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Abstract— Intrinsic motivation is what causes us to do
something “for its own sake,” in contrast to doing something for
an external reward. There is great interest in building intrinsic
motivation into artificial systems by defining intrinsic reward
signals within the reinforcement learning framework. Yet, what
intrinsic reward signals are, and how it may differ from
extrinsic reward signals, remains a murky and controversial
subject. Here we approach this issue from an evolutionary
perspective that leads to the conclusion there are no hard
and fast features distinguishing intrinsic and extrinsic reward
signals. Rather, there is a continuum along which reward signals
range that depends on the directness and complexity of the
relationship between the rewarded behavior and evolutionary
success. This article contains work previously published by the
authors and Jonathan Sorg in [26], [27].

I. INTRODUCTION

Intrinsic motivation is what causes us to do something
“for its own sake,” in contrast to doing something for
an external reward. The considerable interest in building
intrinsic motivation into artificial agents is driven by its role
in facilitating the acquisition of knowledge and the skills
needed for an agent to operate successfully over extended
periods of time in a domain, or across multiple domains,
where it will be confronted with a spectrum of different tasks,
the specifics of which are not known beforehand. Researchers
call this “cumulative learning” or ”developmental learning”
during which the accumulation of knowledge and skills
prepares the agent for specific tasks that are likely to be faced
over its future. Prominent biological examples of intrinsically
motivated behavior are exploration, play, manipulation, and
behavior driven by curiosity. This paper describes an evolu-
tionary perspective on intrinsic motivation that clarifies what
it means to be motivated to do something for its own sake.
The present article contains work previously reported by the
authors and Jonathan Sorg in [26], [27].

The idea of giving intrinsic motivation to artificial systems
is not new, having appeared, for example, in Lenat’s AM
system [10]. Most recent work in this direction uses the
reinforcement learning (RL) framework [30], where reward
signals are generated by the agent itself following a variety
of ideas about how intrinsic motivation can be implemented
computationally. This approach began in the early 1990s with
Schmidhuber’s introduction of methods for implementing a
facsimile of curiosity using the RL framework [18], [19]. A
basic assumption is that analogs of intrinsic motivation can
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be implemented by defining suitable reward functions. While
this does not include all instances of intrinsically-motivated
behavior, such as instinctive behavior that does not have to
be learned, it does cover many cases of interest.

More recently, research on this subject has expanded,
with contributions based on a variety of conceptions of
how intrinsic motivation might be rendered in computational
terms [7], [8], [9], [12], [13], [16], [17], [20], [32]. Our
attention to this subject grew out of an interest in hierarchical
RL [2] and the role that intrinsic motivation can play in
constructing hierarchies of reusable skills [3], [4], [15], [21],
[22], [23], [24], [25], [26], [29], [33].

Despite this recent attention, a computational account of
intrinsic motivation, and how it may differ from extrin-
sic motivation, remains murky and controversial. Singh et
al. [26] introduced an evolutionary framework for addressing
these questions, along with the results of computational
experiments that help to clarify some of the issues. They
formulated a notion of an optimal reward function given
a fitness function, where the latter is analogous to what in
nature represents the degree of an animal’s reproductive suc-
cess. The present article describes this framework and some
of those experimental results. This evolutionary perspective
resolves what have been some of the most problematic issues
surrounding the topic of intrinsic motivation, including the
relationship of intrinsic and extrinsic motivation to primary
and secondary reward signals, and the ultimate source of
both forms of motivation.

Other researchers have reported interesting results of com-
putational experiments involving evolutionary search for RL
reward functions [1], [5], [11], [17], [28], but they did
not directly address the motivational issues on which we
focus. Uchibe and Doya [32] do address intrinsic reward
in an evolutionary context, but their aim and approach
differ significantly from ours. Following their earlier work
[31], these authors treat extrinsic rewards as constraints on
learning, while intrinsic rewards set the learning objective.
The study closest to ours is that of Elfwing et al. [6] in which
a genetic algorithm is used to search for shaping rewards [14]
and other learning algorithm parameters that improve an RL
learning system’s performance.

II. BACKGROUND
A. RL Reward Functions

Tying down the entire behavior and learning processes of
an RL system is a reward function: a real-valued function
of the decision problem’s states and actions given as part of
the definition of the problem that the system is learning to
solve. A measure of the amount of reward accumulated over



time constitutes the learning problem’s objective function.
In discussing intrinsic and extrinsic motivation it is useful to
point out some correspondences between the RL framework
and animal reward processes. Rewards in an RL system
correspond to primary rewards, i.e., rewards that for animals
exert their effects through processes hard-wired by evolution
due to their relevance to reproductive success. Value func-
tions used by some RL algorithms are the basis of secondary
(or conditoned or higher-order) rewards, whereby learned
predictions of primary reward act as reward themselves. To
be more accurate, however, we should use the term reward
signal instead of reward for what an RL system’s reward
function produces. What is usually meant by reward in
psychology is an object of some kind that is given to an
animal to encourage certain behavior. A non-zero reward
signal may result from the presentation of an object, but
it can be generated by other means as well.

Although characteristics of the the reward function effect
the difficulty of the RL problem, and how well various
RL algorithms perform, most RL algorithms make no as-
sumptions about the reward function (except maybe bound-
edness). Reward signals can be generated by any type of
process depending on a decision problem’s states and the
agent’s actions. If the decision problem is construed to
include components of the learning system itself, such as
memory or prediction mechanisms, reward functions can
depend on states of these components as well. For example,
Schmidhuber [18], [19] proposed that by defining a reward
signal as a function of changes in the errors of a prediction
component, one obtains an analog of curiosity, whereby the
agent will actively seek experiences that enable decreases
in prediction errors. Crucially, the agent is not rewarded
for making correct predictions, but rather is rewarded for
improving its predictions.

The point is that there is great latitude in defining reward
functions. RL algorithms “don’t care” what generates reward
signals. Some reward signals may be provided by other
agents who can only observe the learning agent’s external
behavior, while other reward signals may be generated by
mechanisms that monitor the internal workings, and the his-
tories thereof, of the learning agent itself. This is extensively
discussed in [4], [25], [26], [27].

It is tempting to define extrinsic rewards signals as those
coming from outside the learning agent, and intrinsic reward
signals as those generated inside the agent. However, this
view is fraught with difficulties. In the first place, since it is
reward signals that are important for learning, one must note
that all reward signals are generated inside the agent. In the
case of ourselves, for example, our brains contain extensive
neural circuits devoted to generating reward signals. Some
directly reflect external stimuli, as when we ingest tasty
food, and some may be entirely internal. But the generation
of most reward signals involves both internal and external
information: e.g., a food reward signal depends on an internal
state of satiety as well as an external object, and a curiosity
reward signal—if we follow something like Schmidhuber
proposed—depends on external events and our ability to

predict them.
It is also tempting to define intrinsic reward signals as

those reward signals learned through association with a
primary reward signal. This is the process of secondary, or
conditioned, reinforcement by which stimuli that predict pri-
mary reward become rewarding themselves. In psychological
accounts, the view that intrinsic reward equals secondary
reward is rejected due to experimental results showing that
intrinsically motivated behavior is motivationally energizing
and rewarding on its own and not because it predicts the
satisfaction of a primary biological need. For example,
children spontaneously explore very soon after birth, so there
is little opportunity for them to experience extensive pairing
of this behavior with primary reward.

There has never been any doubt, however, that exploration,
manipulation, and other apparently intrinsically-motivated
behaviors are important for an animal’s survival and repro-
ductive success if deployed in the right way. Appropriately
cautious exploration, for example, clearly has implications
for reproductive success because it can enable efficient
foraging and successful escape when those needs arise.
But an animal is not motivated to perform these behaviors
because behaving this way previously in its own lifetime
predicted biologically-primary rewards. The preponderance
of evidence supports the view that the motivational forces
driving these behaviors are built-in by the evolutionary
process; not learned.

III. EVOLUTIONARY PERSPECTIVE

It is therefore natural to investigate what an evolutionary
perspective might tell us about the nature of intrinsic reward
signals and how they might differ from extrinsic reward sig-
nals. We adopt the view discussed above that intrinsic reward
is not the same as secondary reward. It is likely that the
evolutionary process gave exploration, play, discovery, etc.,
positive hedonic valence because these behaviors contributed
to reproductive success throughout evolution. Consequently,
we regard intrinsic reward signals in the RL framework as
primary reward signals, hard-wired from the start of the
agent’s life. Like any other primary reward signal in RL, they
come to be predicted by the value-function learning system.
These predictions can support secondary reinforcement so
that predictors of intrinsically rewarding events can acquire
rewarding qualities through learning just as predictors of
extrinsically rewarding events can.

The evolutionary perspective thus leads to an approach in
which adaptive agents, and therefore their reward functions,
are evaluated according to their expected fitness given an ex-
plicit fitness function and some distribution of environments
of interest. The fitness function maps trajectories of agent-
environment interactions to scalar fitness values, and may
take any form. In our approach, we search a space of primary
reward functions for the one that maximizes the expected
fitness of an RL agent that learns using that reward function.



Features of such an optimal reward function1 and how these
features relate to the environments in which agent lifetimes
are evaluated provide insight into the relationship between
extrinsic and intrinsic reward signals.

We turn next to a formal framework that captures the
requisite abstract properties of agents, environments, and
fitness functions and defines the evolutionary search for good
reward functions as an optimization problem.

A. Optimal Reward Functions

We define an optimal reward function as follows. For
a given RL agent A, there is a space, RA, of reward
functions that map an agent’s state to a scalar primary reward
that drives reinforcement learning. The composition of the
state can depend on the agent architecture and its learning
algorithm. There is a distribution over Markov decision
process (MDP; [?]) environments in some set E in which we
want our agents to perform well (in expectation). A specific
reward function rA ∈ RA and a sampled environment E ∈ E
produces h, the history of agent A learning in environment
E using the reward function rA. A given fitness function F
produces a scalar evaluation F (h) for any such history h. An
optimal reward function, r∗A ∈ RA, is the reward function
that maximizes the expected fitness over the distribution of
environments.

The formulation is very general because the constraints
on A, RA, F , and E are minimal. A is constrained only to
be an agent that uses a reward function rA ∈ RA to drive
its search for behavior policies. F is constrained only to be
a function that maps (finite or infinite) histories of agent-
environment interactions to scalar fitness values. And E is
constrained only to be a set of MDPs, though the Markov
assumption can be easily relaxed.

The above formulation essentially defines a search
problem—the search for r∗A. This search is for a primary re-
ward function and is to be contrasted with the search problem
faced by an agent during its lifetime, that of learning a good
value function, and hence a good secondary reward function,
specific to its environment. Thus, our concrete hypothesis
is (1) the r∗A derived from search will capture physical
regularities across environments in E as well as complex
interactions between E and specific structural properties of
the agent A (note that the agent A is part of its environment
and is constant across all environments in E), and (2) the
value functions learned by an agent during its lifetime will
capture regularities present within its specific environment
that are not necessarily shared across environments.

IV. EXPERIMENT: EMERGENT INTRINSIC REWARD FOR
PLAY AND MANIPULATION

We now describe a computational experiment in which we
directly specify the agent A with associated space of reward
functions RA, a fitness function F , and a set of environments

1We use this term despite the fact that none of our arguments depend
on our search procedure finding true globally-optimal reward functions. We
are concerned with reward functions that confer advantages over others and
not with absolute optimality.

E , and derive r∗A via (approximately) exhaustive search. This
experiment was designed to serve three purposes. First, it will
provide a concrete and transparent illustration of the basic
optimal reward framework above. Second, it will demonstrate
the emergence of interesting reward function properties that
are not direct reflections of the fitness function—including
features that might be intuitively recognizable as candidates
for plausible intrinsic and extrinsic rewards in natural agents.
Third, it will demonstrate the emergence of interesting re-
ward functions that capture regularities across environments,
and similarly demonstrate that value function learning by the
agent captures regularities within single environments.

This experiment was designed to illustrate how our optimal
reward framework can lead to the emergence of an intrinsic
reward for actions such as playing with and manipulating
objects in the external environment, actions that do not
directly meet any primal needs (i.e., are not fitness inducing)
and thus are not extrinsically motivating.

Greedy Policy at Step 1000000

when Not Hungry, Box1 open, Box2 openFig. 1. Boxes environments. Each boxes environment is a 6 × 6 grid
with two boxes that can contain food. The two boxes can be in any two
of the four corners of the grid; the locations are chosen randomly for each
environment. The agent has four (stochastic) movement actions in the four
cardinal directions, as well actions to open closed boxes and eat food from
the boxes when available. See text for further details.

A. Boxes Environments

We use a simulated physical space shown by the 6 × 6
grid in Fig. 1. It consists of four subspaces (of size 3 × 3).
There are four movement actions, North, South, East
and West, that if successful move the agent probabilistically
in the direction implied, and if they fail leave the agent in
place. Actions fail if they would move the agent into an
outer bound of the grid or across a barrier, represented by
one of the thick black lines in the figure. Consequently,
the agent has to navigate through gaps in the barriers to
move to adjacent subspaces. In each sampled environment
two boxes are placed in randomly chosen special locations
(from among the four corners and held fixed throughout the
lifetime of the agent). This makes a uniform distribution over
a space of six environments (the six possible locations of two
indistinguishable boxes in the four corners). In addition to the
usual movement actions, the agent has two special actions:
open, which opens a box if it is closed and the agent is at
the location of the box and has no effect otherwise (when a
closed box is opened it transitions first to a half-open state
for one time step and then automatically to an open state at
the next time step regardless of the action by the agent), and



eat, which has no effect unless the agent is at a box location,
the box at that location is half-open, and there happens to be
food (prey) in that box, in which case the agent consumes
that food.

An open box closes with probability 0.1 at every time step.
A closed box always contains food. The prey always escapes
when the box is open. Thus to consume food, the agent has
to find a closed box, open it, and eat immediately in the
next time step when the box is half-open. When the agent
consumes food it feels satiated for one time step. The agent
is hungry at all other time steps. The agent-environment
interaction is not divided into trials or episodes. The agent’s
observation is 6 dimensional: the x and y coordinates of its
location, its hunger-status, the open/half-open/closed status
of both boxes, as well the presence/absence of food in
the square where the agent is located. These environments
are Markovian because the agent senses the status of both
boxes regardless of location and because closed boxes always
contain food; hence each immediate observation is a state.

B. Fitness

Each time the agent eats food its fitness is incremented
by one. This is a surrogate for what in biology would be
reproductive success (we could just as well have replaced
the consumption of food event with a procreation event in
our abstract problem description). The fitness objective, then,
is to maximize the amount of food eaten over the agent’s
lifetime. Recall that when the agent eats it becomes satiated
for one time step, and thus a direct translation of fitness into
reward would assign a reward of c > 0 to all states in which
the agent is satiated and a reward of d < c to all other states.
Thus, there is a space of fitness-based reward functions. We
will refer to fitness-based reward functions in which d is
constrained to be exactly 0 as simple fitness-based reward
functions. Note that our definition of fitness is incremental
or cumulative and thus we can talk about the cumulative
fitness of even a partial (less than lifetime) history.

C. Agent

Our agent (A) uses the lookup-table ε-greedy Q-
learning [34] algorithm with the following parameters: 1)
Q0, the initial Q-function (we use small values chosen
uniformly randomly for each state-action pair from the
range [−0.001, 0.001]) that maps state-action pairs to their
expected discounted sum of future rewards, 2) α, the step-
size, or learning-rate parameter, and 3) ε, the exploration
parameter (at each time step the agent executes a random
action with probability ε and the greedy action with respect
to the current Q-function with probability (1− ε)).

For each time step t, the current state is denoted st, the
current Q-function is denoted Qt, the agent executes an
action at, and the Q-learning update is as follows:

Qt+1(st, at) = (1−α)Qt(st, at)+α[rt+γmax
b

(Qt(st+1, b)],

where rt is the reward specified by reward function rA for
the state st, and γ is a discount factor that makes immediate

reward more valuable than later reward (we use γ = 0.99
throughout).

We emphasize that the discount factor is an agent param-
eter that does not enter into the fitness calculation. That is,
the fitness measure of a history remains the total amount
of food eaten in that history for any value of γ the agent
uses in its learning algorithm. It is well known that the form
of Q-learning used above will converge asymptotically to
the optimal Q-function2 and hence an optimal policy. Thus,
our agent uses its experience to continually adapt its action
selection policy to improve the discounted sum of rewards, as
specified by rA, that it will obtain over its future (remaining
in its lifetime). Note that the reward function is distinct from
the fitness function F .

D. Space of Possible Rewards Functions

To make the search for an optimal reward function
tractable, each reward function in the search space maps
abstract features of each immediate observation to a scalar
value. Specifically, we considered reward functions that
ignore agent location and map each possible combination
of the status of the two boxes and the agent’s hunger-
status to values chosen in the range [−1.0, 1.0]. This range
does not unduly restrict generality because one can always
add a constant to any reward function without changing
optimal behavior. Including the box-status features allows
the reward function to potentially encourage “playing with”
boxes while the hunger-status feature is required to express
the fitness-based reward functions that differentiate only
between states in which the agent is satiated from all other
states (disregarding box-status and agent location).

E. Finding a Good Reward Function

The psuedo-code below describes how we use simulation
to estimate the mean cumulative fitness for a reward function
rA given a particular setting of agent (Q-learning) parameters
(α, ε).

set (α, ε)
for i = 1 to N do

Sample an environment Ei from E
In A, intialize Q-function
Generate a history hi over lifetime for A in Ei

Compute fitness F (hi)
end for
return average of {F (h1), . . . , F (hN )}
For the results we report below, we estimate the mean

cumulative fitness of rA as the maximum estimate obtained
(using the pseudo-code above) over a coarse discretization
of the space of feasible (α, ε) pairs. Finding good reward
functions for a given fitness function thus amounts to a large
search problem. We discretized the range [−1.0, 1.0] for each
feasible setting of the three reward features such that we
evaluated 54, 000 reward functions in the reward function
space. We chose the discretized values based on experimental

2Strictly speaking, convergence with probability one requires the step-
size parameter α to decrease appropriately over time, but for our purposes
it suffices to keep it fixed at a small value.



experience with the boxes environments with various reward
functions.

Note that our focus is on demonstrating the generality
of our framework and the nature of the reward functions
found rather than on developing efficient algorithms for
finding good reward functions. Thus, we attempt to find a
good reward function r̂∗A instead of attempting the usually
intractable task of finding the optimal reward function r∗A,
and we are not concerned with the efficiency of the search
process. Neikum et al. [15] use genetic programming to
perform this search in a more sophisticated manner.

F. Results

Recall the importance of regularities within and across
environments to our hypotheses. In this experiment, what
is unchanged across environments is the presence of two
boxes and the rules governing food. What changes across
environments—but held fixed within a single environment—
are the locations of the boxes.

We ran this experiment under two conditions. In the first,
called the constant condition, the food always appears in
closed boxes throughout each agent’s lifetime of 10, 000
steps. In the second, called the step condition, each agent’s
lifetime is 20, 000 steps, and food appears only in the second
half of the agent’s lifetime, i.e., there is never food in any
of the boxes for the first half of the agent’s lifetime, after
which food always appears in a closed box. Thus in the step
condition, it is impossible to increase fitness above zero until
after the 10, 000th time step.

The step condition simulates (in extreme form) a devel-
opmental process in which the agent is allowed to “play”
in its environment for a period of time in the absence of
any fitness-inducing events (in this case, the fitness-inducing
events are positive, but in general there could also be negative
ones that risk physical harm). Thus, a reward function that
confers advantage through exposure to this first phase must
reward events that have only a distal relationship to fitness.
Through the agent’s learning processes, these rewards give
rise to the agent’s intrinsic motivation. Notice that this should
happen in both the step and constant conditions; we simply
expect it to be more striking in the step condition.

The left and middle panels of Fig. 2 show the mean
(over 200 sampled environments) cumulative fitness as a
function of time within an agent’s lifetime under the two
conditions. As expected, in the step condition, fitness remains
zero under any reward function for the first 10, 000 steps.
Also as expected, the best reward function outperforms the
best fitness-based reward function over the agent’s lifetime.
The best fitness-based reward function is the best reward
function in the reward function space that satisfies the
definition of a fitness-based reward function for this class
of environments. We note that the best fitness-based reward
function assigns a negative value to states in which the agent
is hungry (this makes the agent’s initial Q-values optimistic
and leads to efficient exploration; see Sutton and Barto [?]
for an explanation of this effect). The best reward function
outperforms the best simple fitness-based reward by a large

margin (presumably because the latter cannot make the initial
Q-values optimistic).

Table I shows the best reward functions and best fitness-
based reward functions for the two conditions of the exper-
iment, e.g., the best reward function for the Step condition
is as follows: being satiated has a positive reward of 0.5
when both boxes are open and 0.3 when one box is open,
being hungry with one box half-open has a small negative
reward of −0.01, and otherwise being hungry has a reward
of −0.05. Note that the agent will spend most of its time
in this last situation. Of course, as expected and like the
best fitness-based reward function, the best reward function
has a high positive reward for states in which the agent is
satiated. More interestingly, the best reward function in our
reward function space rewards opening boxes (by making
their half-open state rewarding relative to other states when
the agent is hungry). This makes the agent “play” with the
boxes and as a result learn the environment-specific policy to
optimally navigate to the location of the boxes and then open
them during the first half of the step condition so that when
food appears in the second half, the agent is immediately
ready to exploit that situation.

The policy learned under the best reward function has
an interesting subtle aspect: it makes the agent run back
and forth between the two boxes, eating from both boxes,
because this leads to higher fitness (in most environments)3

than staying at, and taking food from, only one box. This
can be seen indirectly in the rightmost panel where the mean
cumulative number of times both boxes are open is plotted as
a function of time. It is clear that an agent learning with the
overall best reward function keeps both boxes open far more
often than one learning from the best fitness-based reward
function. Indeed the behavior in the latter case is mainly to
loiter near (an arbitrary) one of the boxes and repeatedly wait
for it to close and then eat.

Finally, it is also noteworthy that there are other reward
functions that keep both boxes open even more often than the
best reward function (this is seen in the rightmost panel), but
this occurs at the expense of the agent not taking the time to
actually eat the food after opening a box. This suggests that
there is a fine balance in the best reward function between
intrinsically motivating “playing” with and manipulating the
boxes and extrinsically motivating eating.

G. Summary

This experiment demonstrates that the evolutionary pres-
sure to optimize fitness captured in the optimal reward
framework can lead to the emergence of reward functions
that assign positive primary reward to activities that are not
directly associated with fitness. This was especially evident

3The agent could hang out at one box and repeatedly wait for it to close
randomly and then open it to eat, but the probability of an open box closing
was specifically (experimentally) chosen so that it is better for the agent in
the distribution over environments to repeatedly move between boxes to eat
from both. Specifically, an open box closes with probability 0.1 and thus
on average in 10 time steps, while the average number of time steps to
optimally travel between boxes across the 6 environments is less than 10
time steps.
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Fig. 2. Results from Boxes environments. The leftmost panel shows for the constant condition the mean cumulative (over agent lifetime) fitness achieved
by all the reward functions sampled in our search for good reward functions. The middle panel shows the same results but for the step condition. The
rightmost panel shows for the step condition the mean cumulative growth in the number of time steps both boxes were open for all the reward functions
explored. In each panel, the curves for the best reward function, for the best fitness-based reward function, and for the best simple fitness-based reward
functions are distinguished. See text for further details.

TABLE I
RESULTS FOR THE step AND constant CONDITIONS. EACH ROW OF PARAMETER VALUES DEFINES A REWARD FUNCTION BY SPECIFYING REWARD

VALUES FOR EACH OF SEVEN FEASIBLE COMBINATIONS OF STATE FEATURES. THE COLUMN HEADINGS O, NOT-O, AND HALF-O, ARE SHORT FOR

OPEN, NOT-OPEN AND HALF-OPEN RESPECTIVELY. SEE TEXT FOR FURTHER DETAILS.

CONDITION REWARD TYPE REWARD AS A FUNCTION OF STATE

Satiated Hungry

o/o o/not-o o/o o/not-o o/half-o not-o/half-o not-o/not-o

Constant Best 0.7 0.3 −0.01 −0.05 0.2 0.1 −0.02
Best fitness-based 0.7 0.7 −0.005 −0.005 −0.005 −0.005 −0.005

Step Best 0.5 0.3 −0.05 −0.05 −0.01 −0.01 −0.05
Best fitness-based 0.5 0.5 −0.01 −0.01 −0.01 −0.01 −0.01

in the step condition of the experiment: during the first
half of the agent’s lifetime, no fitness-producing activities
are possible, but intrinsically rewarding activities (running
between boxes to keep both boxes open) are pursued that
have fitness payoff later. The best (primary) reward captures
the regularity of needing to open boxes to eat across all
environments, while leaving the learning of the environment-
specific navigation policy for the agent to accomplish within
its lifetime by learning the Q-value function.

V. CONCLUSION

We believe that the optimal reward framework described
here clarifies the computational role and origin of intrinsic
and extrinsic motivation. More specifically, the experimental
results support two claims about the implications of the
framework for intrinsic and extrinsic motivation.

First, both intrinsic and extrinsic motivation can be un-
derstood as emergent properties of reward functions selected
because they increase the fitness of learning agents across
some distribution of environments. When coupled with learn-
ing, a primary reward function that rewards behavior that
is useful across many environments can produce greater
evolutionary fitness than a function exclusively rewarding
behavior directly related to fitness. For example, in the ex-

periment above, eating is necessary for evolutionary success
in all environments, so we see primary rewards generated
by (satiated) states resulting immediately from eating-related
behavior. But optimal primary reward functions can also
motivate richer kinds of behavior less directly related to
basic needs, such as play and manipulation of the boxes,
that can confer significantly greater evolutionary fitness to
an agent. This is because what is learned as a result of being
intrinsically motivated to play with and manipulate objects
contributes, within the lifetime of an agent, to that agent’s
ability to survive and reproduce.

Second, the difference between intrinsic and extrinsic
motivation is one of degree—there are no hard and fast
features that distinguish them. A stimulus or activity comes
to elicit reward to the extent that it helps the agent attain
evolutionary success based on whatever the agent does
to translate primary reward to learned secondary reward,
and through that to behavior during its lifetime. What we
call intrinsically rewarding stimuli or activities are those
that bear only a distal relationship to evolutionary success.
Extrinsically rewarding stimuli or events, on the other hand,
are those that have a more immediate and direct relationship
to evolutionary success.

Our optimal reward framework and experimental results



thus explain why evolution would give exploration, ma-
nipulation, play, etc. positive hedonic valence, i.e., make
them rewarding, along with stimuli and activities that are
more directly related to evolutionary success. The distinction
between intrinsic and extrinsic motivation is therefore a
matter of degree, but their source and role is computationally
clear: both intrinsic and extrinsic motivation are emergent
properties of a process that adjusts reward functions in
pursuit of improved evolutionary success.
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