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Learning involves improving performance with experience. Attempts
to understand learning and to devise artificial learning systems commonly
employ a commonsense improvement strategy known as hillclimbing. Hill-
climbing can be pictured as the process of climbing a hill by choosing each
step to be one leading uphill from the current location. Following this strat-
egy, the climber continues until there are no more steps that lead uphill.
Each possible location corresponds to a possible configuration, or parameter
setting, of the learning system, and the altitude of each location corresponds
to a ‘measure of goodness’ of that configuration. The steps available in each
location correspond to the simple changes that can be made to the configu-
ration represented by that location.

Hillclimbing is widely employed because it requies so little memory and
computational effort. Deciding on each step requires only local information
about the landscape and does not require keeping track of the history of past
steps and their consequences. It also does not require exhaustive examina-
tion of all possible configurations. Of course, a major shortcoming of such a
simple procedure is obvious. Just as a mountain climber using this strategy
can become stranded on the top of a foothill far below the mountain peak,
the hillclimbing strategy can stop at a configuration that, while superior to
its immediate neighbors, is far from being the best configuration possible.
Hillclimbing stops at configurations that are locally maximal in the sense
that they are better than, or of equal goodness to, situations in their im-
mediate neighborhood. Globally maximal configurations, on the other hand,
are not inferior to any possible configuration (Figure 1). Obviously there is
an analogous process for climbing down to a local minimum. While the term
local descent procedure is sometimes used for this case, the distinction is not
fundamental because the two problems exactly mirror one another. Both
are local optimization procedures for finding configurations that are locally
maximal or minimal, as the case may be.

The basic hillclimbing strategy can take many forms depending on how
its various elements are defined. For example, what precisely is a ‘configu-
ration’ and what are ‘simple changes’? What kind of knowledge about the
landscape is available? One abstract formulation of hillclimbing requires the
following components (see, e.g., Papadimitriou and Steiglitz, 1982): 1) a
set of feasible points; 2) an objective function; and 3) a neighborhood func-
tion. The set of feasible points, also called the search space, contains a point
representing each configuration that could possibly be a solution of the opti-
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Figure 1: Local and Global Maxima and Minima. The bold region of the
abscissa contains all possible configurations, or points, x, with f(x) repre-
senting the ‘goodness’ of x.

mization problem. Let us denote the set of feasible points F . The objective
function, denoted here by f , assigns a real number to each feasible point:

f : F → <.

For any feasible point x ∈ F , f(x) is the measure of the goodness of x. A
global maximum is any x ∈ F for which

f(x) ≥ f(y) for all y ∈ F.

The neighborhood function formalizes what we mean by the simple
changes that can be made to each configuration. It is a function, denoted
here by N , that maps any feasible point x to the set of all feasible points,
N(x), that are close to x in the sense that each can be produced from x by
some simple change. A local maximum is any x ∈ F for which

f(x) ≥ f(y) for all y ∈ N(x).

Given these components, the hillclimbing procedure can be expressed
using a function that for any feasible point x returns either an improved
feasible point or an indication that local improvement is not possible:

improve(x) =

{
any y ∈ N(x) with f(y) > f(x) if such a y exists
‘no’ otherwise.

Then the hillclimbing procedure is as follows:
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procedure hillclimb

begin
x := some initial feasible point;
while improve(x) 6= ‘no’ do
x := improve(x);

return x
end

Different versions of this hillclimbing procedure exist depending on how
the function improve selects an improved point y from N(x). If it sequen-
tially searches N(x) for an improved point, returning the first one found, it
is called first improvement hillclimbing. In contrast, if it returns the best
point in N(x), it is called steepest ascent hillclimbing (Papadimitriou and
Steiglitz, 1982).

Although the procedure given above clearly implements the basic idea
of hillclimbing, it applies literally only if the search space consists of a finite
number of discrete points because only in this case can one exactly imple-
ment the function improve. However, the idea of hillclimbing also applies
to problems with continuous search spaces, such as the n-dimensional Eu-
clidean space <n. When the objective function f is a differentiable function
of a region of <n, hillclimbing can take the form of a gradient ascent method.
A point x in <n is an n-dimensional vector (x1, x2, . . . , xn). The gradient of f
at x is the vector ( ∂f

∂x1
(x), . . . , ∂f

∂xn
(x)), where ∂f

∂xi
(x) is the partial derivative

of f with respect the ith dimension evaluated at the point x. This vector,
often denoted ∇f(x), points in the direction of the steepest increase of the
objective function at the point x.

In gradient ascent the function improve works by moving x some dis-
tance in the direction of the gradient vector:

improve(x) = x+ η∇f(x), (1)

where η is often a nonnegative scalar that, together with the magnitude of
∇f(x), determines the distance along the gradient direction at which the
new point is chosen. When ∇f(x) = 0, x is a local maximum, and hillclimb-
ing stops. The analogous procedure of gradient descent applies when the
objective function is to be minimized. When a gradient ascent or descent
method is applied to a learning system, such as an artificial neural network,
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it is common to call η the ‘learning rate parameter’ because larger steps in
the search space often—but not always—produce faster learning.

In fact, the choice of η is critical to the operation of the method: if
it is too large, the new point may actually be worse than the old point
because improve overshot the hill’s peak in the gradient direction; if it is too
small, on the other hand, hillclimbing progress may be unacceptably slow.
More sophisticated versions of gradient ascent select a different η at each
step, or even replace multiplication by η by a more complex operation, in
order to avoid these difficulties. Many variations of basic gradient ascent
have been studied (e.g., Luenberger, 1984). Obviously, to apply a gradient
ascent method, it must be possible to compute the gradient of the objective
function at each point generated in the search. This is possible in many
optimization problems, but in others an approximation of the gradient must
be used instead.

The role hillclimbing plays in a learning system depends on what the
search space represents and how one defines the objective function. Since
learning involves improving aspects of behavior, each point in the search
space must somehow represent a possibility for how the system might behave,
and the objective function must indicate what it means to achieve varying
degrees of behavioral success. A common approach to specifying a search
space for a learning system is to devise a mathematical description of the
system’s behavior that depends on a set of numbers, called parameters. As
the values of the parameters change, the system’s behavior changes.

For example, the connection weights of an artificial neural network are
parameters, and learning is said to occur as the weights change according to
one of many different learning algorithms, most of which implement a form
of hillclimbing. In this case, the search space is the weight space consisting of
all feasible combinations of weight values. Usually all combinations of weight
values are feasible, but there are some network learning methods in which
some combinations are excluded from the search space (e.g., networks with
weight sharing (e.g., Le Cun et al., 1990). The most commonly employed ob-
jective functions for artificial neural networks provide measures of the error in
a network’s behavior as compared to its desired behavior. Networks designed
for supervised learning (PERCEPTRONS, ADALINES, AND BACKPROP-
AGATION), for example, usually perform gradient descent on an objective
function giving the average over a set of training examples of the squared error
between actual and desired network outputs. REINFORCEMENT LEARN-
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ING networks, on the other hand, try to maximize an objective function
giving (as one example) the probability of reward.

Hillclimbing in continuous search spaces can take forms other than the
gradient ascent strategy described above. In fact, one form of hillclimb-
ing that works in continous spaces is practiced by certain bacteria as they
“swim” in their continuous fluid surroundings. A bacterium such as Bacillus
subtilis, for example, propels itself along a straight path by rotating hair-
like appendages called flagella. Whenever it reverses the rotational direction
of its flagella, the bacterium stops and tumbles in place before heading off
in a new, randomly determined, direction. This bacterium tends to move
toward higher concentrations of certain chemical substances, called attrac-
tants, by regulating the frequency with which it stops and tumbles according
to changes in the amount of attractant it senses. When it is moving toward
higher attractant concentrations, it reduces the frequency with which it stops
and tumbles. Thus, the straight segments of its path that lead uphill tend to
be longer than the downhill segments, where the hill is formed by the spatial
distribution of the attractant. As a consequence, the bacterium tends to find
and remain near a local maximum of the attractant concentration. This be-
havior, which is a special kind of bacterial chemotaxis known as klinokinesis,
is discussed by Lackie (1986).

Klinokinesis is a hillclimbing strategy that works somewhat differently
from the methods described above because it neither systematically searches
the neighborhoods of feasible points nor computes a gradient at each point.
The bacterium effectively estimates the slope of the attractant distribution
only in the direction it is moving, whereas a gradient estimate would ef-
fectively estimate the slope in all directions from each point. In fact, kli-
nokinesis shows that hillclimbing is possible even when it is impossible to
consider any alternative situation without actually committing to it. Instead
of our mountain climber being able somehow to examine the neighboring ter-
rain in order to determine—before it takes a step—the uphill direction, this
mountain climber has to actually move to a point before its altitude can be
determined. Although each step under these conditions cannot always pro-
duce an improvement, the overall trend of movement stills lead uphill. An
example of a strategy like klinokinesis conducted in the weight space of an
artificial neural network is provided by Unnikrishnan and Venugopal’s (1994)
algorithm for adjusting a network’s weights.

We have pointed out that hillclimbing is a local optimization procedure
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because it finds local instead of global optima. It is sometimes said of a
learning system using hillclimbing that it “got stuck” in a local minimum or
maximum. Another—and probably more serious—shortcoming of hillclimb-
ing is that it needs a hill to climb! The most natural objective functions for
many problems are essentially flat for large regions of the search space. On
such ‘plateaus’, hillclimbing is useless. For example, imagine a search space
consisting of all possible lists of some fixed length of cooking instructions and
an objective function that rates each such ‘recipe’ according to how good you
think its product tastes. One can imagine using hillclimbing to find a recipe
for some delicious treat, but in reality hillclimbing may be practically use-
less because only very rarely will such a random recipe produce anything
edible at all. Hillclimbing works well for improving configurations having
neighborhoods full of interesting alternatives, but it is not useful for finding
such configurations in the first place. Minsky and Selfridge (1961) discussed
this issue with regard to experimentation with randomly connected neural
networks and the automatic synthesis of computer programs.

This shortcoming of hillclimbing can be addressed in several ways. First,
one can try to define the search space and its neighborhood structure so that
plateaus are small and/or few. This requires using prior knowledge about the
problem to find a search–space representation that leads to a search space
rich in attractive alternatives. In fact, designing appropriate representations
is an essential aspect of any attempt to construct a learning system. A second
way to address hillclimbing’s plateau problem is to use other search methods
to find regions of the search space in which hillclimbing can be useful. The
heuristic search methods of artificial intelligence (AI) (e.g., Pearl, 1984) were
developed to work when hillclimbing does not. According to AI terminology,
hillclimbing is a greedy and irrevocable search strategy. It is greedy because
it selects the best alternative in the immediate neighborhood of the current
configuration without considering the possibility that such a selection may
prevent future access to even better alternatives. Hillclimbing is irrevocable
because it does not permit attention to return to a configuration considered
earlier, even if that configuration showed more promise than the current one.
Search strategies that are neither greedy nor irrevocable can be useful when
simple hillclimbing is not.

One way to modify hillclimbing so that it is neither greedy nor irre-
vocable is to sometimes allow moves to configurations that are inferior to
the current configuration, i.e., to sometimes allow moves downhill on the
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objective function landscape. For example, the SIMULATED ANNEALING
algorithm does this using a probabilistic rule for selecting configurations (al-
though simulated annealing is usually presented as a descent procedure). A
computational temperature, T , determines how likely an inferior configura-
tion will be accepted as the next configuration. When T = 0, the algorithm
reverts to a greedy, irrevocable form of hillclimbing that always rejects mov-
ing to an inferior configuration.

Finally, methods exist for changing the objective function itself as a
result of the learning system’s experiences to make it more informative in
evaluating alternatives. These methods have reached a high state of de-
velopment in the field of REINFORCEMENT LEARNING, where they are
sometimes called adaptive critic methods.
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FIGURE CAPTION

Figure 1. Local and Global Maxima and Minima. The bold region of the
abscissa contains all possible configurations, or points, x, with f(x) repre-
senting the ‘goodness’ of x.


