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INTRODUCTION

How do we learn motor skills such as reaching, walking, swimming, or riding a bicycle? There
is a large literature on motor skill acquisition which is full of controversies (for an introduction
to human motor control, see Schmidt and Lee, 1999), but there is general agreement that motor
learning requires the learner, human or not, to receive response-produced feedback through various
senses providing information about performance. Careful consideration of the nature of the feedback
used in learning is important for understanding the role of reinforcement learning in motor control
(see REINFORCEMENT LEARNING). One function of feedback is to guide the performance of
movements. This is the kind of feedback with which we are familiar from control theory, where it is
the basis of servo control, although its role in guiding animal movement is more complex. Another
function of feedback is to provide information useful for improving subsequent movement. Feedback
having this function has been called learning feedback. Note that this functional distinction between
feedback for control and for learning does not mean that the signals or channels serving these
functions need to be different.

LEARNING FEEDBACK

When motor skills are acquired without the help of an explicit teacher or trainer, learning feedback
must consist of information automatically generated by the movement and its consequences on
the environment. This has been called intrinsic feedback (Schmidt and Lee, 1999). The “feel”
of a successfully completed movement and the sight of a basketball going through the hoop are
examples of intrinsic learning feedback. A teacher or trainer can augment intrinsic feedback by
providing extrinsic feedback (Schmidt and Lee, 1999) consisting of extra information added for
training purposes, such as a buzzer indicating that a movement was on target, a word of praise or
encouragement, or an indication that a certain kind of error was made.

Most research in the fields of machine learning and artificial neural networks has focused on the
learning paradigm called supervised learning, which emphasizes the role of training information in
the form of desired, or ‘target’, network responses for a set of training inputs (PERCEPTRONS,
ADALINES, AND BACKPROPAGATION). However, motor learning is more complex than su-
pervised learning even when it involves extrinsic feedback provided by a trainer. For example, a



trainer can tell or show us what to do, explicitly guide our movements, give us hints on how to
deal with difficult parts of a skill, tell us when we have improved or done badly, etc. The aspect
of real training that corresponds most closely to the supervised learning paradigm is the trainer’s
role in telling or showing the learner what to do, or explicitly guiding his or her movements. These
activities provide standards of correctness that the learner can try to match as closely as possible by
reducing the error between its behavior and the standard. Supervised learning can also be relevant
to motor learning when there is no trainer because intrinsic feedback can be used to learn various
kinds of models that are useful for motor control. Kawato (1999) and Desmurget and Grafton
(2000) discuss some of the uses of models in motor control.

In contrast to supervised learning, reinforcement learning emphasizes learning feedback that evalu-
ates the learner’s performance without providing standards of correctness in the form of behavioral
targets (see REINFORCEMENT LEARNING). Although the most obvious evaluative feedback
is extrinsic feedback provided by a trainer, most evaluative feedback is probably intrinsic, being
derived by the learner from sensations generated by a movement and its consequences on the envi-
ronment: the kinesthetic and tactile feel of a successful grasp or the swish of a basketball through the
hoop. Evaluative feedback is often called reinforcement feedback (and it need not involve pleasure
or pain). A reinforcement learning has to actively try alternatives, compare the resulting evalua-
tions, and use some kind of selection mechanism to guide behavior toward the better alternatives.
This basic idea follows Thorndike’s classical “Law of Effect” (Thorndike, 1911) and is commonly
called learning by trial-and-error (not to be confused with error-correction, or supervised, learning).

The great Russian physiologist Nikolai Bernstein discussed the role of trial-and-error learning in
motor control in his classic 1967 book (Bernstein, 1967). He distinguished his view from the concept
of random undirected search which he attributed to the behaviorists. According to Bernstein, the
process must be an active search involving “gradient extrapolation” by probabilistic sampling so
that each attempt is informed by previously acquired information about “how and where the
next step must be taken.” This is very much in accord with modern concepts of reinforcement
learning, where randomness is often used to generate behavioral variety, but action selections are
strongly constrained by evaluations of earlier experience (see REINFORCEMENT LEARNING).
To Bernstein, this kind of search was important for motor behavior, especially for movements
requiring high levels of co-ordination. Another motor control theorist, Jack Adams, provided an
interesting discussion of the role of the law of effect in motor control in a 1978 article (Adams,
1978). Although he called into question some of the details of Thorndike’s theories, he affirmed the
importance of reinforcement learning in motor control.

Motor learning involves feedback carrying many different kinds of information. Consequently, it
is incorrect to view motor learning strictly in terms of either supervised, reinforcement, or any
other learning paradigms that have been formulated for theoretical study. Aspects of all of these
paradigms play interlocking roles, with their relative importance undoubtedly varying with the type
of task as well as the developmental stage. However, reinforcement learning may be an essential
component of motor learning simply because evaluative feedback is more easily obtained than many
other kinds of learning feedback.



Figure 1: Panel A: A Basic Control Loop. A controller provides control signals to a controlled
system, whose behavior is influenced by disturbances. Feedback from the controlled system to
the controller provides information on which the control signals can depend. Commands to the
controller specify aspects of the control task’s objective. Panel B: A Control System with Learning
Feedback. A critic provides the controller with a reinforcement signal evaluating its success in
achieving the control objectives.

LEARNING FROM CONSEQUENCES

To illustrate how reinforcement learning applies to motor learning, we first discuss it within the
general context of control. Then we describe several special cases related to motor control. Fig-
ure 7?7, Panel A, is a variation of the classical control system diagram. A controller provides control
signals to a controlled system. The behavior of the controlled system is influenced by disturbances,
and feedback from the controlled system to the controller provides information on which the control
signals can depend. Commands to the controller specify aspects of the control task’s objective.

In Figure 77, Panel B, the control loop is augmented with another feedback loop that provides
learning feedback to the controller. In accordance with common practice in reinforcement learning,
a critic is included that generates evaluative learning feedback on the basis of observing the control
signals and their consequences on the behavior of the controlled system. The critic also needs to
know the command to the controller because its evaluations must be different depending on what the
controller should be trying to do. The critic is an abstraction of whatever process supplies evaluative
learning feedback, both intrinsic and extrinsic, to the learning system. It is often said that the critic
provides a reinforcement signal to the learning system. In most artificial reinforcement learning
systems, the critic’s output at any time is a number that scores the controller’s behavior: the higher
the number, the better the behavior. Assume for the moment that the behavior being scored is
the some immediately preceding unit of behavior. We discuss what a unit of behavior might be,
as well as more complex temporal relationships below. For this process to work, there must be
some variability in the controller’s behavior so that the critic can evaluate many alternatives. A
learning mechanism can then adjust the controller’s behavior so that it tends toward behavior that
is favored by the critic.

A learning rule particularly suited to reinforcement learning control systems implemented as arti-
ficial neural networks was developed by Gullapalli (1990) in the form of what he called a Stochas-
tic Real-Valued (SRV) unit. An SRV unit’s output is produced by adding a random number to
the weighted sum of the components of its input pattern. The random number is drawn from a
zero-mean Gaussian distribution. This random component provides the unit with the variability
necessary for it to ‘explore’ its activity space. When the reinforcement signal indicates that some-
thing good happened just after the unit emitted a particular output value in the presence of some
input pattern, the unit’s weights are adjusted to move the activation in the direction in which it
was perturbed by the random number. This has the effect of increasing the probability that future
outputs generated for that input pattern (and similar input patterns) will be closer to the output
value just emitted. If the reinforcement signal indicates that something bad happened, the weights
are adjusted to move future output values away from the value just emitted. Another part of the
SRV learning rule decreases the variance of the Gaussian distribution as learning proceeds. This
decreases the variability of the unit’s behavior, with the goal of making it eventually stick (i.e.,



Figure 2: Block Diagram of a Reinforcement Learning Controller of an Arm (after Figure 1 of
Lipitkas et al., 1993). Given inputs coding the starting and target positions of the hand, the
network controller learns to provide correct parameters to a torque generator which generates, in
open-loop mode, time-varying torque signals to the arm. The reinforcement signal evaluates the
success of each movement after its completion.

become deterministic) at the best output value for each input pattern. Using this learning rule, an
SRV unit learns to produce the best output in response to each input pattern (given appropriate
assumptions). Unlike more familiar supervised learning units, it is never given target outputs; it
has to discover what outputs are best through an active exploration process.

OVERCOMING THE DISTAL ERROR PROBLEM

As a simple illustration of how reinforcement learning can be useful in motor learning, consider
the problem of learning to reach to specific points in space starting from a variety of initial hand
positions. Lipitkas et al. (1993) proposed a particularly straightforward method (although not
as a model of the human learning process, which is much more complex). Their controller is an
artificial neural network receiving inputs coding the initial spatial location and the desired, or
target, spatial location of the hand (ignoring hand orientation). The six outputs of the network
provide parameters to a torque generator that generates time-varying signals for driving the joint
actuators of a dynamic arm model (Figure ??7). The time-varying signals are parameterized by
six numbers determining characteristics of their wave-like shapes (e.g., giving the magnitudes and
relative timing of the half-waves). During each movement, the controller operates in open-loop
mode, generating the torque time functions without the aid of sensory feedback. The problem for
the network is to learn a function associating each pair of hand starting and target positions to the
values of the six torque-generator parameters that will accomplish the movement.

A straightforward application of supervised learning is not possible here because the required
training examples are not available: It is not known what parameters will work for any pair of
starting and target positions (except possibly the trivial cases in which the starting position is
already the target position, but these are not useful as training examples). This is an instance
of what has been called the distal error problem (Jordan and Rumelhart, 1992) for supervised
learning. This problem is present whenever the standard of correctness required for supervised
learning is available in a coordinate system that is different from the one in which the learning
system’s activity must be specified for learning. In the case of learning how to move the hand from
a starting position to a target position, the standard of correctness is the target position, but what
must be learned are the control signals to the joint actuators, that is, to the muscles. The hand
position error is distal to the output of the controller that has to be learned. Although a nonzero
distal error vector indicates that the controller made an error, it does not tell the controller how it
should change its output in order to reduce the error.

The distal error problem can be solved by using a model of the controller’s influence on the arm’s
movement (possibly learned via supervised learning) to translate distal error vectors into error
vectors required for supervised learning (Jordan and Rumelhart, 1992). Another approach is to
learn an inverse model of the controller’s influence on the arm’s movement (Jordan and Rumelhart,



1992; Kawato, 1999). Reinforcement learning offers another way of to overcome the distal error
problem because it does not need learning feedback in the form of error vectors. Continuing with the
reaching example, Lipitkas et al. (1993) defined a reinforcement signal that attains a maximum value
of one if the hand reaches the desired position and stops there. The signal decreases depending
on the distance between the hand’s final position and the target position and on its tangential
velocity as it passes the target position. The reinforcement signal could include other criteria of
successful movements as well. With inputs coding starting and target hand positions, the network
employs SRV units to generate six parameter values using its current weights. The torque generator
generates a movement using these parameter values. When the movement is completed, it is scored
by the reinforcement signal, and the network’s weights are changed according to Gullapalli’s SRV
learning rule. After a few thousand movements with different starting and target hand positions,
the system could move with reasonable accuracy for new pairs of starting and target positions as
well as for the pairs on which it was trained. This amount of practice is required because the
system effectively has to search the six-dimensional parameter space for each starting and target
position. A more complicated example of reinforcement learning using SRV units is the work on
biped walking by Benbrahim and Franklin (1997).

The relative advantages and disadvantages of supervised and reinforcement learning approaches to
the distal error problem have been discussed by many researchers. It is clear that reinforcement
learning approaches are simpler, but reinforcement learning is usually slower in terms of the amount
of experience required for learning. This is true because reinforcement learning methods extract
less information from each experience than do the model-based supervised approaches. However,
in some problems it is easier to learn the right actions than it is to model their effects on a
complicated process. Reinforcement learning methods are also more plausible from the perspective
of neuroscience (see below), while the backpropagation process often used by supervised approaches
is more difficult to reconcile with what we know about neural mechanisms. In practical terms, which
approach is more advantageous will depend on aspects of the specific problem being considered.

COLLECTIVE BEHAVIOR

Another property of reinforcement learning that might be relevant to motor control is the ability of a
“team” of reinforcement learning systems to learn to cooperate so that the team as a whole improves
performance. Here is an example presented in a 1965 lecture by the cybernetician Mikhail Tsetlin
(Tsetlin, 1973), a pioneer in the study of simple reinforcement learning systems called “learning
automata.” He presented the basic idea as follows in terms of human players (the so-called Goore
game). Suppose there is a referee and some number of players. The referee can see the players
but the players cannot see one another. At the sound of a buzzer, each player is to raise one or
two fingers. The referee determines what percentage of players raised one finger, then pays each
player a fixed amount with a probability that depends only on this percentage (and is the same for
each player). The process repeats each time the buzzer sounds. It turns out that for any number
of players each implementing a sufficiently competent reinforcement learning rule, eventually each
player will settle on raising either one or two fingers so that the percentage of those raising one
finger is (with probability close to 1) a local maximum of whatever payoff function the referee uses.
This occurs with no direct communication among the players and no agreements of any kind among
them.



It is possible to extend this result to one in which the referee provides payments based not just
on the percentage of players raising one finger, but on any function whatsoever of the pattern of
players’ fingers. One can see how this is an instance of the problem of learning with a distal teacher,
with the added complication that the payoff, or reinforcement signal, to each player is extremely
noisy due to the noise introduced by the actions of the other players (in addition to the referee’s
probabilistic payoff method).

Tsetlin speculated that the recruitment of motor units can be reduced to this type of problem.
Here, the problem would be to activate the right number of motor units to obtain a pull of a given
force. The referee corresponds to a process that evaluates the results of the collective behavior of the
entire pool of motor units on the resulting force. The collective behavior of reinforcement learning
systems has been studied by many researchers (e.g., Narendra and Thathachar, 1974; Barto, 1985),
although no modern work following up Tsetlin’s suggestion about motor unit recruitment appears
to exist.

CREDIT ASSIGNMENT PROBLEMS

The challenge of reinforcement learning is often summed up as various kinds of credit assignment
problems. A scalar evaluation of a complex mechanism’s behavior does not indicate which of its
many action components, both internal and external, were responsible for the evaluation. This
makes it difficult to determine which of these components deserve the credit (or the blame) for
the evaluation. This problem is sometimes referred to as the structural credit assignment problem:
How is credit assigned to the internal workings of a complex structure? One approach is to assign
credit equally to all the components so that through a process of averaging over many variations of
the behavior, the components that are key in producing laudable behavior end up gaining the most
strength, while inappropriate components are weakened. This is the general approach illustrated
above by the Goore game.

The fact that reinforcement learning can work under these circumstances makes neural implementa-
tion quite plausible. A single reinforcement signal uniformly broadcasted to all the sites of learning,
either neurons or individual synapses, is consistent with anatomical and physiological evidence
showing the existence of diffusely projecting neural pathways by which neuromodulatory chemicals
can be widely and nonspecifically distributed. It has been suggested that some of these pathways
may play a rule in reward-mediated learning. A specific hypothesis is that dopamine mediates
synaptic enhancement in the corticostriatal pathway in the manner of a broadcasted reinforcement
signal (see DOPAMINE, ROLE OF). This may be one of the ways in which reinforcement learning
is implemented for motor control.

Another aspect of the credit assignment problem occurs when the temporal relationship between
a system’s behavior and evaluations of that behavior is not as simple as assumed above. How can
reinforcement learning work when the learner’s behavior is temporally extended and evaluations
occur at varying and unpredictable times? Under these more realistic conditions, it is not always
clear what elements of behavior are being evaluated. This has been called the temporal credit
assignment problem. It is especially relevant in motor control because movements extend over time
and evaluative feedback may become available only after the end of a movement. An approach to
this problem that is receiving considerable attention is the use of methods by which the critic itself



can learn to provide useful evaluative feedback immediately after the evaluated event. According
to this approach, reinforcement learning is not only the process of improving behavior according
to given evaluative feedback; it also includes learning how to improve the evaluative feedback
itself. The strong parallels between algorithms for adapting evaluative feedback (temporal difference
methods; see REINFORCEMENT LEARNING) and the properties of dopamine producing neurons
in the brain (see DOPAMINE, ROLE OF) make it plausible that the brain uses similar methods
for dealing with the temporal credit assignment problem.

The modern view of reinforcement learning developed by machine learning researchers uses the
framework of stochastic optimal control to study the temporal credit assignment problem (see
REINFORCEMENT LEARNING). From this perspective, reinforcement learning algorithms are
methods for approximating solutions to complex stochastic optimal control problems via relatively
simple mechanistic learning rules. Because optimality principles have played significant roles in
theories of motor control (Engelbrecht, 2001), and because stochasticity may be an important
element of motor control (Harris, 1998), the modern theory of reinforcement may prove to be of
great utility in extending our understanding of motor learning.

DISCUSSION

As emphasized above, motor learning is too complex to view strictly in terms of either supervised
learning or reinforcement learning. Feedback used in motor learning ranges from specific standards
of correctness to nonspecific evaluative information, and many learning mechanisms with differing
characteristics probably interact to produce the motor learning capabilities of animals. However,
reinforcement learning principles may be indispensable for motor learning because they seem nec-
essary for improving motor performance when the standards of correctness required by supervised
learning are not available.
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FIGURE CAPTIONS

Figure 1. Panel A: A Basic Control Loop. A controller provides control signals to a controlled
system, whose behavior is influenced by disturbances. Feedback from the controlled system to
the controller provides information on which the control signals can depend. Commands to the
controller specify aspects of the control task’s objective. Panel B: A Control System with Learning
Feedback. A critic provides the controller with a reinforcement signal evaluating its success in
achieving the control objectives.

Figure 2. Block Diagram of a Reinforcement Learning Controller of an Arm (after Figure 1 of
Lipitkas et al., 1993). Given inputs coding the starting and target positions of the hand, the
network controller learns to provide correct parameters to a torque generator which generates, in
open-loop mode, time-varying torque signals to the arm. The reinforcement signal evaluates the
success of each movement after its completion.



