Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm
 Flavor: make “first choice”, then recursively solve remaining part of the problem

Step 2: Write recurrence for optimal value

Step 3: Design bottom-up iterative algorithm
 ▶ Weighted interval scheduling: first-choice is binary
 ▶ Rod-cutting: first choice has \(n \) options
 ▶ Subset Sum: need to “add a variable” (one more dimension)

Today: similarity between sequences

Sequence Alignment

Example. TAIL vs TALE
 ▶ For two strings \(X = x_1 x_2 \ldots x_m, Y = y_1 y_2 \ldots y_n \), an alignment \(M \) is a matching between \(\{1, \ldots, m\} \) and \(\{1, \ldots, n\} \).
 ▶ \(M \) is valid if
 ▶ Matching. Each element appears in at most one pair in \(M \).
 ▶ No crossings. If \((i, j), (k, \ell) \in M \) and \(i < k \), then \(j < \ell \).
 ▶ Cost of \(M \):
 ▶ Gap penalty. For each unmatched character, you pay \(\delta \).
 ▶ Alignment cost. For a match \((i, j) \), you pay \(C(x_i, y_j) \).

\[
\text{cost}(M) = \delta(m + n - 2|M|) + \sum_{(i,j) \in M} C(x_i, y_j).
\]

Problem. Given strings \(X, Y \) gap-penalty \(\delta \) and cost matrix \(C \), find valid alignment of minimal cost.

Example 1. TAIL vs TALE, \(\delta = 0.5 \), \(C(x, y) = 1[x \neq y] \).
Example 2. TAIL vs TALE, \(\delta = 5 \), \(C(x, y) = 1[x \neq y] \).

Example Recap

Example 1. TAIL vs TALE, \(\delta = 0.5 \), \(C(x, y) = 1[x \neq y] \).
 TAIL- I not matched (gap)
 TA-LE E not matched (gap)
Example 2. TAIL vs TALE, \(\delta = 5 \), \(C(x, y) = 1[x \neq y] \).
 TAIL
 TALE

Applications

▶ Genomics
 ▶ Biologists use genetic similarity to determine evolutionary relationships.
 ▶ Genetic similarity = cost of aligning DNA sequences
▶ Spell-checkers, diff program, search engines.
 “preffered”: (0) proffered (1) preferred (2) referred ...
Clicker Question

Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest substring (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment?

A. Yes, with gap penalty $\delta = 0$ and alignment cost $1[x \neq y]$
B. Yes, with gap penalty $\delta = 1$ and alignment cost 0 for matching characters and ∞ for non-matching characters.
C. Yes, with gap penalty $\delta = 0$ and alignment cost 0 for matching characters and ∞ for non-matching characters.
D. No

Clicker Question

Suppose we try to align $X = "banana"$ with $Y = "ana"$. In an optimal alignment:

A. Y will match the first occurrence of "ana" in X.
B. Y will match the second occurrence of "ana" in X.
C. Y may match either occurrence of "ana" in X.
D. The optimal alignment depends on the gap penalty and alignment cost.

Toward an Algorithm

Let O be optimal alignment. Try binary choice: pair (m, n) aligned or not.

- If $(m, n) \in O$ we can align $x_1x_2...x_m$ with $y_1y_2...y_n$.
- If $(m, n) \notin O$ then either x_m or y_n must be unmatched (by no crossing).

Value $OPT(m, n)$ of optimal alignment is either:

- $C(x_m, y_n) + OPT(m-1, n-1)$, if (m, n) matched
- $\delta + OPT(m-1, n)$, if m unmatched
- $\delta + OPT(m, n-1)$, if n unmatched

Sequence Alignment Pseudocode

```plaintext
align(X, Y)
Initialize M[0..m, 0..n] = null
M[i, 0] = i\delta, M[0, j] = j\delta for all i, j
for j = 1, ..., n do
  for i = 1, ..., m do
    v_1 = C(x_i, y_j) + M[i-1, j-1]
    v_2 = \delta + M[i-1, j]
    v_3 = \delta + M[i, j-1]
    M[i, j] <- min(v_1, v_2, v_3)
  ▶ Blue = recurrence (rest DP “boilerplate”)
  ▶ Example. TALE and TAIL, $\delta = 1, C(x, y) = 2 : 1[x \neq y]$
```

Recurrence

Let $OPT(i, j)$ be optimal alignment cost of $x_1x_2...x_i$ and $y_1y_2...y_j$.

$$OPT(i, j) = \min\left\{ \begin{array}{ll}
C(x_i, y_j) + OPT(i-1, j-1) \\
\delta + OPT(i-1, j) \\
\delta + OPT(i, j-1)
\end{array} \right\}$$

And (i, j) is in optimal alignment iff first term is the minimum.

Base case?

- $OPT(0, j) = j\delta$, align $X = \emptyset$ to $Y = y_1...y_j$
- $OPT(i, 0) = i\delta$, similar

Sequence Alignment

- Running time is $O(mn)$.
- Recovering optimal matching: store each choice, trace back.
- Related to shortest path in weighted directed graph.

Graph has $\sim mn$ nodes and $\sim 3mn$ edges.
Clicker Question

Dijkstra’s algorithm runs in \(O(|E| \log |V|) \Rightarrow O(mn \log(mn)) \) time for a graph with \(\Theta(mn) \) nodes and edges. Sequence alignment takes only \(O(mn) \) time. What can we conclude?

A. We could use dynamic programming to compute shortest paths asymptotically faster than Dijkstra’s algorithm.
B. By the multiplicativity property of big-O, the \(\log |V| \) factor is dominated by \(|E| \), so Dijkstra’s running time is \(O(|E|) = O(mn) \).
C. The graph in sequence alignment is a special case where we can compute shortest paths faster.
D. Dijkstra’s algorithm only works on undirected graphs.

Can We Use Less Space?

We’ve focused on time complexity, but space matters too!

Two sequences of length \(10^5 \): \(mn = 10^{10} \) (10 GB)

for \(j = 1, \ldots, n \) do
 for \(i = 1, \ldots, m \) do
 \(v_1 = C(x_i, y_j) + M[i−1, j−1] \)
 \(v_2 = \delta + M[i−1, j] \)
 \(v_3 = \delta + M[i, j−1] \)
 \(M[i, j] \leftarrow \min \{v_1, v_2, v_3\} \)

Can we save space?

- Computing column \(M[\cdot, j] \) only needs \(M[\cdot, j−1] \)

 \(\Rightarrow \) keep just two columns (current, previous)
 \(\Rightarrow \) linear space \(O(m+n) \)

- But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Space

Hirschberg’s algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from \((0,0) \rightarrow (m,n)\)

Board work
1. \(\text{OPT}(i, j) = f(i, j) = \text{length of shortest path from } (0,0) \rightarrow (i, j) \)
2. For any \(j \), can compute \(f(\cdot, j) \) in \(O(mn) \) time and \(O(m+n) \) space
3. Let \(g(i, j) = \text{length of shortest path from } (i, j) \rightarrow (m, n) \)
4. For any \(j \), can compute \(g(\cdot, j) \) in \(O(mn) \) time and \(O(m+n) \) space
5. Fix \(j = n/2 \) and find \(q \) to maximize \(f(q, n/2) + g(q,n/2) \)

\[\Rightarrow \] node \((q, n/2)\) is on shortest path.
6. Recursively find shortest-path from \((0,0) \rightarrow (q, n/2)\)
7. Recursively find shortest-path from \((q, n/2) \rightarrow (m, n)\).
8. Time \(T(m,n) = T(q, n/2) + T(m−q, n/2) + O(mn) \) solves to \(O(mn) \) (recursion tree)

Space still \(O(m+n) \).

Hirschberg’s algorithm

Divide. Find index \(q \) that minimizes \(f(q, n/2) + g(q, n/2) \); save node \(i,j \) as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

Sequence Alignment: Summary

Align sequences \(X, Y \)

- Binary choice
- Recurse on prefixes
- \(O(mn) \) time
- \(O(m+n) \) space: more subtle
 - DP + Divide and Conquer

More sequences:

- RNA secondary structure
- match max. \# of bases
- problem substructure: over intervals