Computer Vision 691A: Joint Alignment

Erik Learned-Miller, with Vidit Jain, Andras Ferencz, Gary Huang, Lilla Zollei, Sandy Wells,

Computer Science

Congealing (CVPR 2000, PAMI 2006)

MRI Bias Removal (NIPS 2005, MICCAI 2005, PAMI 2006)

Five Applications

- Image factorizations
 - For transfer learning, learning from one example
- Alignment for Data Pooling
 - 3D MR registration
 - EEG registration
- Artifact removal
 - Magnetic resonance bias removal
- Improvements to recognition algorithms
 - Alignment before recognition
- Defining anchor points for registration
 - Find highly repeatable regions for future registrations

Congealing

- Process of joint "alignment" of sets of arrays (samples of continuous fields).
- 3 ingredients
 - A set of arrays in some class
 - A parameterized family of continuous transformations
 - A criterion of joint alignment

Congealing Binary Digits

- 3 ingredients
 - A set of arrays in some class:
 - Binary images
 - A parameterized family of continuous transformations:
 - Affine transforms
 - A criterion of joint alignment:
 - Entropy minimization

Congealing

<u>Criterion of Joint Alignment</u>

 Minimize sum of pixel stack entropies by transforming each image.

Note: Mutual Information doesn't make sense here.

An Image Factorization

$$\underset{\mathbf{T}\in\mathcal{T}}{\arg\max}P(\mathbf{T}|\mathbf{I})$$

$$\stackrel{(a)}{=} \underset{\mathbf{T} \in \mathcal{T}}{\arg \max} P(\mathbf{I}|\mathbf{T})P(\mathbf{T})$$

$$\stackrel{(b)}{=} \underset{\mathbf{T} \in \mathcal{T}}{\arg \max} P(\mathbf{I}|\mathbf{T})$$

$$\stackrel{(c)}{=} \underset{\mathbf{T} \in \mathcal{T}}{\arg \max} P(\mathbf{L}(\mathbf{I}, \mathbf{T}))$$

=
$$\underset{\mathbf{T} \in \mathcal{T}}{\operatorname{arg\,max}} \prod_{x,y} \prod_{i=1}^{N} p_{x,y}(L_i(x,y))$$
 A pixel stack

$$= \underset{\mathbf{T} \in \mathcal{T}}{\operatorname{arg\,max}} \sum_{x,y} \sum_{i=1}^{N} \log p_{x,y}(L_i(x,y))$$

$$\overset{(d)}{pprox} \underset{\mathbf{T} \in \mathcal{T}}{\arg\min} \sum_{x,y} H(p_{x,y})$$

$$\stackrel{(e)}{\approx} \underset{\mathbf{T} \in \mathcal{T}}{\arg\min} \sum_{x,y} \hat{H}_{\text{Vasicek}}(L_1(x,y),...,L_N(x,y))$$

Why Minimize Entropy?

 Negative entropy is just the average log likelihood of points under their own distribution.

Min entropy = maximum non-parametric likelihood

I MassAmherst

The Independent Pixel Assumption

- Model assumes independent pixels
- A poor generative model:
 - True image probabilities don't match model probabilities.
 - Reason: heavy dependence of neighboring pixels.
- However! This model is great for alignment and separation of causes!
 - Why?
 - Relative probabilities of "better aligned" and "worse aligned" are usually correct.
- Once components are separated, a more accurate (and computationally expensive) model can be used to model each component.

Congealing

Each pair implicitly creates a sample of the transform T.

Character Models

How do we line up a new image?

Sequence of successively "sharper" models

Take one gradient step with respect to each model.

Digit Models from One Example

Next Application: Alignment of 3D Magnetic Resonance Volumes

Lilla Zollei, Sandy Wells, Eric Grimson

Congealing MR Volumes: Joint Registration

- 3 ingredients
 - A set of arrays in some class:
 - Gray-scale MR volumes
 - A parameterized family of continuous transformations:
 - 3-D affine transforms
 - A criterion of joint alignment:
 - Grayscale entropy minimization
- Purposes:
 - Pooling data for fMRI studies
 - Building general purpose statistical anatomical atlases

Why Entropy?

- Drives volumes to having mass concentrated in a small number of tissues.
- Comparison to Transformed Mixture of Gaussians (Frey and Jojic).
- Convexity of entropy in distribution.

Congealing Gray Brain Volumes (ICCV 2005 Workshop)

Aligned Volumes

21

Validation: Synthetic Data

Unaligned input data sets

Aligned input data sets

Real Data

Unaligned input data sets

Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm³ voxels

Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!

Grayscale Entropy Minimization

Learned-Miller

Image intensity

MR Congealing Challenges

- Big data
 - 8 million voxels per patient
 - 100 patients
 - 12 transform *parameters*
 - 20 iterations
- Techniques:
 - Stochastic sampling
 - Multi-resolution techniques
 - Don't use visual basic

Signal to Noise in Event Related Potentials

Before congealing

After congealing

Next Application: Bias Removal in Magnetic Resonance Images

Parvez Ahammad, Vidit Jain

The Problem

Bias fields have low spatial frequency content

Bias Removal in MR as a Congealing Problem

- 3 ingredients
 - A set of arrays in some class:
 - MR Scans of Similar Anatomy (2D or 3D)
 - A parameterized family of continuous transformations:
 - Smooth brightness transformations
 - A criterion of joint alignment:
 - Entropy minimization

Congealing with brightness transforms

Grayscale Entropy Minimization

Learned-Miller

Image intensity

Some Infant Brains

(thanks to Inder, Warfield, Weisenfeld)

- Pretty well registered (not perfect)
- Pretty bad bias fields

Fourier Basis for Smooth Bias Fields

Results

Assumptions

- Pixels in same location, across images, are independent.
 - When is this not true?
 - Systematic bias fields.
- Pixels in same image are independent, given their location.
 - Clearly not true, but again, doesn't seem to matter.
- Bias fields are truly bandlimited.

Some Other Recent Approaches

- Minimize entropy of intensity distribution in single image
 - Viola (95)
 - Warfield and Weisenfeld extensions (current)
- Wells (95)
 - Use tissue models and maximize likelihood
 - Use Expectation Maximization with unknown tissue type
- Fan (02)
 - Incorporate multiple images from different coils, but same patient.

I MassAmherst

Potential difficulties with single image method

- If there is a component of the brain that looks like basis set, it will get eliminated.
- Does this occur in practice?
 - Yes!

MRI Bias Removal

Summary

- Remove source of variability
 - MR bias removal
 - MR anatomical alignment
 - ERP signal alignment
 - Better alignment for recognition (hyper-features)
- Model a source of variability
 - Form factorized models (learning from one example)
- Define points of high saliency and repeatability (anchor points) for difficult registration problems