Dynamic Programming Recipe

Step 1: Devise simple recursive algorithm

Flavor: make “first choice”, then recursively solve remaining part of the problem

Step 2: Write recurrence for optimal value

Step 3: Design bottom-up iterative algorithm

- Weighted interval scheduling: first-choice is binary
- Rod-cutting: first choice has n options
- Subset Sum: need to “add a variable” (one more dimension)

Today: similarity between sequences

Sequence Alignment

Example. TAIL vs TALE

- For two strings $X = x_1 x_2 \ldots x_m, Y = y_1 y_2 \ldots y_n$, an alignment M is a matching between $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$.

- M is valid if
 - Matching. Each element appears in at most one pair in M.
 - No crossings. If $(i, j), (k, \ell) \in M$ and $i < k$, then $j < \ell$.

- Cost of M:
 - Gap penalty. For each unmatched character, you pay δ.
 - Alignment cost. For a match (i, j), you pay $C(x_i, y_j)$.

 $\text{cost}(M) = \delta(m + n - 2|M|) + \sum_{(i,j) \in M} C(x_i, y_j)$.

Problem. Given strings X, Y gap-penalty δ and cost matrix C, find valid alignment of minimal cost.

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$.

Example 2. TAIL vs TALE, $\delta = 5$, $C(x, y) = 1[x \neq y]$.

Example Recap

Example 1. TAIL vs TALE, $\delta = 0.5$, $C(x, y) = 1[x \neq y]$.

TAIL-- I not matched (gap)
TA-LE E not matched (gap)

Example 2. TAIL vs TALE, $\delta = 5$, $C(x, y) = 1[x \neq y]$.

TAIL
TALE

Applications

- Genomics
 - Biologists use genetic similarity to determine evolutionary relationships.
 - Genetic similarity = cost of aligning DNA sequences

- Spell-checkers, diff program, search engines.
 - “prefered”: (0) proffered (1) preferred (2) referred

Clicker Question

Consider the longest common subsequence (LCS) problem: given two strings X and Y, find the longest subsequence (not necessarily contiguous) common to both. Is LCS a special case of sequence alignment?

A. Yes, with gap penalty $\delta = 0$ and alignment cost $1[x \neq y]$
B. Yes, with gap penalty $\delta = 1$, and alignment cost ∞ if $x \neq y$, else 0
C. Yes, with gap penalty $\delta = 0$, and alignment cost ∞ if $x \neq y$, else 0
D. No

Clicker Question

Suppose we try to align X = “banana” with Y = “ana”. Assume $\delta > 0$ and the cost of a match is zero. In an optimal alignment:

A. Y will match the first occurrence of “ana” in X.
B. Y will match the second occurrence of “ana” in X.
C. Y may match any occurrence of “ana” in X.
D. The optimal alignment depends on values of δ and the mismatch cost.

Toward an Algorithm

- Let O be optimal alignment. Try binary choice: pair (m, n) aligned or not.
 - If $(m, n) \in O$ we can align $x_{2i} \ldots x_{m-1}$ with $y_{2j} \ldots y_{n-1}$.
 - If $(m, n) \notin O$ then either x_m or y_n must be unmatched (by no crossing).
- Value $OPT(m, n)$ of optimal alignment is either:
 - $C(x_m, y_n) + OPT(m-1, n-1)$, if (m, n) matched
 - $\delta + OPT(m-1, n)$, if m unmatched
 - $\delta + OPT(m, n-1)$, if n unmatched

Recurrence

Let $OPT(i, j)$ be optimal alignment cost of $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$.

$$OPT(i, j) = \min \begin{cases}
C(x_i, y_j) + OPT(i-1, j-1) \\
\delta + OPT(i-1, j) \\
\delta + OPT(i, j-1)
\end{cases}$$

And (i, j) is in optimal alignment if first term is the minimum.

Base case?

- $OPT(0, j) = j\delta$ (align $X = \emptyset$ to $Y = y_1 \ldots y_j$)
- $OPT(i, 0) = i\delta$ (similar)

Sequence Alignment Pseudocode

```pseudocode
align(X, Y)
    Initialize $M[0..m, 0..n] = \text{null}$
    $M[i, 0] = i\delta$, $M[0, j] = j\delta$ for all $i, j$
    for $j = 1, \ldots, n$ do
        for $i = 1, \ldots, m$ do
            $v_1 = C(x_i, y_j) + M[i-1, j-1]$
            $v_2 = \delta + M[i-1, j]$
            $v_3 = \delta + M[i, j-1]$
            $M[i, j] \leftarrow \min(v_1, v_2, v_3)$
    ▶ Blue = recurrence (rest DP “boilerplate”)
    ▶ Example. TALE and TAIL, $\delta = 1, C(x, y) = 2 : 1[x \neq y].$
```

Sequence Alignment

- Running time is $O(mn)$.
- Recovering optimal matching: store each choice, trace back.
- Related to shortest path in weighted directed graph.

Graph has $\sim mn$ nodes and $\sim 3mn$ edges.
Clicker Question

Dijkstra’s algorithm runs in $O(|E| \log |V|) = O(mn \log(mn))$ time for a graph with $\Theta(mn)$ nodes and edges. Sequence alignment takes only $O(mn)$ time. What can we conclude?

A. We could use dynamic programming to compute shortest paths asymptotically faster than Dijkstra’s algorithm.

B. By the multiplicity property of big-O, the $\log |V|$ factor is dominated by $|E|$, so Dijkstra’s running time is $O(|E|) = O(mn)$.

C. The graph in sequence alignment is a special case where we can compute shortest paths faster.

D. Dijkstra’s algorithm only works on undirected graphs.

Can We Use Less Space?

We’ve focused on time complexity, but space matters too!

Two sequences of length 10^5: $mn = 10^{10}$ (10 GB)

for $j = 1, \ldots, n$ do
 for $i = 1, \ldots, m$ do
 $v_1 = C(x_i, y_j) + M[i-1, j-1]$
 $v_2 = \delta + M[i-1, j]$
 $v_3 = \delta + M[i, j-1]$
 $M[i, j] \leftarrow \min\{v_1, v_2, v_3\}$

Can we save space?

- Computing column $M[\cdot, j]$ only needs $M[\cdot, j-1]$
 \implies keep just two columns (current, previous)
 \implies linear space $O(m + n)$
- But: can only compute cost, not recover alignment!

Sequence Alignment in Linear Space

Hirschberg’s algorithm: clever combination of DP and divide-and-conquer

Goal: find shortest path from $(0, 0) \to (m, n)$

Board work

1. $OPT(i, j) = f(i, j) = \text{length of shortest path from } (0, 0) \to (i, j)$
2. For any j, can compute $f(\cdot, j)$ in $O(mn)$ time and $O(m+n)$ space
3. Let $g(i, j) = \text{length of shortest path from } (i, j) \to (m, n)$
4. For any j, can compute $g(\cdot, j)$ in $O(mn)$ time and $O(m+n)$ space
5. Fix $j = n/2$ and find q to maximize $f(q, n/2) + g(q, n/2) = \text{node } (q, n/2)$ is on shortest path.
6. Recursively find shortest-path from $(0, 0) \to (q, n/2)$
7. Recursively find shortest-path from $(q, n/2) \to (m, n)$.
8. Time $T(m, n) = T(q, n/2) + T(m-q, n/2) + O(mn)$ solves to $O(mn)$ (recursion tree)

Space still $O(m+n)$.

Sequence Alignment: Summary

Align sequences X, Y

- Binary choice
- Recurse on prefixes
- $O(mn)$ time
- $O(m+n)$ space: more subtle
 - DP + Divide and Conquer

More sequences:

- RNA secondary structure
- match max. # of bases
- problem substructure: over intervals

Hirschberg’s algorithm

Divide. Find index q that minimizes $f(q, n/2) + g(q, n/2)$; save node $i\cdot j$ as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

Slide credit: Kevin Wayne / Pearson

Figure 6.13