
RigNet: Neural Rigging for Articulated Characters

ZHAN XU, YANG ZHOU, and EVANGELOS KALOGERAKIS, University of Massachusetts Amherst
CHRIS LANDRETH and KARAN SINGH, University of Toronto

RigNet

Fig. 1. Given a 3D character mesh, RigNet produces an animation skeleton and skin weights tailored to the articulation structure of the input
character. From left to right: input examples of test 3D meshes, predicted skeletons for each of them (joints are shown in green and bones in blue),
and resulting skin deformations under different skeletal poses. Please see also our supplementary video: https://youtu.be/J90VETgWIDg

We present RigNet, an end-to-end automated method for producing animation
rigs from input character models. Given an input 3D model representing an
articulated character, RigNet predicts a skeleton that matches the animator
expectations in joint placement and topology. It also estimates surface skin
weights based on the predicted skeleton. Our method is based on a deep
architecture that directly operates on the mesh representation without making
assumptions on shape class and structure. The architecture is trained on a
large and diverse collection of rigged models, including their mesh, skele-
tons and corresponding skin weights. Our evaluation is three-fold: we show
better results than prior art when quantitatively compared to animator rigs;
qualitatively we show that our rigs can be expressively posed and animated
at multiple levels of detail; and finally, we evaluate the impact of various
algorithm choices on our output rigs. 1

Additional Key Words and Phrases: character rigging, animation skele-
tons, skinning, neural networks

ACM Reference Format:
Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan
Singh. 2020. RigNet: Neural Rigging for Articulated Characters. ACM Trans.
Graph. 39, 4 (to appear), 14 pages. https://doi.org/10.1145/3386569.3392379

1Our project page with source code, datasets, and supplementary video is available at
https://zhan-xu.github.io/rig-net

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record will be published in ACM Transactions
on Graphics, vol. 39, no. 4, https://doi.org/10.1145/3386569.3392379.

1 INTRODUCTION
There is a rapidly growing need for diverse, high-quality, animation-
ready characters and avatars in the areas of games, films, mixed
Reality and social media. Hand-crafted character “rigs”, where users
create an animation “skeleton” and bind it to an input mesh (or
“skin”), have been the workhorse of articulated figure animation for
over three decades. The skeleton represents the articulation structure
of the character, and skeletal joint rotations provide an animator with
direct hierarchical control of character pose.

We present a deep-learning based solution for automatic rig cre-
ation from an input 3D character. Our method predicts both a skeleton
and skinning that match animator expectations (Figures 1, 10). In
contrast to prior work that fits pre-defined skeletal templates of fixed
joint count and topology to input 3D meshes [Baran and Popović
2007], our method outputs skeletons more tailored to the underly-
ing articulation structure of the input. Unlike pose estimation ap-
proaches designed for particular shape classes, such as humans or
hands [Haque et al. 2016; Huang et al. 2018; Moon et al. 2018;
Pavlakos et al. 2017; Shotton et al. 2011; Xu et al. 2017], our ap-
proach is not restricted by shape categorization or fixed skeleton
structure. Our network represents a generic model of skeleton and
skin prediction capable of rigging diverse characters (Figures 1,10).

Predicting an animation skeleton and skinning from an arbitrary
single static 3D mesh is an ambitious problem. As shown in Figure 2,
animators create skeletons whose number of joints and topology vary
drastically across characters depending on their underlying articu-
lation structure. Animators also imbue an implicit understanding of
creature anatomy into their skeletons. For example, character spines
are often created closer to the back rather than the medial surface or
centerline, mimicking human and animal anatomy (Figure 2, cat);

ACM Trans. Graph., Vol. 39, No. 4, to appear

2 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

Fig. 2. Examples of skeletons created by animators. In the bottom row,
we show a rigged snail, including skinning weights for two of its parts.

they will also likely introduce a proportionate elbow joint into cylin-
drical arm-like geometry (Figure 2, teddy bear). Similarly when
computing skinning weights, animators often perceive structures
as highly rigid or smoother (Figure 2, snail). An automatic rigging
approach should ideally capture this animators’ intuition about un-
derlying moving parts and deformation. A learning approach is well
suited for this task, especially if it is capable of learning from a large
and diverse set of rigged models.

While animators largely agree on the skeletal topology and layout
of joints for an input character, there is also some ambiguity both in
terms of number and exact joint placement (Figure 3). For example,
depending on animation intent, a hand may be represented using a
single wrist joint or at a finer resolution with a hierarchy of hand
joints (Figure 3, top row). Spine and tail-like articulations may be
captured using a variable number of joints (Figure 3, bottom row).
Thus, another challenge for a rigging method is to allow easy and
direct control over the level-of-detail for the output skeleton.

To address the above challenges, we designed a deep modular
architecture (Figure 4). The first module is a graph neural network,
trained to predict an appropriate number of joints and their place-
ment, to capture the articulated mobility of the input character. As
skeletal joint resolution can depend on the intended animation task,
we provide users an optional parameter that can control the level-
of-detail of the output skeleton (Figure 5). A second module learns
to predict a hierarchical tree structure (animation skeletons avoid
cycles as a design choice) connecting the joints. The output bone
structure is a function of joints predicted from the first stage and
shape features of the input character. Subsequently, a third module,
produces a skinning weight vector per mesh vertex, indicating the
degree of influence it receives from different bones. This stage is also
based on a graph neural network operating on shape features and
intrinsic distances from mesh vertices to the predicted bones.

Our evaluation is three-fold: we show that RigNet is better than
prior art when quantitatively compared to animator rigs (Tables 1, 2);
qualitatively we show our rigs to be expressive and animation-ready
(Figure 1 and accompanying video); and technically, we evaluate
the impact of various algorithm choices on our output rigs (Ta-
bles 3, 4, 5).

In summary, the contribution of this paper is an automated, end-to-
end solution to the fundamentally important and challenging problem
of character rigging. Our technical contributions include a neural
mesh attention and differentiable clustering scheme to localize joints,
a graph neural network for learning mesh representations, and a net-
work that learns connectivity of graph nodes (in our case, skeleton
joints). Our approach significantly outperforms purely geometric ap-
proaches [Baran and Popović 2007], and learning-based approaches
that provide partial solutions to our problem i.e., perform only mesh
skinning [Liu et al. 2019], or only skeleton prediction for volumetric
inputs [Xu et al. 2019].

2 RELATED WORK
In the following paragraphs, we discuss previous approaches for
producing animation skeletons, skin deformations of 3D models, and
graph neural networks.

Skeletons. Skeletal structures are fundamental representations in
graphics and vision [Dickinson et al. 2009; Marr and Nishihara
1978; Tagliasacchi et al. 2016]. Shape skeletons vary in concept
from precise geometric constructs like the medial axis representa-
tions [Amenta and Bern 1998; Attali and Montanvert 1997; Blum
1973; Siddiqi and Pizer 2008], curvilinear representations or meso-
skeletons [Au et al. 2008; Cao et al. 2010; Huang et al. 2013; Singh
and Fiume 1998; Tagliasacchi et al. 2009; Yin et al. 2018], to piece-
wise linear structures [Hilaga et al. 2001; Katz and Tal 2003; Siddiqi
et al. 1999; Zhu and Yuille 1996]. Our work is mostly related to
animator-centric skeletons [Magnenat-Thalmann et al. 1988], which
are designed to capture the mobility of an articulated shape. As
discussed in the previous section, apart from shape geometry, the
placement of joints and bones in animation skeletons is driven by
the animator’s understanding of character’s anatomy and expected
deformations.

The earliest approach to automatic rigging of input 3D models is
the pioneering method of “Pinocchio” [Baran and Popović 2007].
Pinocchio follows a combination of discrete and continuous optimiza-
tion to fit a pre-defined skeleton template to a 3D model, and also
performs skinning through heat diffusion. Fitting tends to fail when
the input shape structure is incompatible with the selected template.
Hand-crafting templates for every possible structural variation of an
input character is cumbersome. More recently, inspired by 3D pose
estimation approaches [Ge et al. 2018; Haque et al. 2016; Huang
et al. 2018; Moon et al. 2018; Newell et al. 2016; Pavlakos et al.
2017; Wan et al. 2018], Xu et al. [Xu et al. 2019] proposed learn-
ing a volumetric network for producing skeletons, without skinning,
from input 3D characters. Pre-processing the input mesh to a coarser
voxel representation can: eliminate surface features (like elbow or
knee protrusions) useful for accurate joint detection and placement;
alter the input shape topology (like proximal fingers represented as a
voxel mitten); or accumulate approximation errors. RigNet compares

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 3

favorably to these methods (Figure 8, Table 1), without requiring
pre-defined skeletal templates, pre-processing or lossy conversion
between shape representations.

Skin deformations. A wide range of approaches have also been
proposed to model skin deformations, ranging from physics-based
methods [Kim et al. 2017; Komaritzan and Botsch 2018, 2019; Mukai
and Kuriyama 2016; Si et al. 2015], geometric methods [Bang and
Lee 2018; Dionne and de Lasa 2013; Dionne and de Lasa 2014;
Jacobson et al. 2011; Kavan et al. 2007; Kavan and Sorkine 2012;
Kavan and Žára 2005; Wareham and Lasenby 2008], to data-driven
methods that produce skinning from a sequence of examples [James
and Twigg 2005; Le and Deng 2014; Loper et al. 2015; Qiao et al.
2018]. Given a single input character, it is common to resort to geo-
metric methods for skin deformation, such as Linear Blend Skinning
(LBS) or Dual Quaternion Skinning (DQS) [Kavan et al. 2007; Le
and Hodgins 2016] due to their simplicity and computational effi-
ciency. These methods require input skinning weights per vertex
which are either interactively painted and edited [Bang and Lee
2018], or automatically estimated based on hand-engineered func-
tions of shape geometry and skeleton [Bang and Lee 2018; Baran
and Popović 2007; Dionne and de Lasa 2013; Dionne and de Lasa
2014; Jacobson et al. 2011; Kavan and Sorkine 2012; Wareham and
Lasenby 2008]. It is difficult for such geometric approaches to ac-
count for any anatomic considerations implicit in input meshes, such
as the disparity between animator and geometric spines, or the skin
flexibility/rigidity of different articulations.

Data-driven approaches like ours, however, can capture anatomic
insights present in animator-created rigs. Neuroskinning [Liu et al.
2019] attempts to learn skinning from an input family of 3D char-
acters. Their network performs graph convolution by learning edge
weights within mesh neighborhoods, and outputting vertex features as
weighted combinations of neighboring vertex features. Our method
instead learns edge feature representations within both mesh and geo-
desic neighborhoods, and combines them into vertex representations
inspired by the edge convolution scheme of [Wang et al. 2019]. Our
network input uses intrinsic shape representations capturing geodesic
distances between vertices and bones, rather than relying on extrin-
sic features, such as Euclidean distance. Unlike Neuroskinning, our
method does not require any input joint categorization during train-
ing or testing. Most importantly, our method proposes a complete
solution (skeleton and skinning) with better results (Tables 1, 2).

We note that our method is complementary to physics-based or
deep learning methods that produce non-linear deformations, such
as muscle bulges, on top of skin deformations [Bailey et al. 2018;
Luo et al. 2018; Mukai and Kuriyama 2016], or rely on input bones
and skinning weights to compute other deformation approximations
[Jeruzalski et al. 2019]. These methods require input bones and
skinning weights that are readily provided by our method.

Graph Neural Networks. Graph Neural Networks (GNNs) have
become increasingly popular for graph processing tasks [Battaglia
et al. 2016; Bruna et al. 2014; Defferrard et al. 2016; Hamilton et al.
2017a,b; Henaff et al. 2015; Kipf and Welling 2016; Li et al. 2016;
Scarselli et al. 2009; Wu et al. 2019]. Recently, GNNs have also
been proposed for geometric deep learning on point sets [Wang et al.
2019], meshes [Hanocka et al. 2019; Masci et al. 2015], intrinsic or

Fig. 3. Models rigged by three different artists. Although they tend to
agree on skeleton layout and expected articulation, there is variance
in terms of number of joints and overall level-of-detail.

spectral representations [Boscaini et al. 2016; Bronstein et al. 2017;
Monti et al. 2017; Yi et al. 2017]. Our graph neural network adapts the
operator proposed in [Wang et al. 2019] to perform edge convolutions
within mesh-based and geodesic neighborhoods. Our network also
weighs and combines representations from mesh topology, local and
global shape geometry. Notably, our approach judiciously combines
several other neural modules for detecting and connecting joints, with
a graph neural network, to provide an integrated deep architecture
for end-to-end character rigging.

3 OVERVIEW
Given an input 3D mesh of a character, our method predicts an
animation skeleton and skinning tailored for its underlying articula-
tion structure and geometry. Both the skeleton and skinning weights
are animator-editable primitives that can be further refined through
standard modeling and animation pipelines. Our method is based
on a deep architecture (Figure 4), which operates directly on the
mesh representation. We do not assume known input character class,
part structure, or skeletal joint categories during training or testing.
Our only assumption is that the input training and test shapes have
a consistent upright and frontfacing orientation. Below, we briefly
overview the key aspects of our architecture. In Section 4, we explain
its stages in more detail.

Skeletal joint prediction. The first module of our architecture is
trained to predict the location of joints that will be used to form the
animation skeleton. To this end, it learns to displace mesh geometry
towards candidate joint locations (Figure 4a). The module is based
on a graph neural network, which extracts topology- and geometry-
aware features from the mesh to learn these displacements. A key
idea of our architecture in this stage is to learn a weight function
over the input mesh, a form of neural mesh attention, which is used
to reveal which surface areas are more relevant for localizing joints
(Figure 4b). Our experiments demonstrate that this leads to more

ACM Trans. Graph., Vol. 39, No. 4, to appear

4 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

......

......

one-ring neighbors of v
mesh edges

v

geodesic neighbors of v

vertex pair
representations

geodesic ring
encoding

one-ring
neighborhood

encoding

output
representation

of vertex v

GMEdgeConv layer

...

...

...

global shape
encoding

per-vertex
attributes

input mesh
vertex attributes

GMEdgeNet

GMEdgeNet

(b)
vertex

attn.

(a)
vertex
displ. attn-driven

clustering

93%

98%

5% MST

GMEdgeNet

GMEdgeNet

MLP

MLP
max

max
MLP

MLP

concat MLP

GMEdgeConv

GMEdgeConv

GMEdgeConv

concat
per point

max
pool

max
pool

max
pool

tile &
concat

concat MLP

MLP

(c) detected
joints

(e) root joint

(f) output
skeleton

(g) skinning weights

input
3D model

BoneNet

BoneNet

BoneNet

RootNet

(d) bone
 prob.

Fig. 4. Top: Pipeline of our method. (a) Given an input 3D model, a graph neural network, namely GMEdgeNet, predicts displacements of vertices
towards neighboring joints. (b) Another GMEdgeNet module with separate parameters predicts an attention function over the mesh that indicates
areas more relevant for joint prediction (redder values indicate stronger attention - the displaced vertices are also colored according to attention). (c)
Driven by the mesh attention, a clustering module detects joints shown as green balls. (d) Given the detected joints, a neural module (BoneNet, see
also Figure 6) predicts probabilities for each pair of joints to be connected. (e) Another module (RootNet) extracts the root joint. (f) A Minimum
Spanning Tree (MST) algorithm uses the BoneNet and RootNet outputs to form an animation skeleton. (g) Finally, a GMEdgeNet module outputs
the skinning weights based on the predicted skeleton. Bottom: Architecture of GMEdgeNet, and its graph convolution layer (GMEdgeConv).

accurate skeletons. The displaced mesh geometry tends to form clus-
ters around candidate joint locations. We introduce a differentiable
clustering scheme, which uses the neural mesh attention, to extract
the joint locations (Figure 4c).

Since the final animation skeleton may depend on the task or the
artists’ preferences, our method also allows optional user input in the
form of a single parameter to control the level-of-detail, or granularity,
of the output skeleton. For example, some applications, like crowd
simulation, may not require rigging of small parts (e.g., hands or
fingers), while other applications, like FPS games, rigging such parts
is more important. By controlling a single parameter through a slider,
fewer or more joints are introduced to capture different level-of-detail
for the output skeleton (see Figure 5).

Skeleton connectivity prediction. The next module in our archi-
tecture learns which pairs of extracted joints should be connected
with bones. Our module takes as input the predicted joints from the
previous step, including a learned shape and skeleton representation,
and outputs a probability representing whether each pair should be
connected with a bone or not (Figure 4d). We found that learned joint
and shape representations are important to reliably estimate bones,
since the skeleton connectivity depends not only on joint locations
but also the overall shape and skeleton geometry. The bone probabili-
ties are used as input to a Minimum Spanning Tree algorithm that
prioritizes the most likely bones to form a tree-structured skeleton,
starting from a root joint picked from another trained neural module
(Figure 4e).

Skinning prediction. Given a predicted skeleton (Figure 4f), the
last module of our architecture produces a weight vector per mesh
vertex indicating the degree of influence it receives from different
bones (Figure 4g). Our method is inspired by Neuroskinning [Liu

et al. 2019], yet, with important differences in the architecture, bone
and shape representations, and the use of volumetric geodesic dis-
tances from vertices to bones (as opposed to Euclidean distances).

Training and generalization. Our architecture is trained via a com-
bination of loss functions measuring deviation in joint locations,
bone connectivity, and skinning weight differences with respect to
the training skeletons. Our architecture is trained on input characters
that vary significantly in terms of structure, number and geometry of
moving parts e.g., humanoids, bipeds, quadrupeds, fish, toys, fictional
characters. Our test set is also similarly diverse. We observe that our
method is able to generalize to characters with different number of
underlying articulating parts (Figure 10).

4 METHOD
We now explain our architecture (Figure 4) for rigging an input 3D
model at test time in detail. In the following subsections, we discuss
each stage of our architecture. Then in Section 5, we discuss training.

4.1 Joint prediction
Given an input mesh M, the first stage of our architecture outputs
a set of 3D joint locations t = {t8 }, where C8 2 R3. One particular
complication related to this mapping is that the number of articu-
lating parts, and in turn, the number of joints is not the same for
all characters. For example, a multiped creature is expected to have
more joints than a biped. We use a combination of regression and
adaptive clustering to solve for the joint locations and their number.
In the regression step, the mesh vertices are displaced towards their
nearest candidate joint locations. This step results in accumulating
points near joint locations (Figure 4a). The second step localizes the
joints by clustering the displaced points and setting the cluster centers

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 5

sparser

denser denser

denserdenser

sparser sparser

sparser

Fig. 5. Effect of increasing the bandwidth parameter that controls the
level-of-detail, or granularity, of our predicted skeleton.

as joint locations (Figure 4b). The number of resulting clusters is
determined adaptively according to the underlying point density and
learned clustering parameters. Performing clustering without first
displacing the vertices fails to extract reasonable joints, since the
original position of mesh vertices is often far from joint locations. In
the next paragraphs, we explain the regression and clustering steps.

Regression. In this step, the mesh vertices are regressed to their
nearest candidate joint locations. This is performed through a learned
neural network function that takes as input the mesh M and outputs
vertex displacements. Specifically, given the original mesh vertex
locations v, our displacement module 53 outputs perturbed points q:

q = v + 53 (M;w3) (1)

where w3 are learned parameters of this module. Figure 4a visualizes
displaced points for a characteristic example. This mapping is remi-
niscent of P2P-Net [Yin et al. 2018] that learns to displace surface
points across different domains e.g., surface points to meso-skeletons.
In our case, the goal is to map mesh vertices to joint locations. An im-
portant aspect of our setting is that not all surface points are equally
useful to determine joint locations e.g., the vertices located near
the elbow region of an arm are more likely to reveal elbow joints
compared to other vertices. Thus, we also designed a neural net-
work function 50 that outputs an attention map which represents a
confidence of localizing a joint from each vertex. Specifically, the
attention map a = {0E} includes a scalar value per vertex, where
0E 2 [0, 1], and is computed as follows:

a = 50 (M;w0) (2)

where w0 are learned parameters of the attention module. Figure 4b
visualizes the map for a characteristic example.

Module internals. Both displacement and attention neural net-
work modules operate on the mesh graph. As we show in our ex-
periments, operating on the mesh graph yields significantly better
performance compared to using alternative architectures that operate
on point-sampled representations [Yin et al. 2018] or volumetric
representations [Xu et al. 2019]. Our networks builds upon the edge

convolution proposed in [Wang et al. 2019], also known as ‘Edge-
Conv”. Given feature vectors X = {xE} at mesh vertices, the output
of an EdgeConv operation at a vertex is a new feature vector encoding
its local graph neighborhood: x0E = max

D2N(E)
"!% (xE, xD � xE ;w<;?)

where "!% denotes a learned multi-layer perceptron, w<;? are its
learned parameters, and N(E) is the graph neighborhood of vertex
E . Defining a proper graph neighborhood for our task turned out to
be fruitful. One possibility is to simply use one-ring vertex neigh-
borhoods for edge convolution. We instead found that this strategy
makes the network sensitive to the input mesh tessellation and results
in lower performance. Instead, we found that it is better to define
the graph neighborhood of a vertex by considering both its one-ring
mesh neighbors, and also the vertices located within a geodesic ball
centered at it. We also found that it is better to learn separate MLPs
for mesh and geodesic neighborhoods, then concatenate their outputs
and process them through another MLP. In this manner, the networks
learn to weigh the importance of topology-aware features over more
geometry-aware ones. Specifically, our convolution operator, called
GMEdgeConv (see also Figure 4, bottom) is defined as follows:

xE,< = max
D2N< (E)

"!% (xE, xD � xE ;w<) (3)

xE,6 = max
D2N6 (E)

"!% (xE, xD � xE ;w6) (4)

x0E = "!% (2>=20C (xE,<, xE,6);w2) (5)

where N< (E) are the one-ring mesh neighborhoods of vertex E ,
N6 (E) are the vertices from its geodesic ball. In all our experiments,
we used a ball radius A = 0.06 of the longest dimension of the model,
which is tuned through grid search in a hold-out validation set. The
weights w< , w6 , and w2 are learned parameters for the above MLPs.
We note that we experimented with the attention mechanism proposed
in [Liu et al. 2019], yet we did not find any significant improvements.
This is potentially due to the fact that EdgeConv already learns edge
representations based on the pairwise functions of vertex features,
which may implicitly encode edge importance.

Both the vertex displacement and attention modules start with
the vertex positions as input features. They share the same internal
architecture, which we call GMEdgeNet (see also Figure 4, bottom).
GMEdgeNet stacks three GMEdgeConv layers, each followed with
a global max-pooling layer. The representations from each pooling
layer are concatenated to form a global mesh representation. The
output per-vertex representations from all GMEdgeConv layers, as
well as the global mesh representation, are further concatenated, then
processed through a 3-layer MLP. In this manner, the learned vertex
representations incorporate both local and global information. In the
case of the vertex displacement module, the feature representation
are transformed to 3D displacements per each vertex through another
MLP. In the case of the vertex attention module, the per-vertex feature
representations are transformed through a MLP and a sigmoid non-
linearity to produce a scalar attention value per vertex. Both modules
use their own set of learned parameters for their GMEdgeConv layers
and MLPs. More details about their architecture are provided in the
appendix.

Clustering. This step takes as input the displaced points q along
with their corresponding attention values a, and outputs joints. As

ACM Trans. Graph., Vol. 39, No. 4, to appear

6 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

shown in Figure 4a, points tend to concentrate in areas around can-
didate joint locations. Areas with higher point density and greater
attention are strong indicators of joint presence. We resort to density-
based clustering to detect local maxima of point density and use those
as joint locations. In particular, we employ a variant of mean-shift
clustering, which also uses our learned attention map. A particular ad-
vantage of mean-shift clustering is that it does not explicitly require
as input the number of target clusters.

In classical mean-shift clustering [Cheng 1995], each data point
is equipped with a kernel function. The sum of kernel functions re-
sults in a continuous density estimate, and the local maxima (modes)
correspond to cluster centers. Mean-shift clustering is performed iter-
atively; at each iteration, all points are shifted towards density modes.
In our implementation, the kernel is also modulated by the vertex
attention. In this manner, points with greater attention influence the
estimation of density more. Specifically, at each mean-shift iteration,
each points is displaced according to the vector:

mE =

Õ
D
0D · (qD � qE,⌘) · qDÕ
D
0D · (qD � qE,⌘)

� qE (6)

where (qD�qE,⌘) =<0G (1� | |qD�qE | |2/⌘2, 0) is the Epanechnikov
kernel with learned bandwidth ⌘. We found that the Epanechnikov
kernel produces better clustering results than a Gaussian kernel or a
triangular kernel. The mean-shift iterations are implemented through
a recurrent module in our architecture, similarly to the recurrent pixel
grouping in Kong and Fowlkes [2018], which also enables training
of the bandwidth through backpropagation.

At test time, we perform mean-shift iterations until convergence
(i.e., no point is shifted for a Euclidean distance more than 10�3). As
a result, the shifted points “collapse” into distinct modes (Figure 4c).
To extract these modes, we start with the point with highest density,
and remove all its neighbors within radius equal to the bandwidth
⌘. This point represents a mode, and we create a joint at its location.
Then we proceed by finding the point with the second largest density
among the remaining ones, suppress its neighbors, and create another
joint. This process continues until no other points remain. The output
of the step are the modes that correspond to the the set of detected
joints t = {t8 }.

User control. Since animators may prefer to have more control
over the placement of joints, we allow them to override the learned
bandwidth value, by interactively manipulating a slider controlling
its value (Figure 5). We found that modifying the bandwidth directly
affects the level-of-detail of the output skeleton. Lowering the band-
width results in denser joint placement, while increasing it results in
sparser skeletons. We note that the bandwidth cannot be set to arbi-
trary values e.g., a zero bandwidth value will cause each displaced
vertex to become a joint. In our implementation, we empirically set
an editable range from 0.01 to 0.1. The resulting joints can be pro-
cessed by the next modules of our architecture to produce the bone
connectivity and skinning based on their updated positions.

Symmetrization. 3D characters are often modeled based on a neu-
tral pose (e.g., “T-pose”), and as a result their body shapes usually
have bilateral symmetry. In such cases, we symmetrize joint pre-
diction by reflecting the displaced points q and attention map a

according to the global bilateral symmetry plane before performing
clustering. As a result, the joint prediction is more robust to any small
inconsistencies produced in either side.

4.2 Connectivity prediction
Given the joints extracted from the previous stage, the connectivity
prediction stage determines how these joints should be connected to
form the animation skeleton. At the heart of this stage lies a learned
neural module that outputs the probability of connecting each pair
of joints via a bone. These pairwise bone probabilities are used as
input to Prim’s algorithm that creates a Minimum Spanning Tree
(MST) representing the animation skeleton. We found that using
these bone probabilities to extract the MST resulted in skeletons
that agree with animator-created ones more in topology compared to
simpler schemes e.g., using Euclidean distances between joints (see
Figure 7 and experiments). In the following paragraphs, we explain
the module for determining the bone probabilities for each pair of
joints, then we discuss the cost function used for creating the MST.

GMEdgeNet

PointNet

global joint
encoding

global shape
encoding

candidate bone
descriptor

MLP MLP

bone
prob.

joints

mesh

Fig. 6. BoneNet architecture.

Bone module. The bone
module, which we call
“BoneNet”, takes as input
our predicted joints t along
with the input mesh M, and
outputs the probability ?8, 9
for connecting each pair of
joints via a bone. By pro-
cessing all pairs of joints
through the same module,
we extract a pairwise matrix
representing all candidate bone probabilities. The architecture of the
module is shown in Figure 6. For each pair of joints, the module
processes three representations that capture global shape geometry,
skeleton geometry, and features from the input pair of joints. In our
experiments, we found that this combination offered the best bone
prediction performance. More specifically, BoneNet takes as input:
(a) a 128-dimensional representation gB encoding global shape geom-
etry, which is extracted from the max-pooling layers of GMEdgeNet
(see also Figure 4, bottom), (b) a 128-dimensional representation
gC encoding the overall skeleton geometry by treating joints as a
collection of points and using a learned PointNet to produce it [Qi
et al. 2017], and (c) a representation encoding the input pair of joints.
To produce this last representation, we first concatenate the posi-
tions of two joints {t8 , t9 }, their Euclidean distance 38, 9 , and another
scalar >8, 9 capturing the proportion of the candidate bone lying in
the exterior of the mesh. The Euclidean distance and proportion
are useful indicators of joint connectivity: the smaller the distance
between two joints, the more likely is a bone between them. If the
candidate bone protrudes significantly outside the shape, then it is
less likely to choose it for the final skeleton. We transform the raw
features [t8 , t9 ,38, 9 ,>8, 9] into a 256-dimensional bone representation
f8, 9 through a MLP. The bone probability is computed via a 2-layer
MLP operating on the concatenation of these three representations,
followed by a sigmoid:

?8, 9 = B86<>83
�
"!% (f8, 9 , gB , gC ;w1)

�
(7)

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 7

Fig. 7. Left: Joints detected by our method. The root joint is shown in
red. Middle: Skeleton created with Prim’s algorithm based on Euclidean
distances as edge cost. Right: Skeleton created using the negative log
of BoneNet probabilities as cost.

where w1 are learned module parameters. Details about the architec-
ture of BoneNet are provided in the appendix.

Skeleton extraction. The skeleton extraction step aims to infer the
most likely tree-structured animation skeleton among all possible
candidates. If we consider the choice of selecting an edge in a tree
as an independent random variable, the joint probability of a tree is
equal to the product of its edge probabilities. Maximizing the joint
probability is equivalent to minimizing the negative log probabilities
of the edges:F8, 9 = � log?8, 9 . Thus, by defining a dense graph whose
nodes are the extracted joints, and edges have weightsF8, 9 , we can
use a MST algorithm to solve this problem. In our implementation,
we use Prim’s algorithm [Prim 1957]. Any joint can serve as a start-
ing, or root joint for Prim’s algorithm. However, since the root joint
is used to control the global character’s body position and orientation
and is important for motion re-targeting tasks, this stage also predicts
which joint should be used as root. One common choice is to select
the joint closer to the center of gravity for the character. However,
we found that this choice is not always consistent with animators’
preferences (Figure 2, root nodes in the cat and dragon are further
away from their centroids). Instead, we found that the selection of
the root joint can also be performed more reliably using a neural
module. Specifically, our method incorporates a module, which was
call RootNet. Its internal architecture follows BoneNet. It takes as
input the global shape representation gB and global joint representa-
tion gC (as in BoneNet). It also takes as input a joint representation
f8 learned through a MLP operating on its location and distance 38,2
to the bilateral symmetry plane. The latter feature was driven by the
observation that root joints are often placed along this symmetry
plane. RootNet outputs the root joint probability as follows:

?8,A = B> 5 C<0G
�
"!% (f8 , gB , gC ;wA)

�
(8)

where wA are learned parameters. At test time, we select the joint
with highest probability as root joint to initiate the Prim’s algorithm.

4.3 Skinning prediction
After producing the animation skeleton, the final stage of our archi-
tecture is the prediction of skinning weights for each mesh vertex
to complete the rigging process. To perform skinning, we first ex-
tract a mesh representation capturing the spatial relationship of mesh
vertices with respect to the skeleton. The representation is inspired
by previous skinning methods [Dionne and de Lasa 2013; Jacobson

et al. 2011] that compute influences of bones on vertices according
to volumetric geodesic distances between them. This mesh represen-
tation is processed through a graph neural network that outputs the
per-vertex skinning weights. In the next paragraphs, we describe the
representation and network.

Skeleton-aware mesh representation. The first step of the skin-
ning stage is to compute a mesh representation H = {hE}, which
stores a feature vector for each mesh vertex E and captures its spa-
tial relationship with respect to the skeleton. Specifically, for each
vertex we compute volumetric geodesic distances to all the bones
i.e, shortest path lengths from vertex to bones passing through the
interior mesh volume. We use a implementation that approximates
the volumetric geodesic distances based on [Dionne and de Lasa
2013]; other potentially more accurate approximations could also be
used [Crane et al. 2013; Solomon et al. 2014]. Then for each vertex
E , we sort the bones according to their volumetric geodesic distance
to it, and create an ordered feature sequence {bA ,E}A=1... , where
A denotes an index to the sorted list of bones. Each feature vector
bA ,E concatenates the 3D positions of the starting and end joints of
bone A , and the inverse of the volumetric geodesic distance from the
vertex E to this bone (1/⇡A ,E). The reason for ordering the bones wrt
each vertex is to promote consistency in the resulting representation
i.e., the first entry represents always the closest bone to the vertex,
the second entry represents the second closest bone, and so on. In
our implementation, we use the = 5 closest bones selected based
on hold-out validation. If a skeleton contains less than bones, we
simply repeat the last bone in the sequence. The final per-vertex
representation hE is formed by concatenating the vertex position and
above ordered sequence {bA ,E}A=1... .

Skinning module. The module 5B transforms the above skeleton-
aware mesh representation H to skinning weights S = {sE}:

S = 5B (H;wB) (9)

where wB are learned parameters. The skinning network follows
GMEdgeNet. The last layer outputs a 1280-dimensional per-vertex
feature vector, which is transformed to a per-vertex skinning weight
vector sE through a learned MLP and a softmax function. This ensures
that the skinning weights for each vertex are positive and sum to
1. The entries of the output skinning weight vector sE are ordered
according to the volumetric geodesic distance of the vertex E to the
corresponding bones.

5 TRAINING
The goal of our training procedure is to learn the parameters of the
networks used in each of the three stages of RigNet. Training is
performed on a dataset of rigged characters described in Section 6.

5.1 Joint prediction stage training
Given a set of training characters, each with skeletal joints t̂ = {t̂: },
we learn the parameters w0 , w3 , and bandwidth ⌘ of this stage such
that the estimated skeletal joints approach as closely as possible to
the training ones. Since the estimated skeletal joints originate from
mesh vertices that collapse into modes after mean shift clustering, we
can alternatively formulate the above learning goal as a problem of
minimizing the distance of collapsed vertices to nearest training joints

ACM Trans. Graph., Vol. 39, No. 4, to appear

8 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

and vice versa. Specifically, we minimize the symmetric Chamfer
distance between collapsed vertices {tE} and training joints {t̂: }:

!23 (w0,w3 ,⌘) =
1
+

+’
E=1

min
:

| |tE � t̂: | | +
1

 ’
:=1

min
E

| |tE � t̂: | | (10)

The loss is summed over the training characters (we omit this sum-
mation for clarity). We note that this loss is differentiable wrt all the
parameters of the joint prediction stage, including the bandwidth.
The mean shift iterations of Eq. 6 are differentiable with respect to
the attention weights and displaced points. This allows us to back-
propagate joint location error signal to both the vertex displacement
and attention network. The Epanechnikov kernel in mean-shift is also
a quadratic function wrt the bandwidth, which makes it possible to
learn the bandwidth efficiently through gradient descent. Learning
converged to a value of ⌘ = 0.057 based on our training dataset.

We also found that adding supervisory signal to the vertex displace-
ments before clustering helped improving training speed and joint
detection performance (see also experiments). To this end, we mini-
mize Chamfer distance between displaced points and ground-truth
joints, favoring tighter clusters:

!023 (w3) =
1
+

’
E

min
:

| |qE � t̂: | | +
1

’
:

min
E

| |qE � t̂: | | (11)

This loss affects only the parameters w3 of the displacement module.
Finally, we found that adding supervision to the vertex attention
weights also offered a performance boost, as discussed in our experi-
ments. This loss is driven by the observation that the displacement
of vertices located closer to joints are more helpful to localize them
more accurately. Thus, for each training mesh, we find vertices clos-
est to each joint at different directions perpendicular to the bones.
Then we create a binary mask m̂ whose values are equal to 1 for these
closest vertices, and 0 for the rest. We use cross-entropy to measure
consistency between these masks and neural attention:

!< (w0) = m̂ log a + (1 � m̂) log(1 � a)

Edge dropout. During training of GMEdgeNet, for each batch, we
randomly select a subset of edges within geodesic neighborhoods (in
our implementation, we randomly select subsets up to 15 edges). This
sampling strategy can be considered as a form of mesh edge dropout.
We found that it improved performance since it simulates varying
vertex sampling on the mesh, making the graph network more robust
to different tessellations.

Training implementation details. We first pre-train the parameters
w0 of attention module with the loss !< alone. We found that boot-
strapping the attention module with this pre-training helped with the
performance (see also experiments). Then we fine-tune w0 , and train
the parameters w3 of the displacement module and the bandwidth ⌘
using the combined loss: !23 (w0,w3 ,⌘) + !023 (w3). For fine-tuning,
we use the Adam optimizer with a batch size of 2 training characters,
and learning rate 10�6.

5.2 Connectivity stage training
Given a training character, we form the adjacency matrix encoding
the connectivity of the skeleton i.e., ?̂8 9 = 1 if two training joints
8 and 9 are connected, and ?̂8 9 = 0 otherwise . The parameters w1

of the BoneNet are learned using binary cross-entropy between the
training adjacency matrix entries and the predicted probabilities ?8, 9 :

!< (w0) =
’
8, 9

?̂8 9 log?8, 9 + (1 � ?̂8 9) log(1 � ?8, 9)

The BoneNet parameters are learned using the probabilities ?8, 9
estimated for training joints rather than the predicted ones of the
previous stage. The reason is that the training adjacency matrix
is defined on training joints (and not on the predicted ones). We
tried to find correspondences between the predicted joints and the
training ones using the Hungarian method, then transfer the training
adjacencies to pairs of matched joints. However, we did not observe
significant improvements by doing this potentially due to matching
errors. Finally, to train the parameters wA of the network used to
extract the root joint, we use the softmax loss for classification.

Training implementation details. Training BoneNet has an addi-
tional challenge due to class imbalance problem: out of all pairs of
joints, only few are connected. To deal with this issue, we adopt the
online hard-example mining approach from [Shrivastava et al. 2016].
For both networks, we employ the Adam optimizer with batch size
12 and learning rate 10�3.

5.3 Skinning stage training
Given a set of training characters, each with skin weights Ŝ = {ŝE},
we train the parameters wB of our skinning network so that the
estimated skinning weights S = {sE} agree as much as possible with
the training ones. By treating the per-vertex skinning weights as
probability distributions, we use cross-entropy as loss to quantify the
disagreement between training and predicted distributions for each
vertex:

!B (wB) =
1
+

’
E

’
A

B̂E,A log BE,A

As in the case of the connectivity stage, we train the skinning
network based on the training skeleton rather than the predicted one,
since we do not have skinning weights for it. We tried to transfer
skinning weights from the training bones to the predicted ones by
establishing correspondences as before, but this did not result in
significant improvements.

Training implementation details. To train the skinning network,
we use the Adam optimizer with a batch size of 2 training characters,
and learning rate 10�4. We also apply the edge dropout scheme during
the training of this stage, as in the joint prediction stage.

6 RESULTS
We evaluated our method and alternatives for animation skeleton and
skinning prediction both quantitatively and qualitatively. Below we
discuss the dataset used for evaluation, the performance measures,
comparisons, and ablation study.

Dataset. To train and test our method and alternatives, we chose
the “ModelsResource-RigNetv1” dataset of 3D articulated characters
from [Xu et al. 2019], which provides a non-overlapping training
and test split, and contains diverse characters 2. Specifically, the

2please see also our project page: https://zhan-xu.github.io/rig-net

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 9

Fig. 8. Comparisons with previous methods for skeleton extraction. For each character, the reference skeleton is shown on the left (“animator-
created”). Our predictions tend to agree more with the reference skeletons.

Fig. 9. Comparisons with prior methods for skinning. We visualize skinning weights, L1 error maps, and a different pose (moving right arm for the
robot above, and lowering the jaw of the character below). Our method produces lower errors in skinning weight predictions on average.

dataset contains 2703 rigged characters mined from an online reposi-
tory [Models-Resource 2019], spanning several categories, including
humanoids, quadrupeds, birds, fish, robots, toys, and other fictional
characters. Each character includes one rig (we note that the multiple
rig examples of the two models of Figure 3 were made separately
and do not belong to this dataset). The dataset does not contain dupli-
cates, or re-meshed versions of the same character. Such duplicates
were eliminated from the dataset. Specifically, all models were vox-
elized in a binary 883 grid, then for each model in the dataset, we
computed the Intersection over Union (IoU) with all other models
based on their volumetric representation. We eliminated duplicates
or near-duplicates whose IoU of volumes was more than 95%. We
also manually verified that such re-meshed versions were filtered out.
Under the guidance of an artist, we also verified that all characters
have plausible skinning weights and deformations. We use a training,
hold-out validation, and test split, following a 80%-10%-10% propor-
tion respectively, resulting in 2163 training, 270 hold-out validation,
and 270 test characters. Figure 2 shows examples from the training
split. The models are consistently oriented and scaled. Meshes with

fewer than 1 vertices were subdivided; as a result all training and
test meshes contained between 1K and 5K vertices. The number of
joints per character varied from 3 to 48, and the average is 25.0. The
quantitative and qualitative evaluation was performed on the test split
of the dataset.

Quantitative evaluation measures. Our quantitative evaluation
aims to measure the similarity of the predicted animation skeletons
and skinning to the ones created by modelers in the test set (denoted
as “reference skeletons” and “reference skinning” in the following
paragraphs). For evaluating skeleton similarity, we employ various
measures following [Xu et al. 2019]:
(a) CD-J2J is the symmetric Chamfer distance between joints. Given
a test shape, we measure the Euclidean distance from each predicted
joint to the nearest joint in its reference skeleton, then divide with the
number of predicted joints. We also compute the Chamfer distance
the other way around from the reference skeletal joints to the nearest
predicted ones. We denote the average of the two as CD-J2J.
(b) CD-J2B is the Chamfer distance between joints and bones. The

ACM Trans. Graph., Vol. 39, No. 4, to appear

10 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

Fig. 10. Predicted skeletons for test models with varying structure and morphology. Our method is able to produce reasonable skeletons even for
models that have different number or types of parts than the ones used for training e.g., quadrupeds with three tails.

difference from the previous measure is that for each predicted joint,
we compute its distance to the nearest bone point on the reference
skeleton. We symmetrize this measure by also computing the distance
from reference joints to predicted bones. A low value of CD-J2B
and a high value of CD-J2J mean that the predicted and reference
skeletons tend to overlap, yet the joints are misplaced along the bone
direction.
(c) CD-B2B is the Chamfer distance between bones (line segments).
As above, we define it symmetrically. CD-B2B measures similarity
of skeletons in terms of bone placement (rather than joints). Ideally,
all CD-J2J, CD-J2B, and CD-B2B measures should be low.
(d) IoU (Intersection over Union) can also be used to characterize
skeleton similarity. First, we find a maximal matching between the
predicted and reference joints by using the Hungarian algorithm.
Then we measure the number of predicted and reference joints that
are matched and whose Euclidean distance is lower then a prescribed
tolerance. This is then divided with the total number of predicted and
reference joints. By varying the tolerance, we can obtain plots demon-
strating IoU for various tolerance levels (see Figure 11). To provide
a single, informative value, we set the tolerance to half of the local
shape diameter [Shapira et al. 2008] evaluated at each corresponding
reference joint. This is evaluated by casting rays perpendicular to the
bones connected at the reference joint, finding ray-surface intersec-
tions, and computing the joint-surface distance averaged over all rays.
The reason for this normalization is that thinner parts e.g, arms have
lower shape diameter; as a result, small joint deviations can cause
more noticeable misplacement compared to thicker parts like torso.
(e) Precision & Recall can also be used here. Precision is the fraction
of predicted joints that were matched and whose distance to their
nearest reference one is lower than the tolerance defined above. Re-
call is the fraction of reference joints that were matched and whose

IoU Prec. Rec. CD-J2J CD-J2B CD-B2B
Pinocchio 36.5% 38.7% 35.9% 7.2% 5.5% 4.7%

Xu et al. 201953.7% 53.9% 55.2% 4.5% 2.9% 2.6%
Ours 61.6%67.6%58.9% 3.9% 2.4% 2.2%

Table 1. Comparisons with other skeleton prediction methods.

distance to their nearest predicted joints is lower than the tolerance.
Note that since the number of reference or predicted joints may not
be the same. Unmatched predicted joints contribute no precision, and
similarly unmatched reference joints contribute no recall.
(f) TreeEditDist (ED) is the tree edit distance measuring the topolog-
ical difference of the predicted skeleton to the reference one. The
measure is defined as the minimum number of joint deletions, inser-
tions, and replacements that are necessary to transform the predicted
skeleton into the reference one.

To evaluate skinning, we use the reference skeletons for all meth-
ods, and measure similarity between predicted and reference skinning
maps:
(a) Precision & Recall are measured by finding the set of bones that
influence each vertex significantly, where influence corresponds to a
skinning weight larger than a threshold (14�4, as described in [Liu
et al. 2019]). Precision is the fraction of influential bones based on
the predicted skinning among the ones defined based on the refer-
ence skinning. Recall is the fraction of the influential bones based on
the reference skinning matching the ones found from the predicted
skinning.
(b) L1-norm measures the L1 norm of the difference between the
predicted skinning weight vector and the reference one for each mesh
vertex. We compute the average L1-norm over each test mesh.
(c) dist measures the Euclidean distance between the position of
vertices deformed based on the reference skinning and the predicted

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 11

Prec. Rec. avg L1 avg dist max dist

BBW 68.3% 77.6 % 0.69 0.0061 0.055
GeoVoxel 72.8% 75.1 % 0.65 0.0057 0.049

NeuroSkinning 76.3% 74.7 % 0.57 0.0053 0.043
Ours 82.3% 80.8% 0.39 0.0041 0.032

Table 2. Comparisons with other skinning prediction methods.

one. To this end, given a test shape, we generate 10 different random
poses, and compute the average and max distance error over the mesh
vertices.

All the above skeleton and skinning evaluation measures are com-
puted for each test shape, then averaged over the the test split.

Competing methods. For skeleton prediction, we compare our
method with Pinocchio [Baran and Popović 2007] and [Xu et al.
2019]. Pinocchio fits a template skeleton for each model. The tem-
plate is automatically selected among a set of predefined ones (hu-
manoid, short quadruped, tall quadruped, and centaur) by evaluat-
ing the fitting cost for each of them, and choosing the one with
the least cost. [Xu et al. 2019] is a learning method trained on the
same split as ours, with hyper-parameters tuned in the same val-
idation split. For skinning weights prediction, we compare with
the Bounded-Biharmonic Weights (BBW) method [Jacobson et al.
2011], NeuroSkinning [Liu et al. 2019] and the geometric method
from [Dionne and de Lasa 2013], called “GeoVoxel”. For the BBW
method, we adopt the implementation from libigl [Jacobson et al.
2018], where the mesh is first tetrahedralized, then the bounded bihar-
monic weights are computed based on this volume discretization. For
NeuroSkinning, we trained the network on the same split as ours and
optimized its hyperparameters in the same hold-out validation split.
For GeoVoxel, we adopt Maya’s implementation [Autodesk 2019]
which outputs skinning weights based on a hand-engineered function
of volumetric geodesic distances. We set the max influencing bone
number, weight pruning threshold, and drop-off parameter through
holdout validation in our validation split (3 bones, 0.3 pruning thresh-
old, and 0.5 dropoff).

Io
U

 p
er

ce
nt

ag
e

10

20

30

40

50

60

70

tolerance level
0.2 0.4 0.6 0.8 1.0

Fig. 11. IoU vs different tolerances.

Comparisons. Table 1 re-
ports the evaluation measures
for skeleton extraction be-
tween competing techniques.
Our method outperforms the
rest according to all measures.
This is also shown in Fig.11,
showing IoU on the y-axis for
different tolerance levels (mul-
tipliers of local shape diameter)
on the x-axis.

Figure 8 visualizes reference skeletons and predicted ones for
different methods for some characteristic test shapes. We observe
that our method tends to output skeletons whose joints and bones
are closer to the reference ones. [Baran and Popović 2007] often
produces implausible skeletons when the input model has parts (e.g.,
tail, clothing) that do not correspond well to the used template. [Xu
et al. 2019] tends to misplace joints around areas, such as elbows and
knees, since voxel grids tend to lose surface detail.

IoU Prec. Rec. CD-J2J CD-J2B CD-B2B

P2PNet-based 40.6% 41.6% 42.0% 6.3% 4.6% 3.8%
No attn 52.4% 50.9% 50.7% 4.6% 3.1% 2.7%

One-ring 59.7% 65.6% 57.4% 4.1% 2.5% 2.4%
No vertex loss 59.3% 58.2% 57.6% 4.2% 2.7% 2.5%

No attn pretrain60.6% 64.0% 58.1% 4.2% 2.6% 2.4%
Full 61.6%67.6%58.9% 3.9% 2.4% 2.2%

Table 3. Joint prediction ablation study

Class. Acc. CD-B2B ED
Euclidean edge cost 61.2% 0.30% 5.0
bone descriptor only 71.9% 0.22% 4.2

bone descriptor+skel. geometry 80.7% 0.12% 2.9
Full stage 83.7% 0.10% 2.4

Table 4. Connectivity prediction ablation study

Prec Rec. avg-L1 avg-dist. max-dist.

No geod. dist.80.0% 79.3% 0.41 0.0044 0.054
Ours 82.3%80.8% 0.39 0.0041 0.032

Table 5. Skinning prediction ablation study

Table 2 reports the evaluation measures for skinning. Our numer-
ical results are significantly better than BBW, NeuroSkinning, and
GeoVoxel according to all the measures. Figure 9 visualizes the skin-
ning weights produced by our method, GeoVoxel, and NeuroSkining
that were found to be the best alternatives according to our numer-
ical evaluation. Ours tends to agree more with the artist-specified
skinning. On the top example, arms are close to torso in terms of
Euclidean distance, and to some degree also in geodesic sense. Both
NeuroSkining and GeoVoxel over-extend the skinning weights to
a larger area than the arm. In order to match the GeoVoxel’s out-
put to the artist-created one, all its parameters need to be manually
tuned per test shape, which is laborious. Our method combines bone
representations and vertex-skeleton intrinsic distances in our mesh
network to produce skinning that better separates articulating parts.
In the bottom example, a jaw joint is placed close to the lower lip to
control the jaw animation. Most vertices on the front face are close
to this joint in terms of both geodesic and Euclidean distances. This
results in higher errors for both NeuroSkinning and GeoVoxel, even
if the latter is manually tuned. Our method produces a sharper map
capturing the part of the jaw.

Ablation study. We present the following ablation studies to demon-
strate the influence from different design choices of our method.
(a) Joint prediction ablation study: Table 3 presents evaluation of
variants of our joint detection stage trained in the same split and
tuned in the same hold-out validation split as our original method.
We examined the following variants: “P2PNet-based” uses the same
architecture as P2PNet [Yin et al. 2018], which relies on PointNet
[Qi et al. 2017] for displacing points (vertices in our case). After
displacement, mean-shift clustering is used to extract joints as in our
method. We experimented with the loss from their approach, and also
the same loss as in our joint detection stage (excluding the attention
mask loss, since P2PNet does not use attention). The latter choice
worked better. The architecture was trained and tuned in the same
split as ours. “No attn” is our method without the attention module,

ACM Trans. Graph., Vol. 39, No. 4, to appear

12 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

thus all vertices have the same weight during clustering. “One-ring”
is our method where GMEdgeConv uses only one-ring neighbors
of each vertex without considering geodesic neighborhoods. “No
vertex loss” does not use vertex displacement supervision with the
Chamfer distance loss of Eq. 11 during training. It uses supervision
from clustering only based on the loss of Eq.10. “No attn pretrain”
does not pre-train the attention network with our created binary mask.
We observe that removing any of these components, or using an ar-
chitecture based on P2PNet, leads to a noticeable performance drop.
In particularly, the attention module has a significant influence on
the performance of our method.
(b) Connectivity prediction ablation study. Table 4 presents evalua-
tion of alternative choices for our BoneNet. In these experiments, we
examine the performance of the connectivity module when it is given
as input the reference joints instead of the predicted ones. In this
manner, we specifically evaluate the design choices for the connec-
tivity stage i.e., our evaluation here is not affected from any wrong
predictions of the joint detection stage. Here, we report the binary
classification accuracy (“Class. Acc.”) i.e., whether the prediction to
connect each pair of given joints agrees with the ground-truth connec-
tivity. We also report edit distance (ED) and bone-to-bone Chamfer
distance (CD-B2B), since these measures are specific to bone evalua-
tion. We first show the performance when the MST connects joints
based on Euclidean distance as cost (see “Euclidean edge cost”). We
also evaluate the effect of using only the bone descriptor without the
skeleton geometry encoding (gC) and without shape encoding (gB)
(see “bone descriptor only”, and Eq.7). We also evaluate the effect
of using the bone descriptor with the skeleton geometry encoding
but without shape encoding (see “bone descriptor+skel. geometry”).
The best performance is achieved when all three shape, skeleton, and
bone representations are used as input to BoneNet. We also observed
the same trend in RootNet, where we evaluate the accuracy of pre-
dicting the root joint correctly. Skipping the skeleton geometry and
shape encoding results in accuracy of 67.8%. Adding the skeleton
encoding increases it to 86.8%. Using all three shape, skeleton, and
joint representations achieves the best accuracy of 88.9%.

K

Av
g

L1

1 2 3 4 5 6 7 8 9 10

0.40

0.42

0.44

0.46

0.48

0.52

0.50

Fig. 12. Skinning weight error wrt
different number of closest bones
used in our network.

(c) Skinning prediction abla-
tion study. Table 5 presents the
case of removing the volumetric
geodesic distance feature from
input to our skinning prediction
network. We observe a notice-
able performance drop without
it. Still, it is interesting to see
that even without it, our method
is better than competing meth-
ods (Table 2). We also experi-
mented with different choices of i.e., the number of closest bones
used in our skinning prediction. Fig.12 shows the average L1-norm
difference of skinning weights for = 1...10 in our test set. Lowest
error is achieved when = 5 (we noticed the same behavior and
minimum in our validation split).

7 LIMITATIONS AND CONCLUSION
We presented a method that automatically rigs input 3D character
models. To the best of our knowledge, our method represents a first
step towards a learning-based, complete solution to character rigging,
including skeleton creation and skin weight prediction. We believe
that our method is practical in various scenarios. First, we believe that
our method is useful for casual users or novices, who might not have
the training or expertise to deal with modeling and rigging interfaces.
Another motivation for using our method is the widespread effort
for democratization of 3D content creation and animation that we
currently observe in online asset libraries provided with modern game
engines (e.g., Unity). We see our approach as such one step towards
further democratization of character animation. Another scenario
of use for our method is when a large collection of 3D characters
need to be rigged. Processing every single model manually would be
cumbersome even for experienced artists.

Fig. 13. Failure cases.
(Top:) extra joints in the
arms. (Bottom:) missing
helper joints for clothes.

Our approach does have limitations,
and exciting avenues for future work. First,
our method currently uses a per-stage
training approach. Ideally, the skinning
loss could be back-propagated to all stages
of the network to improve joint prediction.
However, this implies differentiating vol-
umetric geodesic distances and skeletal
structure estimation, which are hard tasks.
Although we trained our method such that
it is more robust to different vertex sam-
pling and tessellations, invariance to mesh
resolution and connectivity is not guar-
anteed. Investigating the performance of
other mesh neural networks (e.g., spectral)
here, could be impactful. There are few
cases where our method produces unde-
sirable effects, such as putting extra arm
joints (Figure 13, top). Our dataset also has limitations. It contains
one rig per model. Many rigs often do not include bones for small
parts, like feet, fingers, clothing and accessories, which makes our
trained model less predictive of these joints (Figure 13, bottom).
Enriching the dataset with more rigs could improve performance,
though it might make the mapping more multi-modal than it is at
present. A multi-resolution approach that refines the skeleton in a
coarse-to-fine manner may instead be fruitful. Our current bandwidth
parameter explores one mode of variation. Exploring a richer space
to interactively control skeletal morphology and resolution is another
interesting research direction. Finally, it would also be interesting
to extend our method to handle skeleton extraction for point cloud
recognition or reconstruction tasks.

ACKNOWLEDGMENTS
This research is partially funded by NSF (EAGER-1942069) and
NSERC. Our experiments were performed in the UMass GPU cluster
obtained under the Collaborative Fund managed by the Massachusetts
Technology Collaborative. We thank Gopal Sharma, Difan Liu, and
Olga Vesselova for their help and valuable suggestions. We also thank
anonymous reviewers for their feedback.

ACM Trans. Graph., Vol. 39, No. 4, to appear

RigNet: Neural Rigging for Articulated Characters • 13

REFERENCES
Nina Amenta and Marshall Bern. 1998. Surface Reconstruction by Voronoi Filtering. In

Proc. Symposium on Computational Geometry.
Dominique Attali and Annick Montanvert. 1997. Computing and Simplifying 2D and

3D Continuous Skeletons. Comput. Vis. Image Underst. 67, 3 (1997).
Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee

Lee. 2008. Skeleton Extraction by Mesh Contraction. ACM Trans. on Graphics 27, 3
(2008).

Autodesk. 2019. Maya, version. www.autodesk.com/products/autodesk-maya/.
Stephen W. Bailey, Dave Otte, Paul Dilorenzo, and James F. O’Brien. 2018. Fast and

Deep Deformation Approximations. ACM Trans. on Graphics 37, 4 (2018).
Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skinning Weight

Editing. ACM Trans. on Graphics 37, 5 (2018).
Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D Characters.

ACM Trans. on Graphics 26, 3 (2007).
Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. 2016.

Interaction networks for learning about objects, relations and physics. In Proc. NIPS.
Harry Blum. 1973. Biological shape and visual science (part I). Journal of Theoretical

Biology 38, 2 (1973).
Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael M. Bronstein. 2016.

Learning Shape Correspondence with Anisotropic Convolutional Neural Networks.
In Proc. NIPS.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017. Geometric
Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine 34,
4 (2017).

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral Net-
works and Locally Connected Networks on Graphs. In Proc. ICLR.

J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su. 2010. Point Cloud Skeletons
via Laplacian Based Contraction. In Proc. SMI.

Yizong Cheng. 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Trans. Pat. Ana.
& Mach. Int. 17, 8 (1995).

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A
New Approach to Computing Distance Based on Heat Flow. ACM Trans. on Graphics
32, 5 (2013).

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering. arXiv:1606.09375
(2016).

Sven J. Dickinson, Ales Leonardis, Bernt Schiele, and Michael J. Tarr. 2009. Object
Categorization: Computer and Human Vision Perspectives.

Olivier Dionne and Martin de Lasa. 2013. Geodesic Voxel Binding for Production
Character Meshes. In Proc. SCA.

O. Dionne and M. de Lasa. 2014. Geodesic Binding for Degenerate Character Geometry
Using Sparse Voxelization. IEEE Trans. Vis. & Comp. Graphics 20, 10 (2014).

Liuhao Ge, Zhou Ren, and Junsong Yuan. 2018. Point-to-Point Regression PointNet for
3D Hand Pose Estimation. In Proc. ECCV.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017a. Inductive Representation
Learning on Large Graphs. In Proc. NIPS.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017b. Representation Learning on
Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017).

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: A Network with an Edge. ACM Trans. on Graphics 38,
4 (2019).

Albert Haque, Boya Peng, Zelun Luo, Alexandre Alahi, Serena Yeung, and Fei-Fei Li.
2016. Towards Viewpoint Invariant 3D Human Pose Estimation. In Proc. ECCV.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks on
Graph-Structured Data. arXiv:1506.05163 (2015).

Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. 2001.
Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In Proc.
ACM SIGGRAPH.

Fuyang Huang, Ailing Zeng, Minhao Liu, Jing Qin, and Qiang Xu. 2018. Structure-
Aware 3D Hourglass Network for Hand Pose Estimation from Single Depth Image.
In Proc. BMVC.

Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and
Baoquan Chen. 2013. L1-medial Skeleton of Point Cloud. ACM Trans. on Graphics
32, 4 (2013).

Alec Jacobson, Ilya Baran, Jovan Popoviundefined, and Olga Sorkine. 2011. Bounded
Biharmonic Weights for Real-Time Deformation. ACM Trans. on Graphics 30, 4
(2011).

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Doug L. James and Christopher D. Twigg. 2005. Skinning Mesh Animations. ACM
Trans. on Graphics (2005).

Timothy Jeruzalski, Boyang Deng, Mohammad Norouzi, JP Lewis, Geoffrey Hinton,
and Andrea Tagliasacchi. 2019. NASA: Neural Articulated Shape Approximation.
arXiv:1912.03207 (2019).

Sagi Katz and Ayellet Tal. 2003. Hierarchical Mesh Decomposition Using Fuzzy
Clustering and Cuts. ACM Trans. on Graphics 22, 3 (2003).

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with
Dual Quaternions. In Proc. I3D.

Ladislav Kavan and Olga Sorkine. 2012. Elasticity-Inspired Deformers for Character
Articulation. ACM Trans. on Graphics 31, 6 (2012).

Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-Time Deformation
of Articulated Models. In Proc. I3D.

Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J. Black, and Sung-Hee Lee. 2017. Data-Driven Physics for Human Soft
Tissue Animation. ACM Trans. on Graphics 36, 4 (2017).

Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph
Convolutional Networks. arXiv:1609.02907 (2016).

Martin Komaritzan and Mario Botsch. 2018. Projective Skinning. Proc. ACM Comput.
Graph. Interact. Tech. 1, 1.

Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In Proc. MIG.
Shu Kong and Charless Fowlkes. 2018. Recurrent Pixel Embedding for Instance Group-

ing. In Proc. CVPR.
Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging from

Mesh Sequences. ACM Trans. on Graphics 33, 4 (2014).
Binh Huy Le and Jessica K. Hodgins. 2016. Real-Time Skeletal Skinning with Optimized

Centers of Rotation. ACM Trans. on Graphics 35, 4 (2016).
Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated graph

sequence neural networks. Proc. ICLR.
Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-

roSkinning: Automatic Skin Binding for Production Characters with Deep Graph
Networks. ACM Trans. on Graphics (2019).

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. on Graphics
34, 6 (2015).

Ran Luo, Tianjia Shao, Huamin Wang, Weiwei Xu, Kun Zhou, and Yin Yang. 2018.
DeepWarp: DNN-based Nonlinear Deformation. IEEE Trans. Vis. & Comp. Graphics
(2018).

N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. 1988. Joint-dependent Local
Deformations for Hand Animation and Object Grasping. In Proc. Graphics Interface

’88.
D.N. Marr and H Keith Nishihara. 1978. Representation and Recognition of the Spatial

Organization of Three-Dimensional Shapes. Royal Society of London. Series B,
Containing papers of a Biological character 200 (1978).

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst.
2015. Geodesic convolutional neural networks on Riemannian manifolds. In Proc.
ICCV Workshops.

Models-Resource. 2019. The Models-Resource, https://www.models-resource.com/.
Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and

Michael M. Bronstein. 2017. Geometric deep learning on graphs and manifolds using
mixture model CNNs. In Proc. CVPR.

Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. 2018. V2V-PoseNet: Voxel-to-
Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation From
a Single Depth Map. In Proc. CVPR.

Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient Dynamic Skinning with Low-
Rank Helper Bone Controllers. ACM Trans. on Graphics 35, 4 (2016).

Alejandro Newell, Kaiyu Yang, and Jia Deng. 2016. Stacked Hourglass Networks for
Human Pose Estimation. In Proc. ECCV.

Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpanis, and Kostas Daniilidis.
2017. Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose. In
Proc. CVPR.

R. C. Prim. 1957. Shortest Connection Networks and some Generalizations. The Bell
Systems Technical Journal 36, 6 (1957).

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. PointNet++: Deep Hierarchi-
cal Feature Learning on Point Sets in a Metric Space. Proc. NIPS.

Yi-Ling Qiao, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Learning Bidirectional
LSTM Networks for Synthesizing 3D Mesh Animation Sequences. arXiv:1810.02042
(2018).

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2009. The graph neural network model. IEEE Trans. on Neural Networks
20, 1 (2009).

Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. 2008. Consistent Mesh Partitioning
and Skeletonisation Using the Shape Diameter Function. Visual Computer 24, 4
(2008).

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and
A. Blake. 2011. Real-time human pose recognition in parts from single depth images.
In Proc. CVPR.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-based
object detectors with online hard example mining. In Proc. CVPR.

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2015. Realistic
Biomechanical Simulation and Control of Human Swimming. ACM Trans. on

ACM Trans. Graph., Vol. 39, No. 4, to appear

14 • Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh

Graphics 34, 1 (2015).
Kaleem Siddiqi and Stephen Pizer. 2008. Medial Representations: Mathematics, Algo-

rithms and Applications (1st ed.). Springer Publishing Company, Incorporated.
Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker. 1999.

Shock Graphs and Shape Matching. Int. J. Comp. Vis. 35, 1 (1999).
Karan Singh and Eugene Fiume. 1998. Wires: a geometric deformation technique. In

Proc. ACM SIGGRAPH.
Justin Solomon, Raif Rustamov, Leonidas Guibas, and Adrian Butscher. 2014. Earth

Mover’s Distances on Discrete Surfaces. ACM Trans. on Graphics 33, 4 (2014).
Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexandru

Telea. 2016. 3D Skeletons: A State-of-the-Art Report. Computer Graphics Forum
(2016).

Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. 2009. Curve Skeleton Extraction
from Incomplete Point Cloud. ACM Trans. on Graphics 28, 3 (2009).

Chengde Wan, Thomas Probst, Luc Van Gool, and Angela Yao. 2018. Dense 3D
Regression for Hand Pose Estimation. In Proc. CVPR.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and
Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. on Graphics (2019).

Rich Wareham and Joan Lasenby. 2008. Bone Glow: An Improved Method for the As-
signment of Weights for Mesh Deformation. In Proc. the 5th International Conference
on Articulated Motion and Deformable Objects.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S.
Yu. 2019. A Comprehensive Survey on Graph Neural Networks. arXiv:1901.00596
(2019).

Chi Xu, Lakshmi Narasimhan Govindarajan, Yu Zhang, and Li Cheng. 2017. Lie-
X: Depth Image Based Articulated Object Pose Estimation, Tracking, and Action
Recognition on Lie Groups. Int. J. Comp. Vis. 123, 3 (2017).

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. 2019. Predicting
Animation Skeletons for 3D Articulated Models via Volumetric Nets. In Proc. 3DV.

Li Yi, Hao Su, Xingwen Guo, and Leonidas Guibas. 2017. SyncSpecCNN: Synchronized
spectral CNN for 3D shape segmentation. In Proc. CVPR.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. 2018. P2P-NET: Bidirec-
tional Point Displacement Net for Shape Transform. ACM Trans. on Graphics 37, 4
(2018).

Song Zhu and A Yuille. 1996. FORMS: A Flexible Object Recognition and Modeling
System. Int. J. Comp. Vis. 20 (1996).

A APPENDIX: ARCHITECTURE DETAILS
Table 6 lists the layer used in each stage of our architecture along
with the size of its output map. We also note that our project page
with source code, datasets, and supplementary video is available at:
https://zhan-xu.github.io/rig-net.

Joint Prediction Stage
Layers Input Output

GMEdgeConv + ⇥ 3 (G_0) + ⇥ 64 (G_1)
GMEdgeConv + ⇥ 64 + ⇥ 256 (G_2)
GMEdgeConv + ⇥ 256 + ⇥ 512 (G_3)

concat(G_1, G_2, G_3) + ⇥ 832
MLP ([832, 1024]) + ⇥ 832 + ⇥ 1024
max_pooling & tilt + ⇥ 1024 + ⇥ 1024 (G_6;1)

concat(G_0, G_1, G_2, G_3, G_6;1) + ⇥ 1859
MLP([1859, 1024, 256, 3]) + ⇥ 1859 + ⇥ 3

Connectivity Stage
GMEdgeConv + ⇥ 3 (G_0) + ⇥ 64 (G_1)
GMEdgeConv + ⇥ 64 + ⇥ 128 (G_2)
GMEdgeConv + ⇥ 128 + ⇥ 256 (G_3)

concat(G_1, G_2, G_3) + ⇥ 448
MLP ([448, 512, 256, 128]) + ⇥ 448 + ⇥ 128

max_pooling & tile + ⇥ 128 % ⇥ 128 (6_B)
MLP([3, 64, 128, 1024]) ⇥ 3 ⇥ 1024

max_pooling & tilt ⇥ 1024 % ⇥ 1024
MLP([1024, 256, 128]) % ⇥ 1024 % ⇥ 128 (6_C)

MLP([8, 32, 64, 128, 256])) % ⇥ 8 % ⇥ 256 (5 _8 9)
concat(6_B,6_C, 5 _8 9) % ⇥ 512

MLP([512, 128, 32, 1]) % ⇥ 512 % ⇥ 1
Skinning Stage

MLP([38, 128, 64]) + ⇥ 38 + ⇥ 64 (G_0)
GMEdgeConv + ⇥ 64 + ⇥ 512 (G_1)

max_pooling & tilt + ⇥ 512 + ⇥ 512
MLP([512, 512, 1024]) + ⇥ 512 + ⇥ 1024 (G_6;1)

GMEdgeConv + ⇥ 512 (G_1) + ⇥ 256 (G_2)
GMEdgeConv + ⇥ 256 (G_2) + ⇥ 256 (G_3)

concat(G_6;1, G_3) + ⇥ 1280
MLP([1280, 1024, 512, 5]) + ⇥ 1280 + ⇥ 5

Table 6. RigNet architecture details. + is the number of vertices from
the input mesh. is the number of predicted joints. % is the number of
candidate bones defined by all pairs of predicted joints.

ACM Trans. Graph., Vol. 39, No. 4, to appear

