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Computer Vision 691A:
Joint Alignment
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Vidit Jain, Andras Ferencz, Gary
Huang, Lilla Zollei, Sandy Wells, ....
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MRI Bias Removal (vips 2005, MIccAr 2005, PAMI 2006)
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Five Applications

= Image factorizations
e For transfer learning, learning from one example
= Alignment for Data Pooling
« 3D MR registration
 EEG registration
= Artifact removal
« Magnetic resonance bias removal
= Improvements to recognition algorithms
« Alignment before recognition
= Defining anchor points for registration
* Find highly repeatable regions for future registrations
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Congealing

= Process of joint “alignment” of sets of arrays
(samples of continuous fields).

= 3 ingredients
A set of arrays in some class

e A parameterized family of continuous transformations
e A criterion of joint alignment
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Congealing Binary Digits

= 3 ingredients
A set of arrays in some class:
e Binary images
A parameterized family of continuous transformations:
o Affine transforms
e A criterion of joint alignment:
e Entropy minimization
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Criterion of Joint Alignment
= Minimize sum of pixel stack

entropies by transforming
each image.
u—
/ N
/ N
[ O
/ N
/ O
A pixel stack

Note: Mutual Information doesn’ t make sense here.
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An Image Factorization

Observed
Image

“Latent Image”
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(Previous work by Grenander,, Frey and Jojic.)
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Why Minimize Entropy?

= Negative entropy is just the average log
likelihood of points under their own distribution.

Min entropy =
maximum non-parametric likelithood
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The Independent Pixel Assumption

Model assumes independent pixels
A poor generative model:

« True image probabilities don’ t match model probabilities.

e Reason: heavy dependence of neighboring pixels.

However! This model is great for alignment and separation of
causes!

e Why?

« Relative probabilities of “better aligned” and “worse aligned” are

usually correct.

Once components are separated, a more accurate (and
computationally expensive) model can be used to model
each component.
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Congealing

Before After

/ /\ Nansform
0[0le 0|2

Each pair implicitly creates a sample of the transform T.
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Character Models
Image Kernel
Density Estimator P(IL)
Latent (or other estimator) X Latent Image
_~" Images Probability Density
EEEEEJI g for Zeroes
®
[
AEIEIZe 8’ Transform Kernel
EE&EEE\ 8 Density Estimator P(T)
(CVPR 2003)
Transforms > Transform
Probability Density
for Zeroes
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How do we line up a new image?

Sequence of successively “sharper” models

step O step 1 step N
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Take one gradient step with respect to each model.
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Digit Models from One Example

Model of General model
non-affine of affine

“A’” vanability variability
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Next Application:
Alignment of 3D Magnetic Resonance Volumes
Lilla Zollei, Sandy Wells, Eric Grimson
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Congealing MR Volumes: Joint Registration

= 3 ingredients
A set of arrays in some class:
e Gray-scale MR volumes
A parameterized family of continuous transformations:
o 3-D affine transforms
e A criterion of joint alignment:
o Grayscale entropy minimization

= Purposes:
 Pooling data for fMRI studies
e Building general purpose statistical anatomical atlases
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Why Entropy?

= Drives volumes to having mass concentrated in a
small number of tissues.

= Comparison to Transformed Mixture of Gaussians
(Frey and Jojic).
= Convexity of entropy in distribution.

Learned-Miller 19



JMassAmbhe

Congealing Gray Brain Volumes accv 2005 workshop)
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Aligned Volumes
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Validation: Synthetic Data

Unaligned input data sets Aligned input data sets
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Real Data

Unaligned input data sets Aligned input data sets

Data set: 28 T1-weighted MRI; [256x256x124] with (.9375, .9375, 1.5) mm? voxels
Experiment: 2 levels; 12-param. affine; N = 2500; iter = 150; time = 1209 sec!!
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Grayscale Entropy Minimization
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MR Congealing Challenges

= Big data
8 million voxels per patient
100 patients
e 12 transform parameters
o 20 iterations

= Techniques:
e Stochastic sampling
e Multi-resolution techniques
« Don’t use visual basic
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Next Application:
Bias Removal in Magnetic Resonance Images

Parvez Ahammad, Vidit Jain
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The Problem

Bias Observed
Field Image

Bias fields have low spatial frequency content
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Bias Removal in MR as a Congealing Problem

= 3 ingredients
A set of arrays in some class:
« MR Scans of Similar Anatomy (2D or 3D)
A parameterized family of continuous transformations:
« Smooth brightness transformations
e A criterion of joint alignment:
e Entropy minimization
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Congealing with brightness transforms
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Grayscale Entropy Minimization
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Some Infant Brains
(thanks to Inder, Warfield, Weisenfeld)

= Pretty well registered (not perfect)
= Pretty bad bias fields
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Fourier Basis for Smooth Bias Fields
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Assumptions

= Pixels in same location, across images, are independent.
« When is this not true?
« Systematic bias fields.
= Pixels in same image are independent, given their location.
e Clearly not true, but again, doesn’ t seem to matter.

= Bias fields are truly bandlimited.
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Some Other Recent Approaches

= Minimize entropy of intensity distribution in single image
* Viola (95)
« Warfield and Weisenfeld extensions (current)
= Wells (95)
o Use tissue models and maximize likelihood
e Use Expectation Maximization with unknown tissue type
= Fan (02)
 Incorporate multiple images from different coils, but same patient.
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Potential difficulties with single image method

= If there is a component of the brain that looks
like basis set, it will get eliminated.

= Does this occur in practice?
e Yes!
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MRI Bias Removal
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Summary

= Remove source of variability
e MR bias removal
« MR anatomical alignment
 ERP signal alignment
» Better alignment for recognition (hyper-features)

= Model a source of variability
 Form factorized models (learning from one example)

= Define points of high saliency and repeatability
(anchor points) for difficult registration problems
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