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We provide the proof of Theorem 1 and show additional visualizations of the denoising and inpainting results.

Proof. Let r = t2 � t1. First, observe that
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where n is the number of channels in the input, d is the filter width. By stationarity, the terms x(k, t1 � i)x(k, t2 � i) are

identically distributed with expected value K

x

(r), even though they are not necessarily independent. Since the channels are

drawn independently, the parenthesized expressions in the sum over k are iid with mean dK

x

(r). According to Equation (2)

in the main text, we have
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By the strong law of large numbers we know the sequences a
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Consider the continuous function g(y) = 2
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for y = (a, b, c). Applying the continuous mapping theorem,

we have that
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Additional visualizations. Figure 1 and 2 present results for various inputs using various inference schemes for image

denoising and image inpainting respectively.
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(a) GT (b) Noisy GT (c) SGD (d) +Avg (e) +Input (f) +Input+Avg (g) SGLD

20.34 23.81 23.94 22.52 23.52 24.59

20.33 29.81 31.12 30.65 32.73 32.95

20.28 26.14 28.59 27.92 30.37 31.32

20.28 26.67 27.16 26.28 27.25 27.95

20.57 28.77 29.87 30.30 31.74 32.05

20.36 30.23 31.02 31.34 32.84 33.39

20.32 29.62 30.46 30.84 32.07 32.81

20.37 29.07 30.28 30.21 31.81 32.08

Figure 1. (Best viewed magnified.) Comparison of inference schemes for image denoising. From left to right each column shows (a)

ground truth image, (b) the ground truth image corrupted with Gaussian noise of � = 25, (c) inference with SGD and early stopping

(iteration picked at maximum PSNR), (d) previous step with exponential window average, (e) SGD with input noise and early stopping, (f)

the previous procedure with exponential window averaging, and (g) SGLD. Underneath each figure the PSNR values are listed. Note that

except SGLD every procedure requires early stopping.



(a) Corrupted GT (b) SGD (c) +Avg. (d) +Input (e) +Input+Avg (f) SGLD (g) Uncertainty

27.86 28.06 28.51 28.53 31.43

22.85 22.97 23.31 23.57 27.10

25.35 26.52 26.48 26.74 28.87

28.16 28.18 28.71 29.04 30.78

26.22 26.29 26.47 26.66 29.05

26.04 26.09 26.11 26.28 28.41

29.03 29.15 30.15 30.33 32.95

Figure 2. (Best viewed magnified.) Comparison of inference schemes for image inpainting. (a) The input image with parts masked out.

(b-f) Results using various inference schemes (see the previous figure and the main text for details of the methods). (f) SGLD achieves

higher PSNR (shown underneath each figure) than the baseline methods (b-e). The early stopping iteration is set as 2000 for the first

two schemes (b, c) and 3000 for the third and fourth methods (d, e). For these experiments we use a 6-layer auto-encoder without skip

connections and random noise as input as reported in [1]. (g) The variance estimated from the posterior samples visualized as a heat map.

Notice that the uncertainty is low in the missing regions that are surrounded by areas of relatively uniform appearance such as wall, sky

and swimming pool, and higher in non-uniform areas such as those near the boundaries of different object in the image.


