motivation also incorporate, in one form or another, the idea of behavior
being generated to counteract disturbances to an equilibrium condition.

Although many of their elements have not been supported by experimen-
tal data, this and related theories continue to influence current thinking about
motivation. They have been especially influential in the design of motivational
systems for artificial agents, as discussed in Savage’s review of artificial moti-
vational systems (Savage 2000). Hull’s idea that reward is generated by drive
reduction is commonly used to connect RL to a motivational system. Often
this mechanism consists of monitoring a collection of important variables, such
as power or fuel level, temperature, etc., and triggering appropriate behavior
when certain thresholds are reached. Drive reduction is directly translated into
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a reward signal for some type of RL algorithm.
Among other motivational theories are those based on the everyday ex-

perience that we engage in activities because we enjoy doing them: we seek
pleasurable experiences and avoid unpleasant ones. These hedonic theories of
motivation hold that it is necessary to refer to affective mental states to explain
behavior, such as a “feeling” of pleasantness or unpleasantness. Hedonic theo-
ries are supported by many observations about food preferences which suggest
that “palatability” might offer a more parsimonious account of food preferences
than tissue needs (Young 1966). Animals will enthusiastically eat food that has
no apparent positive influence on tissue needs; characteristics of food such as
temperature and texture influence how much is eaten; animals that are not hun-
gry still have preferences for different foods; animals have taste preferences from
early infancy (Cofer and Appley 1964). In addition, non-deprived animals will
work enthusiastically for electrical brain stimulation (Olds and Milner 1954).

Although it is clear that biologically-primal needs have motivational signif-
icance, facts such as these showed that factors other than primary biological
needs exert strong motivational effects and that these factors do not derive
their motivational potency as a result of learning processes involving secondary
reinforcement.

4 Intrinsic Motivation

In addition to observations about animal food preferences and responses to elec-
trical brain stimulation, other observations showed that something important
was missing from drive reduction theories of motivation. Under certain condi-
tions, for example, hungry rats would rather explore unfamiliar spaces than eat;
they will endure the pain of crossing electrified grids to explore novel spaces;
monkeys will bar-press for a chance to look out of a window. Moreover, the
opportunity to explore can be used to reinforce other behavior. Deci and Ryan
(1985) chronicle these and a collection of similar findings under the heading of
intrinsic motivation.5

The role of intrinsically motivated behavior in both children and adults is
commonly noted as, for example, in this quotation:

The human organism is inherently active, and there is perhaps no
place where this is more evident than in little children. They pick
things up, shake them, smell them, taste them, throw them across
the room, and keep asking, “What is this?” They are unendingly
curious, and they want to see the effects of their actions. Children
are intrinsically motivated to learn, to undertake challenges, and
to solve problems. Adults are also intrinsically motivated to do
a variety of things. They spend large amounts of time painting

5Deci and Ryan (1985) mention that the term intrinsic motivation was first used by Harlow
in a 1950 study (Harlow 1950) showing that rhesus monkeys will spontaneously manipulate
objects and work for hours to solve complicated mechanical puzzles without any explicit
rewards.
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pictures, building furniture, playing sports, whittling wood, climbing
mountains, and doing countless other things for which there are not
obvious or appreciable external rewards. The rewards are inherent
in the activity, and even though there may be secondary gains, the
primary motivators are the spontaneous, internal experiences that
accompany the behavior. (p. 11, Deci and Ryan 1985)

Why did most psychologists reject the view that exploration, manipula-
tion, and other curiosity-related behaviors derived their motivational potency
only through secondary reinforcement, as would be required by a theory like
Hull’s? There are clear experimental results showing that such behavior is mo-
tivationally energizing and rewarding on its own and not because it predicts the
satisfaction of a primary biological need. Influential papers by White (1959)
and Berlyne (?) marshaled abundant experimental evidence to argue that the
intrinsic reward produced by a variety of behaviors involving curiosity and play
are as primary as that produced by the conventional biologically relevant be-
haviors. Children spontaneously explore very soon after birth, so there is little
opportunity for them to experience the extensive pairing of this behavior with
the reduction of a biologically primary drive that would be required to account
for their eagerness to explore. In addition, experimental results show that the
opportunity to explore retains its energizing effect without needing to be re-
paired with a primary reward, whereas a secondary reward will extinguish, that
is, will lose its reinforcing quality, unless often re-paired with the primary reward
it predicts.

Berlyne summarized the situation as follows:

As knowledge accumulated about the conditions that govern ex-
ploratory behavior and about how quickly it appears after birth,
it seemed less and less likely that this behavior could be a derivative
of hunger, thirst, sexual appetite, pain, fear of pain, and the like, or
that stimuli sought through exploration are welcomed because they
have previously accompanied satisfaction of these drives. (p. 26, ?)

Note that the issue was not whether exploration, manipulation, and other
curiosity-related behavior are important for an animal’s survival and repro-
ductive success. Clearly they are if deployed in the right way. Appropriately
cautious exploration, for example, clearly contributes to survival and repro-
ductive success because it can enable efficient foraging, successful escape, and
increased opportunities for mating. The issue was whether these behaviors have
motivational valence because previously in the animal’s lifetime they predicted
decreases in biologically-primary drives, or whether this valence is built-in by
the evolutionary process. Section 7 looks more closely at the utility of intrinsic
motivation from an evolutionary perspective.

Researchers took a variety of approaches in revising homeostatic drive re-
duction theories in light of findings like those described above. The simplest
approach was to expand the list of primary drives by adding drives such as
a curiosity drive, exploration drive, manipulation drive, etc., to the standard
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list of drives. Postulating primary “needs” for these behaviors, on par with
needs for food, drink, and sex, marked a break from the standard view while
retaining the orthodox drive reduction principle. For example, an experiment
by Harlow, Harlow, and Meyer (1950) showed that rhesus monkeys would learn
how to unerringly unlatch a complex mechanical puzzle through many hours
of manipulation without any contingent rewards such as food or water. They
postulated a “strong and persistent manipulation drive” to explain how this
was possible in the absence of extrinsic reward. Other experiments showed that
giving an animal the opportunity to run in an activity wheel could act as reward
for learning, suggesting that there is an “activity drive.”

Postulating drives like these was in the tradition of earlier theorists who
advanced broader hypotheses. For example, in a treatise on play, Groos (1901)
proposed a motivational principle that we recognize as a major component of
Piaget’s (1952) theory of child development:

The primitive impulse to extend the sphere of their power as far
as possible leads men to the conquest and control of objects lying
around them ... We demand a knowledge of effects, and to be our-
selves the producers of effects. (p. 95, Groos 1901)

Similarly, Hendrick (1942) proposed an “instinct to master” by which an animal
has “an inborn drive to do and to learn how to do.”

In a 1959 paper that has been called “one of the most influential papers
on motivation ever published” (Arkes and Garske 1982), Robert White (1959)
argued that lengthening the list of primary drives in this way would require
such fundamental changes to the drive concept as to leave it unrecognizable.
Drives for exploration, manipulation, and activity do not involve “tissue needs”;
they are not terminated by an explicit consummatory climax but rather tend
to decrease gradually; and reinforcement can result from the increase in such
a drive rather than a decrease: for example, when an exploring animal seeks
out novelty rather than avoids it. If decreasing exploratory drive corresponds to
boredom, one does not normally think of boredom as a reinforcer for exploration.

White proposed that instead of extending the list of the standard drives, it
would be better to emphasize the similarity of urges toward exploration ma-
nipulation, and activity, and how they differ from the homeostatic drives. He
proposed bringing them together under the general heading of competence, by
which he meant effective interaction with the environment, and to speak of a
general effectance motivation to refer to “an intrinsic need to deal with the
environment.” Like other critics of homeostatic theories, White did not argue
that such theories are completely wrong, only that they are incomplete. With
respect to effectance motivation, for example, he wrote that

“... the effectance urge represents what the neuromuscular system
wants to do when it is otherwise unoccupied or is gently stimulated
by the environment. ... [it] is persistent in the sense that it regularly
occupies the spare waking time between episodes of homeostatic cri-
sis.” (p. 321, White 1959)
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The psychology literature is less helpful in specifying the concrete properties
of experience that incite intrinsically motivated behavior, although there have
been many suggestions. White (1959) suggested that Hebb (1949) may have
been right in concluding that “difference-in-sameness” is the key to interest,
meaning that along with many familiar features, a situation that is interest-
ing also has novel ones, indicating that there is still more learning to be done.
Berlyne (1954, 1960, 1971) probably had the most to say on these issues, sug-
gesting that the factors underlying intrinsic motivational effects involve novelty
(with a distinction between relative and absolute novelty, and between short-
term and long-term novelty), or surprise and incongruity (when expectations or
hypotheses are not vindicated by experience), or complexity (depending on the
number and similarity of elements in a situation).

Uniting these cases, Berlyne hypothesized a notion of conflict created when a
situation incites multiple processes that do not agree with one another. He also
hypothesized that moderate levels of novelty (or more generally, arousal poten-
tial) have the highest hedonic value because the rewarding effect of novelty is
overtaken by an aversive effect as novelty increases (as expressed by the “Wundt
Curve”, p. 89, of Berlyne 1971). This is consistent with many other views hold-
ing that situations intermediate between complete familiarity (boredom) and
complete unfamiliarity (confusion) have the most hedonic value: the maximal
effect of novelty being elicited by “... a stimulus that is rather like something
well known but just distinct enough to be ‘interesting.’ ” (Berlyne 1960). Many
of these hypotheses fall under the heading of Optimal Level Theories, which we
describe in more detail below.

The role of surprise in intrinsic motivation that Berlyne and others have sug-
gested requires some discussion in order to prevent a common misunderstanding.
Learning from surprise in the form of mismatch between expectations and actu-
ality is built into many learning theories and machine learning algorithms. The
Rescorla-Wagner (1972) model of classical conditioning and the many error-
correction learning rules studied under the heading of supervised learning by
machine learning researchers, such as perceptrons and error back-propagation
neural networks, adjust parameters on the basis of discrepancies between ex-
pected and experienced input. Tolman’s (1932) theory of latent learning, for
example, postulated that animals are essentially always learning cognitive maps
that incorporate confirmed expectancies about their environments. But accord-
ing to Tolman, this learning is unmotivated; it does not depend on reinforcing
stimuli or motivational state. This is different from Berlyne’s view that sur-
prise engages an animal’s motivational systems. Therefore it is necessary to
distinguish between learning from surprise as it appears in supervised learning
algorithms and the idea that surprise engages motivational systems.

4.1 Optimal Level Theories

To provide alternatives to homeostatic drive reduction theories, and to avoid
postulating additional drives for exploration, manipulation, etc., motivational
theorists proposed a number of influential theories characterized as optimal
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level theories. This section describes one of these at some length because it
suggests useful principles anticipating several recent computational theories.
This account is drawn largely from Arkes and Garske (1982).

Dember, Earl, and Paradise (1957) conducted an experiment involving an
animal’s preferences for stimuli of differing levels of complexity. They placed rats
in a figure-eight runway having walls with vertical black and white stripes on
one loop and horizontal black and white stripes on the other. To the moving rat,
the horizontal stripes provided a roughly constant visual stimulus, whereas the
vertical stripes provided a more complex time-varying stimulus pattern. With
one rat in the runway at a time, they recorded the amount of time each rat
spent in each loop. They found that a rat that initially preferred the loop with
the horizontal stripes would later spend the preponderance of its time in the
loop with the vertical stripes. Rats that initially preferred the vertical-striped
loop rarely shifted preference to the horizontal-striped loop. In a another ex-
periment, the horizontal stripes provided the more complex stimulus (compared
to plain white or plain black walls), and the rats shifted preference to the hori-
zontal stripes, thus ruling out the possibility that the behavior was due to some
peculiarity of horizontal and vertical stripes.

Dember et al. (1957) proposed a theory (elaborated in Dember and Earl
1957) to explain this behavior. It is based on two key ideas. The first is that
animals get used to a certain level of environmental complexity, and if they
continue too long with stimuli of that complexity, they will become bored since
they had already learned about stimuli of that complexity. A slightly more com-
plex stimulus, on the other hand, will be interesting to them and will arouse
curiosity, while an extremely more complex stimulus will be confusing, or even
frightening. So an animal will maximally prefer stimuli that are moderately
more complex than what they are used to. Dember and Earl used the term
pacer, presumably from horse racing, to refer to the level of stimulus complex-
ity that is maximally preferred. The second idea, which is common to other
optimal level theories, is that as a result of experience with a stimulus, the
stimulus becomes simpler to the animal. As Dember and Earl (1957) state, this
is due to “the ability of stimuli to increase the psychological complexity of the
individual who perceives them.” Consequently, an animal’s experience with a
preferred stimulus situation causes their preferences to shift toward situations
of moderately increased complexity: experience with a pacer causes the pacer to
shift toward increased complexity. This generates a motivational force causing
the animal to constantly seek stimuli of increasing complexity.

Berlyne’s (1954, 1960, 1971) ideas, mentioned above, also fall under the
heading of optimal level theory, and much of his work focused on trying to de-
termine the stimulus properties that underlie an animal’s preferences, as men-
tioned above. He regarded different properties, such as novelty, incongruity, and
surprisingness, as contributing to the arousal potential of a stimulus, and that
an animal will prefer some intermediate level of arousal potential.

Optimal level theories have been very influential, with applications in child
development, where both excessive and deficient amounts of stimulation may
be detrimental to cognitive growth, in architecture, city planning, esthetics,
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economics, and music (Arkes and Garske 1982). The recent computational
theory of Schmidhuber (2009) that places information-theoretic compression at
the base of intrinsic motivation is a modern descendant of optimal level theories.

4.2 Intrinsic Motivation and Competence

In his classic paper, White (1959) argued that intrinsically motivated behavior is
essential for an organism to gain the competence necessary for autonomy, where
by autonomy he meant the extent to which an organism is able to bring its en-
vironment under its control, to achieve mastery over its environment. Through
intrinsically motivated activity, an organism is able to learn much of what is
possible in an environment and how to realize these possibilities. A system that
is competent in this sense has broad set of reusable skills for controlling its en-
vironment; it is able to interact effectively with its environment toward a wide
variety of ends. The activity through which these broad skills are learned is
motivated by an intrinsic reward system that favors the development of broad
competence rather than being directed to more specific externally-directed goals.

White’s view of competence greatly influenced this author’s thinking and
that of his colleagues and students about the utility of analogs of intrinsic mo-
tivation for RL systems. Being competent in an environment by having a broad
set of reusable skills enables an agent to efficiently learn how to solve a wide
range of specific problems as they arise while it engages with that environment.
Although the acquisition of competence is not driven by specific problems, this
competence is routinely enlisted to solve many different specific problems over
the agent’s lifetime. The skills making up general competence act as the “build-
ing blocks” out of which an agent can form solutions to specific problems. In-
stead of facing each new challenge by trying to create a solution out of low-level
primitives, it can focus on combining and adjusting its higher-level skills. This
greatly increases the efficiency of learning to solve new problems, and it is a
major reason that the relatively long developmental period of humans serves us
so well.

By combining this view of competence with the theory and algorithms of
hierarchical RL (Barto and Mahadevan 2003), the author and colleagues have
taken some small steps toward developing artificial agents with this kind of
competence, calling the approach intrinsically motivated RL (Barto et al. 2004,
Singh et al. 2005). Evaluating the performance of these agents requires taking
into account performance over ensembles of tasks instead of just single tasks.
Intrinsically motivated RL therefore addresses the well-known shortcoming of
many current machine learning systems—including RL systems—that they typ-
ically apply to single, isolated problems and do not yet allow systems to cope
flexibly with new problems as they arise over extended periods of time. This
brings the study of intrinsically motivated RL together with what cognitive sci-
entists, roboticists, and machine learning researchers call “autonomous mental
development” (Weng et al. 2001), “epigenetic robotics” (Prince et al. 2001),
or “developmental robotics” (Lungarella et al. 2003), approaches aiming to de-
velop analogs of the developmental processes that prepare animals over long
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time periods for a wide range of later challenges.
This competence-based view of intrinsically motivated RL contrasts with

the view most prominently put forward in the work of Schmidhuber (2009) that
intrinsic motivation’s sole purpose is to facilitate learning a world model in order
to make accurate predictions. The competence view, in contrast, emphasizes the
utility of learning skills that allow effective environmental control. Of course,
learning such skills can benefit from the learning of models, and machinery for
doing so is built into hierarchical RL algorithms (Barto and Mahadevan 2003,
Sutton et al. 1999), but such models need only be limited, local models that
focus on environmental regularities relevant to particular skills. On a deeper
level, this view arises from the conviction that control rather than prediction
must have played the dominant role in the evolution of cognition. The utility
of prediction arises solely through its role in facilitating control. Although we
cannot control the weather, we use weather predictions to control its impact on
us: we cancel the picnic, carry an umbrella, etc. Of course, because prediction
is so useful for control, we would expect intrinsic motivational mechanisms to
exist that encourage accurate prediction, but according to the competence view
this is not the sole underlying purpose of intrinsic motivation.6

5 Motivation and Reinforcement Learning

Although many computational models of RL contributed to how it is now stud-
ied in machine learning (e.g., Clark and Farley 1955, Mendel and Fu 1970,
Mendel and McLaren 1970, Michie and Chambers 1968, Minsky 1954, Narendra
and Thathachar 1989, Widrow et al. 1973), a most influential collection of ideas
are those of A. H. Klopf—especially as it concerns the author and his students
and our influence on RL. Klopf (1972, 1982) argued that homeostasis should
not be considered the primary goal of behavior and learning, and that it is not
a suitable organizing principle for developing artificial intelligence. Instead, he
argued that organisms strive for a maximal condition:

It will be proposed here that homeostasis is not the primary goal
of more phylogenetically advanced living systems; rather, that it is
a secondary or subgoal. It is suggested that the primary goal is a
condition which ... will be termed heterostasis. An organism is said
to be in a condition of heterostasis with respect to a specific internal
variable when that variable has been maximized. (p. 10, Klopf 1982)

This proposal is built into all RL systems, where maximization—or more
generally optimization—is the guiding principle instead of equilibrium-seeking.
This basis of RL commonly generates several questions that deserve comment.
First, what is the difference between maximization and equilibrium seeking?
There is clearly no logical difference between maximizing and minimizing (one
simply changes a sign: both are optimization), and is not an equilibrium-seeking

6Schmidhuber (2009) would argue that it is the other way around—that control is a result
of behavior directed to improve predictive models. Resolution of this issue lies in the future.
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system engaged in minimizing, specifically, minimizing the discrepancy between
the current and the desired state? It is correct that equilibrium seeking involves
minimizing, but it is a restricted variety of minimization based on assumptions
that are not true in general. Consider the difference between searching for
something that you will recognize when you find it, such as a specific web site,
and searching for the “best” of something, such as (what you consider to be) the
best-tasting wine. In the former case, when the desired item is found, the search
stops, whereas in the latter, the search must go on—at least in principle—until
you have sampled every variety of wine. The former case is like equilibrium
seeking: the search is looking for zero discrepancy between the current and
desired state, whereas the latter is like RL, where incessant exploration is called
for.

A second question that comes up with regard to RL’s focus on optimization
is this one: Does this not conflict with the commonly made observation that
nature does not seem to optimize, at either ontogenetic or phylogenetic scales?
Since biological adaptation does not produce optimal solutions, any view of
nature based on optimization must be incorrect. The answer to this is that
adopting an optimization framework does not imply that the results are always
optimal. Indeed, in many large-scale optimization problems, globally optimal
results are hardly ever achieved, and even if they were, one would never know
it. The focus is on the process, which involves incessant exploration, and not
the desired outcomes—which are almost never achieved.

Its emphasis on optimization instead of equilibrium-seeking makes RL closer
to hedonic views of motivation than to Hullian views. However, whereas a hedo-
nic view of motivation is usually associated with affective mental states, RL—at
least as described by Sutton and Barto (1998)—does not venture in to this ter-
ritory. There is no mention of a “feeling” of pleasantness or unpleasantness
associated with reward or penalty. This may be excluding an important dimen-
sion, but that dimension is not an essential component of a framework based on
optimization. What is essential is RL’s attitude toward the following questions
put forward by Cofer and Appley (1964):

Is organismic functioning conservative or growth-oriented? ... Does
the organism’s behavior serve primarily to maintain a steady state
or equilibrium, that is, is it homeostatically organized and conserva-
tive? Or, alternatively, does the organism’s behavior serve to take
it to new levels of development, unfolding potentialities that a con-
servative principle could not encompass? (p. 15, Cofer and Appley
1964)

This non-conservative view of motivation, as contrasted with one based on main-
taining equilibrium, is a good summary of what makes RL and other frameworks
based on optimization attractive approaches to designing intelligent agents.

The importance of this for learning, especially machine learning, is that
the learning algorithms most commonly studied are suitable only for super-
vised learning problems. As discussed above, these algorithms work by mak-
ing adjustments directed toward eliminating mismatches between expectations
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and what actually occurs. They are therefore essentially equilibrium-seeking
mechanisms in the sense of attempting to zero out an error measure. In-
deed, learning algorithms such as Rosenblatt’s perceptron (Rosenblatt 1962)
and Widrow and Hoff’s ADALINE (Widrow and Hoff 1960), and their many
descendants, explicitly employ the negative feedback principle of an equilibrium-
seeking servo mechanism. An RL algorithm, in contrast, is attempting to ex-
tremize a quantity, specifically a measure of reward. Although supervised learn-
ing clearly has its place, the RL framework’s emphasis on incessant activity over
equilibrium-seeking makes it essential—in the author’s opinion—for producing
growth-oriented systems with open-ended capacities.7

6 Intrinsic Motivation in Reinforcement Learn-
ing

In the RL framework, an agent works to maximize a quantity based on an
abstract reward signal that can be derived in many different ways. As empha-
sized in Section 1, the RL framework “does not care” where the reward signal
comes from. The framework can therefore encompass both homeostatic theo-
ries of motivation in which rewards are defined as drive reduction, as has been
done in many motivational systems for artificial agents (Savage 2000), and non-
homeostatic theories that can account, for example, for the behavioral effects
of electrical brain stimulation and addictive drugs. It can also include intrinsic
reward signals.

In presenting the basic RL framework in Section 2 above, we emphasized
that an RL agent should not be thought of as an entire animal or robot, and
that the box labeled “Environment” in Figure 1 represents not only an animal’s
or robot’s external world but also components within the animal or robot itself.
Figure 2 is a refinement of Figure 1 that makes this explicit by dividing the
environment into an external environment and an internal environment. The
external environment represents what is outside of the animal or robot (which
we will refer to as an “organism”, as labeled in the figure), whereas the inter-
nal environment consists of components that are inside the organism.8 Both
components together comprise the environment of the RL agent.9

This refinement of the usual RL framework makes it clear that all reward
signals are generated within the organism. Some reward signals may triggered by
sensations produced by objects or events in the external environment, such as a
pat on the head or a word of praise; others may be triggered by a combination of

7These comments apply to the “passive” form of supervised learning; not necessarily to the
extension known as “active learning” (Settles 2009), in which the learning agent itself chooses
training examples. Although beyond this chapter’s scope, active supervised learning is indeed
relevant to the subject of intrinsic motivation.

8We are relying on a common-sense notion of an organism’s boundary with its external
environment, recognizing that this may be not be easy to define.

9Figure 2 shows the organism containing a single RL agent, but an organism might contain
many, each possibly having its own reward signal. Although not considered here, the multi-
agent RL case (Busoniu et al. 2008) poses many challenges and opportunities.
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Figure 2. Agent-Environment Interaction in RL. A refinement of Figure 1 in which the
environment is divided into and internal and external environment, with all reward signals
coming form the former. The shaded box corresponds to what we would think of as the
“organism.” Adapted from Barto et al. (2004).

external stimulation and conditions of the internal environment, such as drinking
water in a state of thirst. Still other reward signals may be triggered solely by
activity of the internal environment, such as entertaining a thought or recalling
a memory. All of these possibilities can be accommodated by the RL framework
as long as one does not identify an RL agent with a complete organism.

It is tempting to directly connect the distinction between the external and
internal environments with the distinction between extrinsic and intrinsic reward
signals: extrinsic reward signals are triggered by objects or events in the external
environment, whereas intrinsic reward signals are triggered solely by activity
of the internal environment. Unfortunately, this view does not do justice to
the complexity and variability of either extrinsically or intrinsically rewarding
behavior.

According to Bindra’s (1978) account mentioned in Section 3, for example,
an organism’s internal state, such as arousal level, blood-suger level, hormone
levels, etc., interacts with features of an object or event signaled by external
stimulation to generate a central motive state. Assuming this central motive
state influences the generation of reward signals, this account clearly involves
both the organism’s internal and external environments. Even putting aside
Bindra’s account, it is clear that the state of an organism’s internal environ-
ment modulates how external stimulation is transduced into reward signals.
Moreover, for many instances of what we would consider intrinsically motivated
activity, for example when behavior is the result of pure curiosity, an organism’s
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external environment is often a key player: objects and events in the external
environment trigger curiosity, surprise, and other constituents of intrinsically
motivated behavior.

Despite the difficulty of aligning extrinsic and intrinsic reward signals with
and organism’s external and internal environments, the internal environment
may play a larger—or at least, a different—role in generating reward signals
associated with intrinsic motivation. For example, a salient external stimulus
might generate a reward signal to the degree that it is unexpected, where the ex-
pectancy is evaluated by processes in the internal environment and information
stored there. Novelty, surprise, incongruity, and other features that have been
hypothesized to underlie intrinsic motivation all depend on what the agent has
already learned and experienced, that is, on its memories, beliefs, and internal
knowledge state, all of which are components of the state of the organism’s in-
ternal environment. One can think of these as the “informational”, as opposed
to the vegetative, aspects of the internal environment.

The approach to intrinsically motivated RL taken by the author and col-
leagues is to include these kinds of rewards as components of the RL agent’s
primary reward function. This is consistent with the large body of data al-
luded to above showing that intrinsically motivated behavior is not dependent
on secondary reinforcement, that is, behavior is not intrinsically motivated be-
cause it had previously been paired with the satisfaction of a primary biological
need in the animal’s own experience (Deci and Ryan 1985). It is also in accord
with Schmidhuber’s (1991a, 2009) approach to curious RL systems where both
normal and curious behavior use the same mechanism. Some behavior that we
might call intrinsically motivated could be motivated through learned secondary
reward signals, but this is not a necessary feature.

If the internal/external environment dichotomy does not provide a way to
cleanly distinguish between extrinsic and intrinsic reward signals, what does?
The author’s current view is that there is no clean distinction between these
types of reward signals; instead there is a continuum ranging from clearly ex-
trinsic to clearly intrinsic. This view is the result of considering the issue from
an evolutionary perspective, which is taken up next.

7 Evolutionary Perspective

Intrinsically motivated behavior is not anomalous from an evolutionary perspec-
tive. Intrinsically motivated behavior and what animals learn from it clearly
contribute to survival and reproductive success. The success of humans owes a
lot to our intrinsic urge to control our environments. It is not surprising, then,
that machinery has evolved for ensuring that animals gain the kinds of experi-
ences from which they can acquire knowledge and skills useful for survival and
reproduction. Building in reward mechanisms to motivate knowledge-acquiring
and skill-acquiring behavior is a parsimonious way of achieving this—enlisting
motivational processes to appropriately direct behavior. From an evolutionary
perspective, then, there is nothing particularly mysterious about intrinsically
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motivated behavior. But can an evolutionary perspective help us understand
the relationship between intrinsic and extrinsic motivation and reward signals?

Inspired in part by economists Samuelson and Swinkels (2006), who asked
the question

... given that successful descendants are the currency of evolution-
ary success, why do people have utility for anything else? (p. 120,
Samuelson and Swinkels 2006),

Singh et al. (2009, 2010) placed reward processes in an evolutionary context,
formulating a notion of an optimal reward function given an evolutionary fit-
ness function and a distribution of environments. Results of computational
experiments suggest how both extrinsically and intrinsically motivated behav-
iors may emerge from such optimal reward functions. The approach taken in
these studies was to evaluate entire primary reward functions in terms of how
well simulated agents learning according to these reward functions performed as
evaluated by a separate “evolutionary fitness function.” An automated search
in a space of primary reward functions could then be conducted to see which
reward function would confer the most evolutionary advantage to the learning
agent. Key to this approach is that each agent’s behavior was evaluated across
multiple environments, where some features remained constant across all the
environments and others varied from environment to environment.

Readers should consult Singh et al. (2009, 2010) for details, but a main lesson
from these studies is that the difference between intrinsic and extrinsic reward
may be one of degree rather than one that can be rigorously defined by specific
features. When coupled with learning, a primary reward function that rewards
behavior that is ubiquitously useful across many different environments can pro-
duce greater evolutionary fitness than a function exclusively rewarding behavior
directly related to the most basic requisites of survival and reproduction. For
example, since eating is necessary for evolutionary success in all environments,
we see primary reward signals generated by eating-related behavior. But reward
functions that in addition reward behavior less directly related to basic needs,
such as exploration and play, can confer greater evolutionary fitness to an agent.
This is because what is learned during exploration and play contributes, within
the lifetime of an animal, to that animal’s ability to reproduce. It is therefore
not surprising that evolution would give exploration, play, etc. positive hedonic
valence, i.e., would make them rewarding.

A possible conclusion from this evolutionary perspective is that what we call
extrinsically rewarding stimuli or events are those that have a relatively imme-
diate and direct relationship to evolutionary success. What we call intrinsically
rewarding activities, on the other hand, bear a much more distal relationship
to evolutionary success. The causal chain from these behaviors to evolutionary
success is longer, more complex, and less certain than the chain from what we
typically call extrinsically motivated behavior. This makes it difficult to recog-
nize evolutionarily beneficial consequences of intrinsically motivated behavior.
Berlyne (1960) used the term “ludic behavior” (from the Latin ludare, to play)
which “... can best be defined as any behavior that does not have a biological
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function that we can clearly recognize.” It is not clear that this property ad-
equately characterizes all intrinsically motivated behavior, but it does capture
something essential about it.

The relationship between intrinsic reward and evolutionary success is anal-
ogous to the relationship between learned, or secondary, reward and primary
reward. In the latter case, a stimulus or activity comes to a generate reward
signals to the extent that it predicts future primary reward. This is the basic
mechanism built into RL algorithms that estimate value functions. Behavior
is selected on the basis of predictions of the total amount of primary reward
expected to accrue over the future, as represented by the learned value function
(see Section 2 above). Through this process, good actions can be selected even
when their influence on future primary reward is only very indirect. Imagine,
for example, an early move in a game of backgammon that helps to set the stage
for a much later advance, which ultimately results in winning the game. An RL
algorithm such as the one used in the program TD-Gammon (Tesauro 1994)
uses the value function it learns to effectively reward this move immediately
when it is taken.

A similar situation occurs in the case of intrinsic reward, except that in this
case a stimulus or activity comes to elicit a primary reward signal to the extent
that it predicts eventual evolutionary success. In this case, the evolutionary
process confers a rewarding quality to the stimulus or activity. Although this is
clearly different from the what happens with secondary reward, where a stimulus
becomes rewarding through learning that takes place within the lifetime of an
individual animal, in both cases the rewarding quality arises due to a predictive
relationship to a “higher level” measure of success: reproductive success in the
case of evolution and primary reward in the case of secondary reinforcement.

This evolutionary context provides insight into the kinds of behavior we
might expect an evolved reward function to encourage. We might expect a
reward function to evolve that “taps into” features that were constant across
many ancestral generations, but we would not expect one to evolve that exploits
features that change from generation to generation. For example, if food tends
to be found in places characterized by certain fixed features, we might expect
a primary reward signal to be elicited by these features to encourage approach
behavior. However, we would not expect approach to specific spatial locations
to be rewarding unless these locations were the loci of sustenance for generation
after generation. Learning can exploit features that maintain relatively fixed
relationships to reward within a single agent’s lifetime, whereas the evolution-
ary process is able to exploit larger-scale constancies that transcend individual
agents and environments.

As a consequence, an animal’s reward systems will promote behavior that
is ubiquitously useful across many different environments. In some cases, this
behavior’s utility is easily recognizable and appears to be directed toward a
proximal goal with obvious biological significance. In other cases, the behavior’s
utility is difficult to recognize because it contributes more indirectly and with
less certainty to evolutionary success: its purpose or goal may be so far removed
from the behavior itself that it may appear to have no clear purpose at all.
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A somewhat similar relationship exists between basic and applied, or progra-
matic, research. In arguing for the importance of basic research in his famous
report to the United States president, Vannevar Bush (1945) wrote:

Basic research is performed without thought of practical ends. It
results in general knowledge and an understanding of nature and
its laws. This general knowledge provides the means of answering
a large number of important practical problems, though it may not
give a complete specific answer to any one of them. The function of
applied research is to provide such complete answers. The scientist
doing basic research may not be at all interested in the practical
applications of his work, yet the further progress of industrial de-
velopment would eventually stagnate if basic scientific research were
long neglected. ... Basic research leads to new knowledge. It pro-
vides scientific capital. It creates the fund from which the practical
applications of knowledge must be drawn. (Bush 1945)

It is not misleading to think of basic research as intrinsically motivated, whereas
applied research is extrinsically motivated, being directed toward a specific iden-
tifiable end. Bush was asserting that basic research has enormous practical
utility, but it is not an immediate or certain consequence of the activity.

Although the distinction between basic and applied research seems clear
enough, one may be hard pressed to point to features of specific research ac-
tivities that would mark them, out of a broader context, as being conducted
as part of a basic or an applied research project. The same seems true of in-
trinsically and extrinsically motivated behavior. The evolutionary perspective
suggests that there are no hard and fast features distinguishing intrinsic and
extrinsic reward. There is rather a continuum along which the directness of the
relationship varies between sources of reward signals and evolutionary success.
The claim here is that what we call intrinsically rewarding behavior is behavior
that occupies the range of this continuum in which the relationship is relatively
indirect. Whether it is direct of indirect, moreover, this relationship to evolu-
tionary success is based on environmental characteristics that have remained
relatively constant, though of varying reliability, over many generations.

This leads to a final observation that reconciles this view of intrinsic reward
signals with others that have been put forward, e.g., by Oudeyer and Kaplan
(2007). Prominent among environmental features that maintain a relatively
constant relationship to evolutionary success are features of the internal por-
tion of an organism’s environment, as depicted in Figure 2. What is labelled
there the internal environment is carried along in relatively unchanging form
from generation to generation. Therefore we would expect an animal’s primary
reward function to encourage a variety of behaviors that involve features of
this part of the learning system’s environment. This would include behaviors
that we think of as involving curiosity, novelty, surprise, and other internally-
mediated features usually associated with intrinsic reward. Thus, in addition to
suggesting why it seems so difficult to place the distinction between intrinsic and
extrinsic reward on a rigorous footing, the evolutionary perspective suggests an
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explanation for why the prototypical examples of activities that we think of as
intrinsically rewarding tend to heavily depend on variables that describe aspects
of an animal’s internal environment.

There is clearly much more to understand about the relationship between
evolution and learning, and there is a large literature on the subject. Less has
been written about the evolution of reward structures, though a number of com-
putational studies have been published (Ackley and Littman 1991b, Damoulas
et al. 2005, Elfwing et al. 2008, Littman and Ackley 1991, Schembri et al. 2007,
Snel and Hayes 2008, Uchibe and Doya 2008). In addition to Singh et al. (2009,
2010), the most relevant computational study of which the author is aware is
that of Ackley and Littman (1991a). Sorg, Singh, and Lewis (2010) provide
computational results to support the view that a key role played by reward
functions is to attenuate the negative consequences of various types of agent
limitations, such as lack of information, lack of adequate time to learn, or lack
of efficient learning mechanisms. This view is critical to reaching a better un-
derstanding of intrinsic motivation, and it is consistent with observations from
economists who study the evolution of preferences in the context of game theory
(Samuelson 2001).

8 Summary and Prospects

This chapter focuses on review and perspective, while saying little about archi-
tectures and algorithms for intrinsically motivated artificial agents. However,
some general conclusions are supported by the views presented here that can
help guide the development of competently autonomous artificial agents.

1. RL is particularly suited for incorporating principles of motivation into
artificial agents, including intrinsic motivation. This chapter argues that
an approach to building intelligent agents based on principles of optimiza-
tion, instead of solely equilibrium-seeking, gives agents the kind of inces-
sant activity that is essential for growth-oriented systems with open-ended
capacities. A base in optimization does not mean that optimal solutions
need ever be found: it is the process that is important.

2. The distinction between an RL agent and its environment at the base of
the RL formulation has to be looked at in the right way. An RL agent is
not the same as an entire animal or robot. Motivational processes involve
state components that are internal to the animal or robot while at the
same time being external to the RL agent. The sources of reward signals
are, as is usual in the RL framework, external to the RL agent (so it cannot
exert complete control over them), while still being within the animal or
robot.

3. State components that influence an RL agent’s reward signals can include
features of a robot’s memories and beliefs in addition to “vegetative” fea-
tures. This follows from item (2) since this information is part of the RL
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agent’s environment. In fact, a robot’s current policy, value function, and
environment model are all possible influences on reward signals since they
can also be components of the state of the RL agent’s environment. This
opens the possibility for defining many interesting reward functions.

4. The view that motivation can be equated with the nature of an RL reward
function is only part of the story. In a reward-maximizing framework,
there is a natural correspondence between the reward function and the
forces that direct agent activity. However, this does not imply that the
nature of a reward function accounts for all aspects of an agent’s moti-
vations. In both modeling biological agents and building artificial agents,
other components are important as well. For example, there are prominent
roles for complex structures of built-in behaviors, and there may be multi-
ple optimizing components with different objectives, requiring arbitration
mechanisms to coordinate among competing goals. Further, theories rel-
evant to intrinsic motivation have been proposed that are not based on
RL, e.g., Andry et al. (2004), Baranes and Oudeyer (2010), Friston et al.
(2010), Hesse et al. (2009).

5. There is no hard-and-fast distinction between extrinsic and intrinsic re-
ward signals. There is rather a continuum along which reward signals fall,
ranging from signals clearly related to proximal goals with obvious bio-
logical utility to signals with less direct and less reliable biological utility.
These latter signals underlie what we think of as intrinsically motivated
behavior. This view is suggested by recent computational study by Singh,
Lewis, and Barto (2009, 2010), which explores the concept of evolutionar-
ily optimal reward functions as discussed in Section 7.

6. Despite the difficulty in giving the extrinsic/extrinsic distinction a com-
pletely satisfactory formal definition, the distinction is still useful. In
particular, the psychologist’s definition, where extrinsic motivation means
doing something because of some specific rewarding outcome, and intrinsic
motivation means “doing something because it is inherently interesting or
enjoyable” (Ryan and Deci 2000), is adequate for most purposes. It alerts
us to the possible benefits of defining reward functions that depend on a
wider range of factors than those usually considered in RL. Specifically, re-
ward functions can depend on the state of a robot’s internal environment,
which includes remembered and learned information.

7. It is not likely that there is a single unitary principle underlying intrinsic
motivation. Although the evolutionary perspective presented here does
not give detailed information about what architectures and algorithms we
should develop to produce intrinsically motivated artificial agents, it does
suggest that the best reward functions will depend on the distribution
of tasks at which we wish the agent to excel. Therefore, although some
principles are undoubtedly widely-applicable—such as some of those al-
ready receiving attention in the literature—skepticism is justified about
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the proposition that one principle suffices to account for all aspects of
intrinsic motivation.

8. Analogs of intrinsic motivation are destined to play important roles in
future machine learning systems. In the same way that intrinsic motiva-
tion plays a crucial role in directing human behavior for both children and
adults, we can expect computational analogs to be important for direct-
ing the behavior of machine learning systems that are able to exert some
control over their input by being embedded in physical or virtual worlds.
Moreover, the progress occurring in making computational power a ubiq-
uitous resource means that learning systems can be constantly active, even
when they are not engaged in solving particular problems. Intrinsic moti-
vation is the means for making the most of such idle times in preparation
for problems to come. In the introduction to his 1960 treatise on curiosity,
Berlyne wrote the following:

Until recently, rather little has been done to find out how an-
imals behave, whether in the wild or in captivity, when they
have nothing particular to do. (p. 1, Berlyne 1960)

Although we may know—or at least hope we know!—what our computers
are doing when they have nothing particular to do, it is clear that, like
animals, they could be working to build the competencies needed for when
they are called to action.

9 Conclusion

Building intrinsic motivation into artificial agents may bring to mind all the
warnings from science fiction about the dangers of truly autonomous robots.
But there are good reasons for wanting artificial agents to have the kind of
broad competence that intrinsically motivated learning can enable. Autonomy
is increasingly becoming a more common property of automated systems since
it allows them to successfully operate for extended periods of time in dynamic,
complex, dangerous environments about which little a priori knowledge is avail-
able. As automated systems inevitably assume more “unpluggable” roles in
our lives, competent autonomy is becoming increasingly essential to prevent the
kind of catastrophic break-downs that threaten our society. In a real sense,
we already depend on systems, such as the power grid, that are essentially
autonomous but seriously lacking in competence. Providing them with intrin-
sic motivations carefully crafted to embody desirable standards may be a path
toward making artificial agents competent enough to fulfill their promise of im-
proving human lives.

Acknowledgements

The author thanks Satinder Singh and Rich Lewis for developing the evolution-
ary perspective on this subject, Jonathan Sorg, for his important insights, and

27



colleagues Sridhar Mahadevan and Rod Grupen, along with current and for-
mer members of the Autonomous Learning Laboratory who have participated
in discussing intrinsically motivated reinforcement learning: Will Dabney, Jody
Fanto, Scott Kuindersma, George Konidaris, Scott Niekum, Özgür Şimşek, An-
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