
An Industrial Application of Mutation Testing:
Lessons, Challenges, and Research Directions

Goran Petrović Marko Ivanković
Google Switzerland GmbH

Zurich, Switzerland
{goranpetrovic, markoi}@google.com

Bob Kurtz Paul Ammann
George Mason University

Fairfax, VA, USA
{rkurtz2, pammann}@gmu.edu

René Just
University of Massachusetts

Amherst, MA, USA
rjust@cs.umass.edu

Abstract—Mutation analysis evaluates a testing or debugging
technique by measuring how well it detects mutants, which are
systematically seeded, artificial faults. Mutation analysis is inher-
ently expensive due to the large number of mutants it generates
and due to the fact that many of these generated mutants are not
effective; they are redundant, equivalent, or simply uninteresting
and waste computational resources. A large body of research
has focused on improving the scalability of mutation analysis
and proposed numerous optimizations to, e.g., select effective
mutants or efficiently execute a large number of tests against a
large number of mutants. However, comparatively little research
has focused on the costs and benefits of mutation testing, in
which mutants are presented as testing goals to a developer, in
the context of an industrial-scale software development process.

This paper draws on an industrial application of mutation
testing, involving 30,000+ developers and 1.9 million change sets,
written in 4 programming languages. It shows that mutation
testing with productive mutants does not add a significant
overhead to the software development process and reports on
mutation testing benefits perceived by developers. This paper
also quantifies the costs of unproductive mutants, and the results
suggest that achieving mutation adequacy is neither practical
nor desirable. Finally, this paper describes lessons learned from
these studies, highlights the current challenges of efficiently
and effectively applying mutation testing in an industrial-scale
software development process, and outlines research directions.

I. INTRODUCTION

Mutation testing offers a rigorous test efficacy criterion,
which subsumes many code coverage criteria [1], and there
is strong empirical evidence that mutants are a valid proxy
for real faults [2], [3]. Despite its effectiveness, there are
no indications that mutation testing is widely adopted as a
test efficacy criterion in practice, even after three decades of
research [4]. We conjecture that this is partially due to its
heavy computational footprint [5], but to a larger extent due
to disconnects between research and practice. For example,
even assuming that all generated mutants can be efficiently
evaluated, presenting the results to a developer in a meaningful
and actionable manner is virtually impossible given the large
number of mutants. A developer will not use a technique when
the time investment is large and the perceived gain is not
reciprocal, especially if non-standard tooling is required that
is not integrated into the existing developer’s workflow [6].

This paper draws three lessons from these disconnects, and
we hypothesize that resolving the disconnects will significantly
advance the adoption of mutation testing in practice.

Lesson 1: Some mutants shouldn’t be killed. The re-
search community has focused on identifying and eliminating
equivalent mutants, which are considered a major burden for
developers, and redundant mutants, which inflate the mutation
score. Non-equivalent and non-redundant mutants are consid-
ered useful. However, the case studies presented in this paper
suggest that there are a significant number of non-equivalent
and non-redundant mutants that are not useful in practice.
These are simply unproductive mutants, which represent futile
testing goals—and developer frustration.
Lesson 2: The unit of work matters. The research com-
munity typically considers mutation adequacy at the method or
file level in the context of a single language. However, the stan-
dard unit of work for a developer is the commit, which amounts
to lines of code added, deleted, or modified, often distributed
across multiple files and multiple languages. Mutation ade-
quacy at the method or file level would require a developer to
analyze mutants and write tests outside the scope of a commit,
an obligation inevitably viewed as an unwelcome diversion.
Lesson 3: Mutation adequacy is too expensive. The
research community has focused on mutation adequacy. How-
ever, a rational goal for a developer is to just make a test
suite better, but not mutation adequate. Philosophically, this
returns to the roots of mutation testing: providing hints for
the practicing programmer [7].

This paper reports on an industry-scale application of mu-
tation testing, identifies challenges to be solved, and proposes
research directions to ease future adoption. Specifically, the
paper’s contributions and organization are as follows:

• The development of the notion of productive mutants
(Lesson 1: Section II).

• A case study on using mutation testing in a commit-
oriented code-review process (Lesson 2: Section III).

• A case study on the costs of unproductive mutants and
mutation adequacy (Lesson 3: Section IV).

• A summary of lessons, current challenges, and future
research avenues (Section V).

II. PRODUCTIVE MUTANTS

The mutation testing literature generally considers killable
mutants desirable (since these mutants lead to tests) and
equivalent mutants undesirable (since these mutants don’t).

One of the inescapable observations from the studies presented
in this paper is that this classification is unworkable in practice.
Specifically, there exist killable mutants for which developers
justifiably should not and, in practice, will not write tests.
Conversely, equivalent mutants sometimes reveal issues in the
program and lead developers to make useful changes such as
refactoring the code or removing redundancy1.

We argue that the two equivalence classes of killable mu-
tants and equivalent mutants are insufficient to capture the
notion of developer productivity and propose a new definition:

A mutant is productive if 1) the mutant is killable and
elicits an effective test, or 2) the mutant is equivalent but
its analysis advances knowledge and code quality.

It is important to emphasize that the notion of productive vs.
unproductive mutants is inherently qualitative: different devel-
opers may sometimes reach different conclusions as to whether
a test is effective or whether inspecting a mutant advances the
developer’s understanding of the code. Nonetheless, a devel-
oper, who just analyzed a mutant as part of a development task,
is well-placed to make this judgement call. The industrial study
in section III specifically collects developers’ judgement on
each surfaced mutant, and a negative assessment from a devel-
oper maps directly to the notion of an unproductive mutant.
Unproductive killable mutants For killable mutants, there
are many instances for which developers rarely, if ever, write
a unit test—nor should they. As an example, consider the
string message associated with an exception or logging output.
The string message provides potentially useful diagnostic
information, and replacing this message with an empty string
or a null reference usually results in a killable mutant. Yet,
adding a test that detects such a mutant arguably does not
improve the effectiveness of the test suite. Rather, it bloats the
test suite with a meaningless and hard-to-maintain test. Such a
mutant, while killable, is unproductive, and hence should not
be surfaced to the developer.

Figure 1 provides additional examples for unproductive
mutants. These examples are derived from our case studies
in Section III and IV:

• Figure 1a: Comparing floating points is a tricky business,
especially when not testing for zero. For most floating-
point comparisons, replacing > with => is meaningless
and results in an unproductive mutant—testing for equal-
ity of floating points is discouraged and bad practice.

• Figure 1b: In Python, mutating a del statement results
in an unproductive mutant. While this mutant is killable,
writing a test for it is a very involved task because that
test needs to access and inspect the Python runtime.

• Figure 1c: The preferred Google code style for Python
requires that if some code path of a function returns a
value, then all code paths in that function must explicitly
return instead of relying on default behavior (i.e., return
None. Removing a return None produces an equivalent

1Coles made a similar argument in his 2017 Mutation keynote talk, based
on developers’ feedback regarding the usefulness of some equivalent mutants.

1 − return resolved_confidence_value > 0.95
2 + return resolved_confidence_value >= 0.95

(a) Testing for equality of non-zero floating point numbers is dis-
couraged and mostly meaningless, and hence unproductive.

1 x = 5
2 ...
3 − d e l x

(b) While it is possible to test for a missing del statement by
inspecting Python’s runtime, it is unproductive to do so.

1 def returnIsLeaf():
2 if False:
3 return 15
4 else:
5 x = 4
6 − return None

(c) The deletion of a return None statement in Python is an
unproductive mutant as it breaks the code style guidelines.

1 − new ArrayList<>(x ∗ 2);
2 + new ArrayList<>(x + 2);

(d) Changing the initial capacity of a collection only affects perfor-
mance, which is out of scope for unit testing.

Fig. 1: Examples for unproductive mutants.

mutant or breaks the code style, which is enforced via
static analysis. The latter implies an unproductive mutant.

• Figure 1d: Constructors of many Java collections such
as HashMap or ArrayList take an initial capacity as
a parameter. Changing the initial capacity produces a
functionally equivalent mutant, which potentially impairs
program performance—a problem unit testing is not
concerned with. This mutant is technically killable by
asserting on the collection capacity or tracking memory
allocations, but it is unproductive to do so.

There are many other types and of language-agnostic unpro-
ductive mutants. For example, changing the duration of time
variables (e.g., sleep(1)) results in unproductive mutants.
Such time-related code constructs are commonly used for RPC
layers, which are usually mocked in testing, and otherwise
don’t change the functional behavior of the program under
normal operation. Likewise, mutants that remove calls to
Start and Stop functions on plentiful RPC servers and
corresponding Wait functions are unproductive because they
do not affect the behavior of the servers under unit tests.

The exhaustive list of identified unproductive mutants is
exorbitant, but these examples provide a good overview.
Productive equivalent mutants For equivalent mutants, the
distinction between productive and unproductive is murkier;
while productive killable mutants lead to immediate tangible
outcome in terms of effective tests, productive equivalent
mutants lead to a better understanding of the code and, in
turn, may lead to code improvements.

Examples of productive yet equivalent mutants tend to be
long and involved—the reason why they advance knowledge
about the code—so we describe some examples without pro-
viding source code. A mutant that is equivalent due to an

unexpectedly short propagation can pinpoint error masking
or redundancy in the code, where a result is discarded and
recomputed. Similarly, deleting an optimization results in an
equivalent mutant, but if the optimization is premature, the
equivalent mutant can draw the developer’s attention to that
fact. An equivalent mutant which indicates ambiguity in the
code can lead the developer to refactor that code so that the
mutant becomes, in fact, killable.

Section IV quantifies the number and costs of unproductive
mutants; simple-to-analyze equivalent mutants were generally
considered unproductive, but complex-to-analyze ones some-
times were actionable, and hence productive.
Unproductive redundant mutants Redundant mutants can
be unproductive if they are unrealistic or generally hard to
understand—compared to a simpler alternative mutant. While
a complex redundant mutant still forces the same valuable
test as the simpler alternative, we argue that in this case,
the developer would waste valuable time understanding the
mutant before writing that test. As an example, consider the
conditional statement if (x < a || x > b), which tests
whether a value x lies outside the (non-empty) range from a to
b. Two mutually redundant, killable mutants for this code are
if (x < a && x > b and if (false). Both mutants are
killable and elicit the same test, but the first mutant is harder
to understand, and hence less productive than the second.

III. MUTATION TESTING IN PRACTICE

This section reports on a large-scale case study of applying
mutation testing at Google. Specifically, it first describes the
implemented mutation testing approach and then evaluates the
costs and benefits of this approach.

A. Mutation Testing at Google

Mutation testing at Google is integrated in the code review
process, which requires approval from reviewers with own-
ership and expertise in the language to submit the change.
Aside from the comments from the human reviewers, Google’s
code review tool Critique surfaces analysis data on various
aspects of the change both to the author and reviewers. For
example, Google’s static analysis system Tricorder provides
data on code coverage, test results, and code formatting [8].
An author can only submit the change to the source tree when
all required approvals are granted by the reviewers.

Critique surfaces live mutants, pointing the author and
reviewers to a potential issue with the test suite or source
code itself. The author may choose to kill a mutant by adding
a test case, to change the code, or to ignore that mutant.
The reviewers can instruct the author to kill a mutant, unless
the author can provide a satisfying counterargument for why
it is not useful to do so. Additionally, the author and the
reviewers can indicate in Critique whether a surfaced mutant
was useful and provide qualitative feedback for why or why
not. The provided feedback informs mutant suppression for
future commits. Recall from section II that we consider a
mutant unproductive if the author and the reviewer indicated
that the mutant was not useful.

For any given commit, Critique surfaces at most one mutant
per changed or added line for two reasons: 1) it reduces the
visual intrusion into the developer’s workflow and 2) it is
a performance optimization to save computational resources
and provide timely analysis feedback. Additionally, the total
number of surfaced mutants per commit is capped. The se-
lection of mutants to surface is driven by historical mutant
survival rates and the feedback obtained from authors and
reviewers—unproductive mutants are suppressed and hard-to-
detect mutants are surfaced with a higher probability.

The combination of commit-level, selective mutation and
unproductive mutant suppression make mutation testing prac-
tical in a large-scale software development environment like
Google, where 400,000 mutants are evaluated every month and
the reported ratio of productive mutants is 80% and rising [9].

Considering a code repository of 2 billion lines of code
and 40,000 commits every day [8], we argue that aiming
at mutation adequacy is hopeless. Even driving statement
coverage improvements across some Google teams has proven
a challenging endeavor, and statement coverage is a much
simpler metric to measure, display, and improve. However,
commit-level, selective mutation testing with unproductive
mutant suppression is a viable approach.

B. Costs of Mutation Testing

We wished to study whether surfacing live mutants adds
a significant overhead to the review and revision process—
compared to surfacing only code coverage information. To that
end, we analyzed the size of commits, the time it took to
submit them, and whether or not mutants were surfaced during
the review. We identified relevant commits as follows:

1) Consider all commits submitted in 2017.
2) Discard types of commits to which code coverage

analysis and mutation testing is not applicable. This
includes commits that affect only binary files, tests,
documentation, or configuration files. This also includes
commits that only delete code.

3) Discard commits not written in Java, C++, Python, or
Go. While mutation testing at Google is supported for
nine languages, these four languages account for almost
85% of all relevant commits.

4) Discard commits written in more than one language.
Polyglot commits may introduce a bias due to a longer-
than-usual time to submit and uncertainty about the
review process. About 90% of the commits were written
in a single language.

5) Discard commits from third-party and experimental
projects. These commits may introduce a bias due to
different review requirements.

6) Discard rollback commits and cleanup commits.
Cleanup commits are automated commits for which code
metrics are usually ignored.

7) Discard outliers—that is, commits whose time to submit
is larger than one month.

Overall, we identified and analyzed 1.9 million commits,
written in 4 programming languages by 30,000+ developers.

Fig. 2: Distributions of time to submit for each quintile of commit size (Delta Bucket) and analysis category. Time to submit
(log) gives the ln-transformed time to submit, which is measured in seconds.

Both, the average size of a commit and the average time
to submit a commit vary significantly between programming
languages—some languages are more verbose than others.
Considering the set of 1.9 million commits, Python commits
tend to be half the size of Java and C++ commits, differences
in commit size between Java and C++ are negligible, and the
average size of Go commits falls in the middle between Python
and Java/C++. Therefore, we separately analyzed the data for
each programming language but compared overall trends.

For each programming language, we binned all commits
based on delta size (i.e., the total number of added, removed,
or changed lines). Specifically, we chose five bins based on
the quintiles of all commits for that language. For each bin,
we then computed and analyzed the distributions of time to
submit in three analysis categories:

1) No analysis: Only test results (pass/fail) are available.
2) Coverage: Test and code coverage results are available.
3) Coverage+Mutation: Test, code coverage, and mutation

results are available.

In all delta size bins, there are tens of thousands of commits
with only test results, hundreds of thousands of commits with
test and code coverage results, and thousands of commits with
test, code coverage, and mutation analysis results.

Note that we do not distinguish between commits for which
the surfaced mutants were deemed productive vs. unproductive
for two reasons. First, an unproductive mutant still requires hu-
man analysis to make this judgement call. Second, a developer

may also ignore information about an uncovered statement or
branch if it is unproductive or impossible to write a test that
covers it. Therefore, including all commits for code coverage
and mutation analysis enables a realistic and fair evaluation.

Figure 2 shows the distributions of time to submit for each
programming language, delta size bin, and analysis category.
Overall, the results show little variation between analysis cate-
gories for a given language and delta size bin. Additionally, the
average time to submit increases with delta size, which is ex-
pected. Figure 2 also shows similar trends for all programming
languages. Further analyzing the differences, we tested the
hypothesis that the difference for time to submit is not signifi-
cantly (statistically and practically) different between the anal-
ysis categories. We chose the non-parametric Mann-Whitney
U test and Vargha and Delaney’s A12 effect size [10].

The results show that all differences are statistically sig-
nificant, which is expected given the enormous sample size.
However, what matters is the effect size—that is, whether the
differences are practically significant. The results show little
to no effect, with a notable exception in the two smallest
bins. For these two bins, the differences between commits
with code coverage results and commits with mutation results
show a small to moderate effect (between .58 and .68); time
to submit is larger for commits with mutation results. For the
three largest bins, all effect sizes are negligible (between .53
and .55). Comparing commits with only tests and commits
with additional coverage information, the effect size is negli-
gible (between .48 and .52) across all bins and languages.

For better interpretation of these results, we offer insights
into the development and code review processes. While code
coverage is an important measure and projects generally
have good coverage metrics [9], small changes of only a
few lines, or larger automated changes like renames rarely
consider coverage or mutation as relevant metrics; in those
cases tests ensuring no breakages suffice. In case of features
accompanied by tests, coverage and mutation information is
much more useful. Many small changes will get submitted
without consuming the analysis results, some will even be
submitted before the analysis has completed. This is true
for coverage and for mutation testing, which requires the
completion of the coverage analysis. Larger feature changes
requiring thorough review will not be submitted by the time
coverage and mutation testing results are surfaced and they
are more likely to be picked out by the reviewers. We argue
that the non-negligible differences between commits with code
coverage results and commits with mutation results in the two
smallest bins (figure 2) are, in part, a consequence of this
particular development process. Moreover, human expert time
is a much scarcer resource—by orders of magnitude—than
CPU time spent on performing code coverage or mutation
analysis. Our study over-approximates the human time by
considering the overall analysis time—the actual human time,
in particular for mutation testing, is likely to be much lower.

Although our results stem from 1.9 million commits, 4 pro-
gramming languages, and 30,000+ developers, they may not be
representative of other developers or development processes.

Commit-level mutation testing does not add a significant
overhead compared to using code coverage analysis in
a commit-oriented code-review process. This observation
holds for all studied programming languages.

C. Benefits of Mutation Testing

Using developer feedback for identifying and suppressing
unproductive mutants, the perceived usefulness of surfaced
mutants in Critique improved from 20% to 80% [9]. Developer
feedback comes in other non-quantifiable ways too, and for
mutation testing it has been extensive. Developers have de-
cided to redesign large chunks of code to make them testable
just so a mutant could be killed, they have found bugs in
complex logical expressions looking at mutants, they have
decided to remove code with an equivalent mutant because
they deemed it a premature optimization, they’ve claimed the
mutant saved them hours of debugging and even production
outages because no test cases were covering the logic under
mutation properly. Mutation testing has been called one of the
best improvements in the code review verification in years.
While this feedback is hardly quantifiable, combined with the
sheer number of thousands of developers willing to inspect
surfaced mutants on their code changes makes a statement.

Developers report many perceived benefits of mutation
testing, including stronger tests, more effective debugging,
prevention of bugs, and improved code quality.

TABLE I: Number of mutants in selected subjects from Lang.
Mutants gives the total number of mutants, Live Dev gives the num-
ber of mutants not killed by the developer tests, Live Dev+Evo gives
the number of mutants not killed by the developer or EvoSuite tests,
and Equivalent gives the number of equivalent mutants.

Subject Mutants Live Dev Live Dev+Evo Equivalent

Lang-33 754 131 (17.4%) 108 (14.3%) 80 (10.6%)
Lang-44 1096 284 (25.9%) 207 (18.9%) 118 (10.8%)
Lang-49 1369 246 (18.0%) 229 (16.7%) 142 (10.5%)

Total 3219 661 (20.5%) 544 (16.9%) 340 (10.6%)

TABLE II: Number of examined and unproductive mutants in
selected subjects from Lang.

Lang-33 Lang-44 Lang-49 Total

mutants time mutants time mutants time mutants time

Examined 91 365 158 818 179 782 428 1965
+killed 11 67 40 387 37 322 88 776
+equivalent 80 298 118 431 142 460 340 1189

Unproductive 57 193 40 136 43 128 140 457
+killed 15 58 16 101 18 98 49 257
+equivalent 42 135 24 35 25 30 91 200

IV. THE COSTS OF UNPRODUCTIVE MUTANTS

To understand the amount of effort required to develop
a mutation-adequate test set, we used the Defects4J bench-
mark [11] (v1.1.0), which provides a set of 395 subjects from
six open-source projects, each accompanied by a thorough
developer-written test suite. For this effort we selected subjects
from the Lang project where the associated test suite achieved
at least 95% statement coverage, then randomly selected three
subjects (Lang-33, Lang-44, and Lang-49). All three are of
fairly typical size compared to other Lang subjects in De-
fects4J, and yielded 754, 1096, and 1369 mutants, respectively
(see table I). We used the Major mutation framework [12] to
generate mutants for the subjects (modified classes [11]) and
to perform the mutation analysis. The developer-written test
suites of the subjects killed all but 20.5% of the mutants.

In order to more closely approximate the mutants that
were actually equivalent, we used the EvoSuite tool [13] to
automatically generate additional tests. These tests killed a
modest number of additional mutants, reducing the number of
live mutants to 16.9% of the total number of mutants.

Finally, we performed mutation testing with the overall goal
of developing a mutation-adequate test set for each subject.
We manually examined the remaining live mutants to identify
which were truly equivalent, and wrote additional tests to
kill the others. This significantly reduced the number of live
mutants to 10.6%, showing that even with a high-quality test
suite with very high statement coverage, approximately half
of the remaining live mutants can in fact be killed.

Achieving a mutation-adequate test set, however, was not
a trivial task. Manual review of the mutants not killed by
developer or generated tests required an average of 4.6 minutes
per mutant, for a total time of 32.8 hours. This average time
is substantially shorter than the 15 minutes reported in prior

studies [14], [15], but those studies sampled mutants at random
from a variety of classes. In contrast, we examined many
mutants from a limited number of classes, which allowed for
increasing familiarity with the code and increased efficiency.
Overall, our results are consistent with prior work: the average
time to examine each of the first 10 equivalent mutants from
each subject (when familiarity with the code was not yet
established) was 11.7 minutes.

We identified 140 unproductive mutants (32.7%) from the
428 mutants that we examined, as shown in table II. Un-
productive killed mutants accounted for 35.0% of the 140
unproductive mutants, and required the most developer time
with an average of 5.2 minutes per mutant needed to kill
each one. This is more than the average of 4.6 minutes for
all mutants and nearly 50% more than the 3.5 minutes for
equivalent mutants, making these a particular waste of time.
Unproductive equivalent mutants were more plentiful, but were
easier to review, requiring only 2.2 minutes per mutant.

We also found 17 examples of redundant mutants, where
the mutants elicited a useful test, but a simpler mutant exists
that elicits the same test while being more easily understood.
Redundant mutants are not included in table II since they were
not strictly wasted effort. Similarly, many equivalent mutants
were not strictly unproductive. In many cases, mutants were
only equivalent because of the specific implementation of the
code; these mutants provided useful insights and a similar
mutation elsewhere in the code or in a different application
might well elicit a valuable test. Further, we found several
examples where equivalent mutants revealed code redundancy
that might lead a developer to refactor the code, improving its
clarity. Such equivalent mutants seem in fact quite productive.

A large ratio of mutants not killed by thorough, industrial-
strength test suites are unproductive mutants. The time to
write a test to kill an unproductive mutant is on average
higher than the time to determine mutant equivalence.

V. CHALLENGES AND RESEARCH DIRECTIONS

Based on the case studies reported in this paper, we iden-
tified the following challenges for widespread adoption of
mutation testing in practice:

• Unproductive mutants represent futile testing goals, and
developers are not willing to waste their time on writing
pointless tests just to satisfy mutation adequacy. This is
similar to code coverage: some lines or branches are more
important than others, and 100% code coverage is neither
the norm2 nor considered desirable in many cases [16].

• A developer’s workflow revolves around commits. Suc-
cessfully deploying mutation testing requires a smooth
integration into this workflow.

• There are far more mutants than developers can analyze
in a reasonable time frame. Since only very few mutants
should be surfaced, the challenge is to pick the most
productive ones.

2https://testing.googleblog.com/2014/07/measuring-coverage-at-google.html

To address these challenges, we propose the following
research directions and high-level research questions:

• The notion of a productive mutant is based on whether it
improves the test suite, the code base, or knowledge. Can
this inherently fuzzy notion be formally characterized,
independently of developer judgment?

• Surfacing only developer-preferred mutants may bias the
resulting test set with respect to faults in developer blind
spots. Can crowdsourcing avoid such a bias?

• Productive mutants cannot be identified in a program-
agnostic manner. Can mutation testing be customized to
the program under test to be context sensitive and surface
mostly productive mutants?

• Coupling between real faults and mutants is still far from
being perfect, and selecting fewer mutants decreases fault
coupling even further. Is it possible to achieve high fault
coupling with a very small set of mutants?

• Currently, mutation testing at Google surfaces at most
one mutant per line of code in a commit. Is this the
“right” number, and under what circumstances would it
be appropriate to surface fewer or more mutants?

• As successive commits revisit the same code over time,
does the resulting test set approach mutation adequacy?

VI. RELATED WORK

Mutation testing effectiveness and efficiency Fault-
coupling for state-of-the-art mutation systems, while impres-
sive with respect to other coverage criteria, still peaks well
short of what is possible. Increasing fault-coupling requires ad-
ditional mutation operators, and the number of mutants grows
very quickly with these mutation operators [17], [18], [19].
To combat cost, the research community has long explored
program-agnostic mutant selection strategies [4], [20]—none
outperform random selection [21], [22]. Recent work showed
that program context matters and explored rule-based and
probabilistic approaches to mutant selection [9], [23], [24].
Specifically, Petrović and Ivanković use developer feedback to
identify and suppress mutants in uninteresting AST nodes [9].
They summarized heuristics for both generic and language-
specific mutant suppression. Just et al. proposed an AST-
based program context model, suitable for predicting mutant
effectiveness [23]. Fernandez et al. developed 37 rules for
useless mutants in Java programs, where the term useless
covers both equivalent and redundant mutants [24]. The initial
results show promise for developing selection strategies that
do outperform random selection. Further, Zhang et al. used
machine learning to predict mutation scores both on successive
versions of a given project and across projects [25].
Mutation testing in practice Reports on large scale ap-
plication of mutation testing are still rare. Ahmed et al. [26]
reported on the experience of applying mutation testing to
parts of the Linux kernel. The PIT project aims to make
mutation testing usable by practicing developers and sees
adoption in industry [27].
Redundant and equivalent mutants A large fraction of
the mutation literature has focused on addressing the com-

putational costs and the equivalent mutant problem [4]. Re-
searchers search for techniques that avoid redundant mutants,
which not only increase costs but also inflate the mutation
score [28], and instead favor hard-to-detect mutants [29],
[30] or dominator mutants [31]. Even in the very recent
literature [32], effectiveness for mutants is primarily defined in
terms of redundancy and equivalence, and does not include the
notion that non-redundant mutants might be unproductive or
that equivalent mutants can be productive. In our experience,
redundant and equivalent mutants have been less problematic
than unproductive non-redundant and non-equivalent mutants.

VII. CONCLUSIONS

This paper draws lessons from an industry-scale application
of mutation testing, identifies challenges that need to be
addressed, and proposes research directions to advance the
adoption of mutation testing in practice.

Our long-term vision for mutation testing in an industrial
setting leverages fine-grained historical data on program con-
text, mutant survival rates, and developer feedback on the
usefulness of surfaced mutants. Machine learning classifiers
trained on this rich dataset can then predict highly productive
mutants to guide the testing effort of a developer.

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed.
Cambridge, UK: Cambridge University Press, 2017, ISBN 978-1-107-
17201-2.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?” in Proceedings of the International
Conference on Software Engineering (ICSE), May 2005, pp. 402–411.

[3] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering (FSE), November 18–20 2014, pp. 654–665.

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering (TSE),
vol. 37, no. 5, pp. 649–678, 2011.

[5] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localization,”
in Proceedings of the International Conference on Software Engineering
(ICSE), May 2017, pp. 609–620.

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the International Conference on Software Engineering (ICSE),
May 2013, pp. 672–681.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, April 1978.

[8] R. Potvin and J. Levenberg, “Why Google stores billions of lines of
code in a single repository,” Communications of the ACM, vol. 59, pp.
78–87, Jul. 2016.

[9] G. Petrović and M. Ivanković, “State of mutation testing at Google,” in
Proceedings of the International Conference on Software Engineering—
Software Engineering in Practice (ICSE SEIP), May 2018.

[10] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability (JSTVR), vol. 24, no. 3, pp. 219–250,
2014.

[11] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), July 23–25 2014, pp. 437–440.

[12] R. Just, “The Major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), July 2014, pp. 433–436.

[13] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proceedings of the Joint Meeting of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), September 2011, pp.
416–419.

[14] B. J. Grün, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in Proceedings of the International Workshop on Mutation
Analysis (Mutation), April 2009, pp. 192–199.

[15] D. Schuler and A. Zeller, “(un-)covering equivalent mutants,” in Pro-
ceedings of the International Conference on Software Testing, Verifica-
tion and Validation (ICST), April 2010, pp. 45–54.

[16] B. Marick, “How to misuse code coverage,” in Proceedings of the
Interational Conference on Testing Computer Software (ICTCS), June
1999, pp. 16–18.

[17] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An
experimental determination of sufficient mutant operators,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 5,
no. 2, pp. 99–118, 1996.

[18] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care and
feeding of wild-caught mutants,” in Proceedings of the Symposium on
the Foundations of Software Engineering (FSE), September 2017, pp.
511–522.

[19] M. Allamanis, E. T. Barr, R. Just, and C. Sutton, “Tailored mutants fit
bugs better,” arXiv preprint arXiv:1611.02516, 2016.

[20] L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, “Operator-based
and random mutant selection: Better together,” in Proceedings of the
International Conference on Automated Software Engineering (ASE),
November 2013, pp. 92–102.

[21] R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce,
“On the limits of mutation reduction strategies,” in Proceedings of the
International Conference on Software Engineering (ICSE), May 2016,
pp. 511–522.

[22] R. Kurtz, P. Ammann, J. Offutt, M. E. Delamaro, M. Kurtz, and
N. Gökçe, “Analyzing the validity of selective mutation with dominator
mutants,” in Proceedings of the Symposium on the Foundations of
Software Engineering (FSE), November 2016, pp. 571–582.

[23] R. Just, R. J. Kurtz, and P. Ammann, “Inferring mutant utility from
program context,” in Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), July 2017, pp. 284–294.

[24] L. Fernandes, M. Ribeiro, L. Carvalho, R. Gheyi, M. Mongiovi, A. San-
tos, A. Cavalcanti, F. Ferrari, and J. C. Maldonado, “Avoiding useless
mutants,” in Proceedings of the International Conference on Generative
Programming: Concepts and Experiences (GPCE), October 2017, pp.
187–198.

[25] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang,
“Predictive mutation testing,” in Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), July 2016, pp. 342–353.

[26] I. Ahmed, R. Gopinath, C. Jensen, A. Groce, and P. E. McKenney,
“Applying mutation analysis on kernel test suites: An experience report,”
in Proceedings of the International Workshop on Mutation Analysis
(Mutation), March 2017, pp. 110–115.

[27] H. Coles, “Real world mutation testing,” http://pitest.org, last accessed
January 2018.

[28] R. Just and F. Schweiggert, “Higher accuracy and lower run time:
efficient mutation analysis using non-redundant mutation operators,”
Software Testing, Verification and Reliability (JSTVR), vol. 25, no. 5-
7, pp. 490–507, 2015.

[29] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Proceedings
of the International Conference on Software Engineering (ICSE), May
2014, pp. 919–930.

[30] W. Visser, “What makes killing a mutant hard,” in Proceedings of the
International Conference on Automated Software Engineering (ASE),
September 2016, pp. 39–44.

[31] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), March 2014, pp.
21–31.

[32] P. McMinn, C. J. Wright, C. J. McCurdy, and G. Kapfhammer, “Au-
tomatic detection and removal of ineffective mutants for the mutation
analysis of relational database schemas,” IEEE Transactions on Software
Engineering (TSE), 2017.

