Biologists use genetic similarity to determine evolutionary relationships. But how do we say if two gene sequences are similar or not? We align them. Also used in spell-checkers and search engines.

Example. TAIL vs TALE

For two strings $X = x_1x_2...x_m, Y = y_1y_2...y_n$, an alignment M is a matching between $\{1, ..., m\}$ and $\{1, ..., n\}$.

M is valid if

- Matching. Each element appears in at most one pair in M.
- No crossings. If $(i, j), (k, \ell) \in M$ and $i < k$, then $j < \ell$.
- Cost of M:
 - Gap penalty. For each unmatched character, you pay δ.
 - Alignment cost. For a match (i, j), you pay $C(x_i, y_j)$.

$$\text{cost}(M) = \delta(m + n - 2|M|) + \sum_{(i, j) \in M} C(x_i, y_j).$$

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$. Example 2. TAIL vs TALE, $\delta = 10$, $C(x, y) = 1[x \neq y]$.

Toward an algorithm

Try what we did before: Let O be optimal alignment.

- If $(m, n) \in O$ we can align $x_1x_2...x_{m-1}$ with $y_1y_2...y_{n-1}$.
- If $(m, n) \notin O$ then either x_m or y_n must be unmatched (by no crossing).

Value $\text{OPT}(m, n)$ of optimal alignment is either:

- $C(x_m, y_n) + \text{OPT}(m - 1, n - 1)$, if (m, n) matched
- $\delta + \text{OPT}(m - 1, n)$, if m unmatched
- $\delta + \text{OPT}(m, n - 1)$, if n unmatched

Let $\text{OPT}(i, j)$ be cost of optimal alignment of $x_1x_2...x_i$ and $y_1y_2...y_j$.

$$\text{OPT}(i, j) = \min \left\{ \begin{array}{ll} C(x_i, y_j) + \text{OPT}(i - 1, j - 1) \\ \delta + \text{OPT}(i - 1, j) \\ \delta + \text{OPT}(i, j - 1) \end{array} \right\}$$

And, (i, j) is in optimal alignment iff first term is the minimum.
Sequence Alignment pseudocode

```plaintext
align(X,Y)
    Initialize M[0..m,0..n] = null.
    M[0,0] = iδ, M[0,j] = jδ for all i, j.
    for j = 1, ..., n do
        for i = 1, ..., m do
            v1 = $C(x_i, y_j) + M[i-1, j-1]$.
            v2 = $\delta + M[i-1, j]$.
            v3 = $\delta + M[i, j-1]$.
            M[i,j] ← min{v1, v2, v3}.
        end for
    end for
Example. TALE and TAIL, $\delta = 1, C(x,y) = 2 \cdot 1[x \neq y]$.
```

Sequence Alignment

- Running time is $O(mn)$.
- Computing optimal matching is easy.
- Related to shortest path in weighted directed graph.

![Shortest Path Diagram]