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A Baseline detection models
Here we analyze the performance of the Faster R-CNN
architecture variants on the roost detection dataset. These
models were trained without the variational EM algorithm
and correspond to the baseline detector presented in Table 1
in the main paper. The performance of the Faster R-CNN

• with VGG-M network:

– with ImageNet pretraining MAP = 41.0%
– without ImageNet pretraining MAP = 34.8%

• with shallow network, comprising the first three convolu-
tional layers of VGG-M network:

– with ImageNet pretraining MAP = 37.7%
– without ImageNet pretraining MAP = 33.1%

The shallow network roughly corresponds to the com-
putational pipeline of histogram of oriented gradients fea-
tures (Dalal and Triggs, 2005), a classic image representa-
tion useful for detecting shape patterns. The performance
with the shallow network is quite good at MAP=37.7%, but
additional layers provide a significant improvement in per-
formance.

B Roost tracking and rescoring details
From detections to tracks. We used a greedy heuristic to
group detections to tracks across frames. We start a new
track at a reliable roost detection (with score over 0.5)
which has not yet been matched to existing tracks. Sup-
pose the location and radius of the roost in a track at time
instant t is (lt, rt). We match the detection (lt+δt, rt+δt)
in the next frame to the track if ‖lt+δt − lt‖ < αδt and
τ < rt+δt − rt < βδt, where τ , α and β are fixed thresh-
olds. If there is no detection matched to a track we simply
add a “ghost” detection by interpolating the detection at a
previous frame by assuming zero positional velocity and ex-
pansion rate of roughly 1000 meters/min based on an analy-
sis of the ground-truth annotations of swallow roosts. There
can potentially be multiple tracks competing for one roost
detection. In this case we assign the detection to the track

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with the lowest percentage of previous ghost detections. A
similar heuristic was used in (Ren, 2008) for tracking people
in archive films.

Smoothing using a Kalman filter. Individual detections
in a track can be noisy. Moreover the greedy grouping can
introduce incorrect detections to a track. We use a Kalman
filter to smooth the detections in a track by incorporating the
temporal dynamics of the roosts. Kalman filters provides an
optimal estimate of a constant velocity dynamic system and
have been widely used for object tracking (Bishop, Welch,
and others, 2001). To a rough approximation the bounding-
box of a tree-swallow roost expands at a constant rate and
the center slowly translates in the plane. We establish the fol-
lowing linear dynamics model to track the roost over time,

Xt = ΦXt−1 + ξ,

Zt = HXt + µ,
(1)

where Xt = [xt, yt, rt, ẋt, ẏt, ṙt] represents the state at
time t. The state contains the location lt = (xt, yt) of the
center, its radius rt, and their temporal derivatives. Zt is
the observation at time t that represents the roost detections
from our single-frame detector. Since our observations are
only the position and radius, the measurement matrix H
simply selects the first three components of the state. The
transition matrix Φ captures the temporal dynamics, e.g.,
xt = xt−1 + ẋt−1δt. ξ represents the uncertainty of the
dynamics and µ represents the noise in the observation Zt.
These are modeled as zero-mean Gaussian vectors with a
diagonal covariance.

Contextual rescoring. As a final step we improve the
detections by incorporating features from the entire track.
In particular, for a given detection we derive four features:
(1) the detection score, (2) the average of detection scores
within the track, (3) the sum of detection scores within the
track, and (4) a bias term that indicates if the detection was
assigned to a track. Using these features we train a linear
SVM using bounding boxes with overlap of 0.5 or more with
a ground-truth bounding box as positive examples, and those
with overlap of less than 0.1 as negative examples.



C ELBO Derivation
Since x and u are always observed we temporarily drop
these from the notation. We also derive the bound for a sin-
gle data case and drop parameters from the notation on the
right-hand side. The remaining variables are y, which is un-
observed, and ŷ, which is observed. The derivation is then
standard.

L = log p(ŷ)

= log

∫
p(y, ŷ)dy

= log

∫
q(y)

p(y, ŷ)

q(y)
dy

= logEy∼q

[
p(y, ŷ)

q(y)

]

≥ Ey∼q

[
log

p(y, ŷ)

q(y)

]
= Ey∼q

[
log p(y, ŷ)

]
+H(q)︸ ︷︷ ︸

ELBO

Bring back x, u and the parameters of each model, we
have the following ELBO:

L(θ, β) ≥ ELBO(θ, β, φ)

=
∑
i

(
H(qiφ) + Eyi∼qiφ

[
log pθ,β(y, ŷi | xi, ui)

])
=
∑
i

H(qiφ) + E{yi∼qiφ}
[∑

i

log pθ(yi | xi)
]

︸ ︷︷ ︸
Expected training loss

+ E{yi∼qiφ}
[∑

i

log pβ(ŷi | yi, xi, ui)
]

︸ ︷︷ ︸
Expected forward user model loss

Here H(qiφ) = Eyi∼qiφ [− log qiφ(yi)] is the entropy of the
variational distribution on data example i.

References
Bishop, G.; Welch, G.; et al. 2001. An introduction to the kalman

filter. Proc of SIGGRAPH, Course 8(27599-23175):41.
Dalal, N., and Triggs, B. 2005. Histograms of oriented gradients

for human detection. In CVPR.
Ren, X. 2008. Finding people in archive films through tracking. In

CVPR.


