COMPSCI 311: Introduction to Algorithms

Lecture 15: Dynamic Programming

Dan Sheldon

University of Massachusetts Amherst

Dynamic Programming Recipe

» Step 1: Devise simple recursive algorithm

» Flavor: make “first choice”, then recursively solve subproblem

v

Step 2: Write recurrence for optimal value

v

Step 3: Design bottom-up iterative algorithm

v

Weighted interval scheduling: first-choice is binary
» Rod-cutting: first choice has n options
Subset Sum: first choice is binary, but need to “add a variable” to recurrence

v

Subset Sum: Problem Formulation

> Input
> ltems 1,2,...,n
> Weights w; for all items (integers)
» Capacity W

» Goal: select a subset S whose total weight is as large as possible without exceeding
w.

» Subset Sum: need to “add a variable” to recurrence

Step 1: Recursive Algorithm, Binary Choice

Let O be optimal solution on items 1 through j. Is j € O or not?

SubsetSum(j)
if 7 = 0 then return 0
> Case 1: j ¢ O
v = SubsetSum(j — 1)

> Case2: j €0
if w; <W then > else skip b/c can't fit w;
v = max(v, w; + SubsetSum(j — 1) ?)

return v

Clicker

SubsetSum(j)
if 7 =0 then return 0
v = SubsetSum(j — 1) > Case 1: j ¢ O
if w; < W then >Case 2: j €O

v = max(v, w; + SubsetSum(j —1)7)
return v
Is there a problem in Case 27
A. No, it is correct.
B. Yes, you need to consider that the jt" item may be selected multiple times.
C. Yes, if we take item j, the remaining capacity changes.

Second call to SubsetSum(j — 1) no longer has capacity W.
Solution: must add extra parameter (problem dimension)

Step 1: Recursive Algorithm, Add a Variable

Find value of optimal solution O on items {1,2,...,j} when the remaining capacity is w

SubsetSum(j,w)
if j =0 then return 0

> Case 1: j ¢ O
v = SubsetSum(j — 1, w)

>Case2: j €0
if w; <w then
v = max(v, w; + SubsetSum(j — 1, w — wj))

return v

Step 2: Recurrence

» Let OPT(j,w) be the maximum weight of any subset of items {1,...,;j} that does
not exceed w

OPT(j — 1,w) w; > w
OPT(w) =4 OPT(j — 1, w) <
wj + OPT(j — 1, w — wy))=

» Base case: OPT(0,w) =0 for all w=0,1,...,W.

» Questions

» Do we need a base case for OPT(j,0)? No
» What is overall optimum to original problem? OPT(n, W)

From Recurrence to lterative (“Turn the Crank”)

OPT(j — 1,w) wj > w
OPT(j,w) = o OPT(j — 1, w) <
wj + OPT(j — 1, w — wj))=

What size memoization array? M|j, w]| for all values of j and w
MI[0...n,0... W]

What order to fill entries? base case first; RHS before LHS
for j from 0 — n, for w from 0 — W

Which entry stores solution to overall problem? Want OPT(n,W): stored in M[n, W]

Step 3: Iterative Algorithm

SubsetSum(n, W)
Initialize array M[0..n,0..W]
Set M[0,w] =0 for w=0,..., W
for j =1tondo
for w=1to W do
if w; > w then M[j,w] = M[j —1,w]
else M[j,w] = max(M[j — 1,w],w; + M[j — 1, w — wj])
return M [n, W]

Running Time? ©(nWW).

Clicker

for j =1tondo
for w=1to W do
if w; > w then M[j,w] = M[j — 1, w]
else M[j,w] = max(M[j — 1,w],w; + M[j — 1, w — wj])

Suppose we have n items, and the capacity W and weights w; each have m decimal
digits. Then the running time is:
A. ©(nm)
B. ©(nlogyym)
C. ©(n10™)
D. ©(10™™)

Polynomial vs. Pseudo-polynomial

If numbers have m digits, input size is ©(nm), runtime is ©(n10™).
» Polynomial time: polynomial in input size (nm)

» Pseudo-polynomial: polynomial in number of items (n) and magnitude of
numbers (10™)

For numeric problems, input size is log of magnitude of the numbers. Poly-time
algorithm should be polynomial in n and log W.

Subset Sum:

» Qur solution is pseudo-polynomial
» No polynomial algorithm is known

Subset Sum

MY HoBBY:
EVBEDDING NP-COMPLETE PROBLENS IN RESTAURANT ORDERS

WED LIKE EXACTLY §15. 05

§ CHOTCHKIES RESTAURAWT WORTH OF APPETIZERS, PLEASE.

— APPENZERS — 1 L EXACTY? UM

MIXED FRUIT 215 HERE, THESE PAPERS ON THE KNAPSACK,)
PROBLEM MIGHT HELP YOU OUT.

FRENCH FRIES 275 \ LISTEN, T HAVE SiX OTHER

SIE S35 ~ PG FRST S PUSSIRLE, ;ﬁ; I;;ETTD-

HOT WINGS 2.55 SOMETHING ON TRAVELING SALESHAN? /

MOZZARELLA STICKS H.20

SAMPLER PLATE 5.80 % 0 %b %
—— SANDWICHES ~— !
RARERENE L of

Source: https://www.xked.com/287/

Knapsack Problem

Same as subset sum, but now items have value in addition to weight

Input
> ltems 1,2,...,n
» Weights w; for all items (integers)
» Values v; for all items (integers)
» Capacity W
Goal: select subset S whose total value is as large as possible without exceeding W.

Clicker

Recall subset-sum recurrence:

OPT(j — 1,w) w; > w
max { OPT(j — 1,w), w;+OPT(j —1,w—wj;)} wj <w

OPT(j,w) = {
How should the blue term be rewritten for the knapsack recurrence?
A w; +OPT(j — 1, w — wy)
B. wj + OPT(j — 1,w — v;)
C. v; +OPT(j — 1, w — vj)
D. v; + OPT(j — 1,w — wy)

Clicker

Does our knapsack solution still work if the weights and/or values are real numbers
instead of integers?

A. It still works if both the values and weights are real numbers.
B. It works if values are real numbers but weights are integers.

C. It works if weights are real numbers but values are integers.
D

. It does not work if either the weights or values are real numbers.

Fractional knapsack problem allows partial objects (think: grains, sand, fluid). Has
simple greedy solution: choose highest value per weight.

