Date 
Lecture topic 
New assignments 
Assignments due 
Reading 
Sep. 7 
UNIT 1: Introduction. What is Computer Vision? What are the goals of computer vision? What should we take from humans? Also, Intro to Matlab. See Matlab Diary of in class session under "Resources" above.

Assignment 1:
Probabilistic classification. Digit data for assignment 1 Due by midnight on Sept 14. Please
email me the solution as a zipped tar file of all necessary files. 

Readings 1, 2, and 3 from the "Readings" list above by Monday, September 12. 
Sep. 12 
UNIT 2: Probability, Statistics, and Learning
Basics. Review of basic discrete probability. Samples
spaces. Events. Joint Probability. Conditional
Probability. Marginalization. Role of Probability and Statistics in
Computer Vision.
Bayes rule. Likelihoods, priors, and posteriors. Estimating likelihoods, priors, and posteriors.
Sizes of sets. Number of different images. Number of images of a person's
face. Implications for estimation.

 

Sep. 14 
Continuous probability. Parzen density estimates. In 1 dimension. In 2 dimensions. In N dimensions.
Topology of features. Discrete variables, continuous variables and,
"discretized continuous variables". Examples: dice, angles, sets of
rotations, pixel brightness values.
Modeling the entire joint distribution of images in a
class. Assuming a parametric form.
Assuming feature independence. Semiparametric models.
More on estimation and smoothing.
A few more Matlab tricks: dotm files and Matlab
calling conventions, the image toolbox, avoiding for loops, repmat,
dottimes, dotslash, dotpower, etc.

 
Assignment 1 Due by midnight 
Sep. 19 
Euclidean distance functions in 1, 2, 3, and more
dimensions. Nearest neighbor. Knearest neighbors. Consistency of
Knearest neighbors. Relationship between density estimation
techniques of classification and Knearest neighbors.



Reading number 4, for next lecture. 
Sept. 21 
UNIT 3: Alignment ProkudinGorski
photographs. Exhaustive search vs. gradient methods. Correlation
alignment. Mutual information alignment. Other schemes of aligment.
Problems of alignment and solutions to alignment problems.
Lecture slides

Assignment 2: Automatic alignment of ProkudinGorsky plates. Plates
Due by midnight on Sept. 28. 

Reading number 5, SECTIONS 2.0, 2.1, 3.0, 3.1 
Sept. 26 
Some "low level" vision problems (tracking, backgrounding, optical flow, stereo, etc.). The core matching problem: aligning Patch J to Image I. Families of
transformations. Translations. Rigid. Similarity. Affine. Linear. Homographies
or perspective. Diffeomorphisms. Implementing transformations as "looking back" to original image using transform inverse.
Gradient descent as a method for solving the core matching problem.
Lecture slides




Sep. 28 
Alignment continued. Continue discussion of gradient descent to solve core matching problem. Analytic gradient descent. Gradient descent using discrete approximation to the gradient. Gradient descent with respect to translation. Add rotation. Add other parameters. How to pick epsilon for approximation of partials. How to pick delta for step size.
Problems with optimization. The zero gradient problem. Local minima. Techniques for getting around local minima. Smoothing. Image pyramids. Problems with image pyramids.

 
Reading for next lecture: Data Driven Models through Continuous Joint Alignment. 
Oct. 3 
TODAY's MATLAB TRANSCRIPT
A possible solution to local minima in alignment problems: joint alignment. Congealing. The minimum entropy
criterion. Nonparametric maximum likelihood. Joint gradient descent
(or joint coordinate descent). Smoothing of the optimization landscape
without destroying information.
Distributions fields: "congealing without all the images".
Lecture slides

Assignment 3: Congealing implementation, due on Oct 11th (Tuesday), 11:59pm. 


Oct. 5 
Congealing continued.
Lecture slides

 

Oct. 11 (TUESDAY) 
Distribution fields. Exploding an image. Convolving with a Gaussian. Basin of attraction with distribution fields. Likelihood match. Sharpening match.
Lecture slides

 

Oct. 12 
UNIT 4: Light, optics, and human vision. Electromagnetic spectrum. Multifrequency nature of light.



Assignment 4: Video stabilization, due on Oct 26th (Wednesday), 11:59pm. 
Oct. 17 
Slides Basic anatomy of the eye. Anatomy of the retina. Rods and cones. Low light and normal light vision. Dynamic range of the eye. Frequency response of rods and cones. Distribution of rods and cones. Blind spot. Pupillary adjustment.




Oct. 19 
Tristimulus theory of color. Color matching experiments. Linearity of color perception. Total response as the dot product of cone sensitivity curves and spectral power distrbution curves.




Oct 24 
Point sources, extended sources. Radiance, irradiance, luminance, illuminance, brightness.



Handout on radiometry. 
Oct 26. 
Slides
Pinhole cameras. Bidirectional reflectance distribution functions. Lambertian surfaces. Specular surfaces. Classifying surfaces using properties related to BRDF. .




Oct 31. 
SNOW DAY!




Nov. 2 
Slides CCDs. Grayscale
vs. color. Image splitting, vs. Bayer pattern. Interpolating missing
pixels in detector. Tradeoff between resolution and light
sensitivity. Tiling patterns for CCDs. Bits per pixel. Linear
digitization vs. other schemes. Video cameras and synchonicity
vs. integrate and fire.




Nov. 7. 
UNIT 5: Features
Motivation for using features other than raw pixel values. Independence, informativeness, mutual information, data compression. Edge features.

Project ideas 


Nov. 9 
Processing by the retina. Derivatives and center surround. The role of decorrelation and independence in signal processing, compression, and meaning. SIFT features.



Read SIFT paper:http://www.cs.ubc.ca/~lowe/keypoints/
"David G. Lowe, "Distinctive image features from scaleinvariant keypoints," International Journal of Computer Vision, 60, 2 (2004), pp. 91110."

Nov. 14 
More on SIFT. Using higher order features for classification.




Nov. 16 
NO CLASS!!! friday schedule.




Nov. 21 
FACE UNIT: (finish SIFT) Start ViolaJones face detection.




Nov. 23 
Exam review. Exam Review document.




Nov. 28 
Viola Jones Face detection. ViolaJones face detector slides.




Nov. 30 
IN CLASS TEST




Dec. 5 
Project presentations.




Dec. 7 
Project presentations.



