
• Stochastic Gradient Langevin Dynamics
• Convert SGD into an MCMC sampler by 

injecting Gaussian noise to the gradient 
updates, formally,

• Under suitable conditions (e.g. ∑"# = ∞

and ∑"
#

&
< ∞ etc.), the samples from 

SGLD converges to the true posterior 
distribution.
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Ø Questions
• Why does the DIP induce a natural image prior?
• Fitting parameters from a single image leads to overfitting. Earlier 

approach used early stopping which is hard to use in practice. Is there a 
principled approach to avoid overfitting?

Ø Our contributions:
• DIP is asymptotically equivalent to a stationary Gaussian process. We 

analytically derive the covariance for commonly used deep networks.
• Use SGLD to avoid overfitting and obtain a measure of uncertainty.

Ø Deep Image Prior (DIP) [Ulyanov et al. 2018] 

• A suitably designed deep network induces a natural image prior.
• Gradient descent over parameters to search over natural images.
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Ø Experimental evidence

DIP prior samples GP prior samples

GT Corrupted GP RBF 
(25.78 dB)

GP DIP 
(26.34 dB)

DIP 
(26.43 dB)

MSE vs. Iteration MSE vs. noise var.PSNR: SGD vs SGLD Corrupted
SGD 

(29.17 dB)
SGLD 

(32.05 dB)

Hou. Pep. Lena Bab. F16 K1 K2 K3 K12 Avg.
SGD 26.74 28.42 29.17 23.50 29.76 26.61 28.68 30.07 29.78 28.08
SGLD 30.86 30.82 32.05 24.54 32.90 27.96 32.05 33.29 32.79 30.81

Barb. Boat Hou. Lena Pep. C.m. Cou. Fin. Hill Man Mon. Avg.
SGD 28.48 31.54 35.34 35.00 30.40 27.05 30.55 32.24 31.37 31.32 30.21 28.08
SGLD 33.82 34.26 40.13 37.73 33.97 30.33 33.72 33.41 34.03 33.54 34.65 34.51

Corrupted SGD (19.23 dB) SGLD (21.86 dB) Uncertainty

q SGLD enables us estimate the 
variance from posterior samples 

q SGLD consistently outperforms 
vanilla gradient descent on 
image denoising/inpainting 

4. Bayesian Inference with the Deep Image Prior

Ø Image Inpainting

Ø Image Denoising 

Ø 1D Toy ExampleØ SGLD [M. Welling et al. 2011]
3. Bayesian Interpretation of the Deep Image Prior1. Revisiting the Deep Image Prior

2. Revisiting Gaussian Process
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Ø Gaussian Process (GP) defines a distribution over functions f(x).

GP Prior GP Posterior
[images taken from Rasmussen 2006]
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• Any collection of function values have a joint 
Gaussian distribution, i.e.,       
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Image inpainting task (PSNR)
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• The samples drawn from the DIP and GP with equivalent stationary kernel.

• The posterior mean estimated by the SGD with the DIP matches the GP 
posterior mean as the number of channels increases. However, posterior 
inference with GP kernels is very slow for large images compared to SGD.

Ø Theorem

Conv-only networkAuto-encoder
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Right figure: Covariance function cos [# =
/K(\G − \&)//K(0) w.r.t. different values of 
depth (]) and input covariance (Q).

Ø Beyond two layers
• Assumption: the weights and biases are independent Gaussian RVs.

Ø Long-range spatial covariances

• Given - = 0, the posterior is ^_| a_, ab, ^b ∼ E(/_b/bb
cG
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Let each channel of the input a be drawn independently from a zero mean
stationary distribution with covariance function /d. Then the output of a two-layer
convolutional network with the sigmoid non-linearity, i.e., ℎ \ = fP((\), converges
to a zero mean stationary Gaussian process as the number of input channels g
and filters h go to infinity sequentially. The stationary covariance /K is given by
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For a two-layer convolutional network with ReLU non-linearity, 
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