Distribution Fields

A Unifying Representation for Low-Level Vision Problems Erik Learned-Miller with Laura Sevilla Lara, Manju Narayana, Ben Mears

Computer Science Department

Basin of attraction studies

Basin of attraction results

Question

 How can we get the benefits of congealing without lots of images, and without a massive computational burden?

How do we line up a new image? *Funneling*...

Sequence of successively "sharper" models

Take one gradient step with respect to each model.

How to align a new image after congealing?

- More efficient to save sequence of distribution fields from congealing
 - High entropy to low entropy sequence → "Image Funnel"
- Funneling: increase likelihood of new image at each iteration according to corresponding distribution field

Aligning two images using the funneling concept

- Given image I and image J
- Generate many perturbed versions of image I, including the original image.
- Generate image funnel for set of I images.

Perturbed versions of an image

As an image stack.

Summing the perturbed stack.

Distribution of perturbed stack.

- Is there a simpler way to generate the idea of the distributions in a perturbed stack than to randomly make the images and then compute the distributions?
- Yes, distribution fields.

Exploding an image

Spatial Blur: 3d convolution with 2d Gaussian

Spatial Blur: 3d convolution with 2d Gaussian

KEY PROPERTY: doesn't destroy information through averaging

Feature space blur

How to compare?

How to compare?

- L1 distance?
- L2 distance?
- KL divergence?

The likelihood match

- Recall image I and patch J.
- Make a distribution field out of I and evaluate the likelihood of J under the field.

Image I

Patch J

The likelihood match

Given distribution field $D = D(I; \sigma)$ and image J.

$$Prob(J) = \prod_{i=1}^{N} p_{x,y}(J_{x,y})$$

Sharpening match

$$\max_{\sigma} Prob(J;\sigma) = \prod_{i=1}^{N} p_{x,y}^{\sigma}(J_{x,y})$$

. .

Understanding the sharpening match

What standard deviation maximizes the likelihood of a given point under a zero-mean Gaussian?

Intuition behind sharpening match

 Increase standard deviation until it matches "average distance" to matching points.

Properties of the sharpening match

- A patch has probability of 1.0 under its own distribution field.
- Probability of an image patch degrades gracefully as it is translated away from best position.
- Optimum "sigma" value gives a very intuitive notion of the quality of the image match.

Tracking results

- State of the art results on tracking with standard sequences
 - Very simple code
 - Trivial motion model
 - Simple memory model

It's not perfect...

Closely Related work

- Mixture of Gaussian backgrounding (Stauffer...)
- Shape contexts (Belongie and Malik)
- Congealing (me)
- Bilateral filter
- SIFT (Lowe), HOG (Dalal and Triggs)
- Geometric Blur (Berg)
- Rectified flow techniques (Efros, Mori)
- Mean-shift tracking
- Kernel tracking
- and many others...

Lots more applications

- Backgrounding
- Image matching
- Pixel unmixing
- Superresolution

Motivations

• A distance between images:

- Many metrics "broken" by slight misalignments.
 - Measure of distance or similarity should degrade gracefully with transformation.
- "Invariant metrics" throw away a lot of information.
 - Integrating over regions
 - "max pooling"
 - Averaging over regions
 - Lose fine-grained spatial info:
 - Face recognition

Spatial Blur: Compare to regular image blur

