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This article proposes a negotiation game, based on the weighted voting paradigm in cooperative game theory,
where agents need to form coalitions and agree on how to share the gains. Despite the prevalence of weighted
voting in the real world, there has been little work studying people’s behavior in such settings. This work
addresses this gap by combining game-theoretic solution concepts with machine learning models for predict-
ing human behavior in such domains. We present a five-player online version of a weighted voting game in
which people negotiate to create coalitions. We provide an equilibrium analysis of this game and collect hun-
dreds of instances of people’s play in the game. We show that a machine learning model with features based
on solution concepts from cooperative game theory (in particular, an extension of the Deegan-Packel Index)
provide a good prediction of people’s decisions to join coalitions in the game. We designed an agent that uses
the prediction model to make offers to people in this game and was able to outperform other people in an
extensive empirical study. These results demonstrate the benefit of incorporating concepts from cooperative
game theory in the design of agents that interact with people in group decision-making settings.
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1 INTRODUCTION

Weighted voting games are cooperative games in which agents can form binding coalitions, but
differ in the amount of resources that they contribute to the coalition. They are inspired by
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real-world settings such as parliamentary government systems where the number of votes of each
member state is proportional to the size of that state’s population [13].

While an agent’s ability to influence the outcome of a voting game is related to the amount of
resources in its possession, it is not necessarily directly proportional to it. For example, consider a
parliamentwith three parties,A,B, andC:A andB both have 50 seats, whileC has 20. Suppose that a
governmentmust control amajority of the house (i.e., at least 60 votes). If one equates voting power
with weight, then A and B are significantly more powerful thanC . However, as a government can
be formed by any two coalitions, no single party can form a government on its own; one might
reasonably argue that all parties are equally powerful. Thus, in many settings, it makes sense to
talk about parties’ electoral power, rather thanweight, and past work has formally quantified voting
power under various assumptions (see Felsenthal and Machover [9] for an overview).
In contrast to the theoretical work on weighted voting games, little is known about how people

behave in such settings and the effect of electoral power on their strategies. This article addresses
this gap by studying how human participants form coalitions in weighted voting games and pro-
poses a new agent design for playing the game with people. It introduces a configurable software
platform that allows people to play variants of weighted voting games with other people or with
computer agents. Participants negotiate proposals for division of revenue under different weight
configurations, forming a coalition if they reach an agreement. We collected hundreds of instances
of people’s negotiation dynamics, the coalitions they formed, and the way revenue was shared.
We designed software agents that use measures from cooperative game theory, namely, the

Shapley value [27], Banzhaf [2], and Deegan-Packel [7] indices, to predict how people respond
to offers to join coalitions in the game. We show that some people tend to exhibit biases when
making offers in the game as proposers. For instance, some proposers asked for individual shares
that were mis-aligned with the voting power of the responders; some proposers tried to form
coalitions that were too large, forcing a thin payoff spread among the members. In contrast, the
agents we designed built coalitions with the minimal number of participants necessary to succeed
and made offers that were aligned with people’s voting power in the game. The agents using the
Deegan-Packel and Shapley value measures were able to significantly outperform their human
counterparts.
These results demonstrate a novel use of cooperative game theoretic concepts for revenue divi-

sion systems, comprising both people and computers. In the spirit of public repositories in com-
putational social choice [16, 30], we have created a public library that includes all of the collected
data and made freely available to the research community at https://tinyurl.com/mrna7w6.

This article extends an initial study reporting on the formation of winning coalitions in mixed
human-computer settings [15] in several ways. First, it provides an equilibrium analysis of the
weighted voting game. Second, it compares people’s play to those of different types of agents
using game theoretic indices (Banzhaf, Shapley, and Deegan-Packel) as well as agents using the
equilibrium strategy. Last, it extends the behavioral analysis to provide a more detailed description
of people’s behavior in the game.

2 RELATEDWORK

This work is related to two different strands of research: coalitional bargaining and multi-agent
negotiation in systems comprising people and agents.
There is an extensive body of theoretical work studying cooperative games, and weighted

voting games in particular; the interested reader may see Chalkiadakis and Wooldridge [6] or
Chalkiadakis et al. [5, Chapter 4] for an overview. However, empirical work studying human
coalition formation is more sparse [24, 26]. Nash et al. [20] empirically study the correlation
between payments obtained via human negotiation in lab experiments and solution concepts
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from cooperative game theory. They reveal that in over 60% of cases the resulting payments were
similar to (or positively correlated with) the Shapley value of the corresponding players. Bachrach
et al. [1] propose an asynchronous cooperative negotiation game (any player can make an offer
at any time). They show that the average payoffs offered in this scenario correlate to the Shapley
value. Nash et al. [20] conducted a laboratory experiment on finitely repeated three-person coali-
tion formation games. In these games players with different strength according to the coalition
payoffs could transfer power to another player, who then distributes the coalition payoffs. They
find that fair divisions that equally divide the payoffs describe over 80% of all instances, rather
than power-based divisions (e.g., Shapley) and stability-based divisions (e.g., the Core).
We extend these works by using a machine-learning model to predict which offers are going to

be accepted and use these predictions to build a negotiating agent that performs well against hu-
mans. In this respect, we are inspired by other works combiningmachine-learningmodels together
with game-theoretical solution concept for predicting human behavior [10, 12].

d’Eon et al. [8] explore how game-theoretic solution concepts reflect actual human reward shar-
ing in cooperative games. Cooperative solution concepts are often axiomatized: There is a list of
desiderata (axioms) that they uniquely satisfy. However, there is some empirical evidence that hu-
mans do not actually follow the theoretical rewards and rather utilize alternative methods, with
a bias towards equal split of rewards no matter what player contributions are. The authors exam-
ine how AMT workers choose to share rewards amongst a set of fictional characters in a stylized
setting. The analysis of d’Eon et al. differs from ours in several ways. First, the participants in
d’Eon et al. do not actively play the game, but rather are analyzing a given game. Our participants
are incentivized towards strategic rather than fair play, i.e., towards rewards that will maximize
their own benefit. Second, our rewards are also higher, which makes our participants likelier to be
invested in the work. Last, their work does not include an agent learning to play with humans.
Prior works empirically analyze the behavior of voters picking between alternatives [18, 31].

Van der Straeten et al. [31] study a settingwhere voters are positioned on a line and are incentivized
to pick candidates that are as close to them as possible. Voters may misreport their position to
obtain a better outcome, a phenomenon studied in this work. Our work differs on several accounts:
voters are represented byweights, rather than by positions on a line.Moreover, in our experimental
setup voters have a clear incentive to collaborate with one another to arrive at amutually agreeable
revenue division.
Several lines of work study the voting power of agents in weighted voting systems. Penrose

[23] and Banzhaf [2] independently propose similar measures of a priori power (see Felsenthal and
Machover [9] for an overview of the history of power indices). Penrose [23] suggested a way of de-
termining player weights in weighted voting settings that ensure proportional representation: As-
suming that each player is a representative of a population (e.g., in the case of the EU Council), one
needs to assign a number of seats proportional to the square root of the country’s population; this
ensures that the voting power of each country is proportional to its true weight. Banzhaf [2] uses
the power index that is his namesake to argue that the voting system in Nassau County was unfair.
Finally, our work is also related to previous works that analyze human behavior in negotiation

systems [11, 22, 25] and strategic voting [3]. Oosterbeek et al. [21] study cultural differences in the
ultimatum game and show that the behavior of the responder is influenced by the geographical
regions of the participants. Oshrat et al. [22] propose an automated negotiator that uses opponent
modeling to make offers; Rosenfeld and Kraus [25] show that human behaviors in negotiation
domain can be predicted by using machine learning, and Haim et al. [11] study a market set-
ting with three agents that use equilibrium strategies to negotiate with people. We extend these
works to support human-agent interactions in weighted voting games. Bitan et al. [3] show that
a computer agent using a best response strategy is able to outperform people in a repeated voting
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settings. Other works analyzing real-world voting systems include Leech [13], Słomczyński and
Życzkowski [29], and Merrill [19].

3 WEIGHTED VOTING GAMES AND POWER INDICES

In Weighted Voting Games (WVG) a group of agents form coalitions to perform a task. Each agent
has a certain amount of a resource; to achieve the task, a minimal amount of that resource is
required. Any coalition whose members have a total weight exceeding the threshold is called win-
ning, and is called losing otherwise.

A WVG is a three-tuple (�w ; t , r ): We are given a set of agents N = {1, . . . ,n}, each agent i ∈ N
has a weight wi . A coalition S ⊆ N has a value of r if its total weight, w (S ) =

∑
i ∈S wi , exceeds a

given threshold t and has a value of 0 otherwise. Traditionally, WVGs are defined with the reward
r set to 1, forming a subclass of cooperative simple games. We consider an arbitrary reward r and
refer to the value of a coalition, v (S ), defined as

v (S ) =

{
r ifw (S ) ≥ t
0 otherwise.

(1)

Power indices in WVGs capture the influence or voting power of agents. A power index is a
function ϕ mapping weighted voting games to vectors in Rn , where ϕi 〈�w ; t , r 〉 should roughly
correspond to i’s ability to influence outcomes. To illustrate the application of these indices for
weighted voting games, we use a simpleWVGwith three agents defined by the tuple 〈(8, 2, 3); 10, 1〉
Here there are three agents whose weights are w1 = 8,w2 = 2,w3 = 3, a threshold of t = 10, and
the reward is r = 1.
We introduce three well-known solution concepts (power indices)—Banzhaf, Shapley-Shubik,

and Deegan-Packel indices—which are broadly related in studies that deal with domains of
weighted voting game. The notion of marginal contribution is crucial for the definition of vot-
ing power. We say that i is pivotal for a coalition S if S is losing, but S ∪ {i} is winning. Let
mi (S ) = v (S ∪ {i}) −v (S ) be the marginal contribution of i to S . We say that i is pivotal for S if
and only if the marginal contribution of i to S is r . The three methods determine the power of
agent i by its average marginal contribution to randomly sampled coalitions; however, each ap-
proach considers different distributions over coalitions.
Under the Banzhaf index [2], the power of agent i is the expected marginal contribution of i for

a coalition sampled uniformly at random from N \ {i}:
βi (�w ; t , r ) = ES∼U (N \{i })[mi (S )] =

r

2n−1
∑

S ⊆N \{i }
mi (S ). (2)

In our example, the winning coalitions are {1, 2}, {1, 3}, and {1, 2, 3}. Agent 1 (whose weight is 8)
is pivotal in all of these coalitions, agent 2 (with weight 2) is pivotal for {1, 2}, and agent 3 (with
weight 3) is pivotal for {1, 3}. Thus, the Banzahaf index of the three agents is (3/4, 1/4, 1/4).
The Shapley-Shubik power index [27] differs from the Banzhaf Index in that it measures the

average marginal contribution of each agent to permutations (i.e., orderings of the agent set N )
rather than coalitions. Given a permutation σ : N → N , let Pi (σ ) = {j ∈ N : σ (j ) < σ (i )} be the
set of i’s predecessors under σ ; We define the marginal contribution of i to σ , denotedmi (σ ), to
be simplymi (Pi (σ )): i’s marginal contribution to its predecessors under σ . The Shapley value of
agent i is the expected marginal contribution of i to a permutation chosen uniformly at random.
Formally:

φi (�w ; t , r ) = Eσ∼U (Π(N ))[mi (σ )] =
r

n!

∑
σ ∈Π(N )

mi (σ ), (3)

where Π(N ) denotes the set of all permutations of N . In our example, agent 1 is pivotal for the
agent orderings (2, 1, 3), (2, 3, 1), (3, 2, 1), and (3, 1, 2); agent 2 is pivotal for the ordering (1, 2, 3);
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Fig. 1. Snapshot of the Cooperative Negotiation Game for three agents showing a proposal and associated

responses.

and agent 3 is pivotal for the ordering (1, 3, 2). Thus, the Shapley-Shubik power indices for our
agents are (2/3, 1/6, 1/6).
By assigning a positive probability to every coalition, both the Banzhaf and Shapley-Shubik

power indices consider all coalitions that can form. TheDeegan-Packel index [7], however, assumes
that once a coalition is winning, it will not accept others. Deegan and Packel [7] measure power in
the followingmanner:Whenever a minimal winning coalition forms, all of its members are equally
powerful, and all minimal winning coalitions are equally likely to form. Formally, letWmin (�w ; t , r )
be the set of all minimally winning coalitions in the WVG 〈�w ; t , r 〉 (we refer toWmin (�w ; t , r ) as
Wmin when 〈�w ; t , r 〉 is clear from context). Fixing an agent i ∈ N , we letWmin,i (�w ; t , r ) = {S ∈
Wmin (�w ; t , r ) : i ∈ S }. The Deegan-Packel index is then

DPi (�w ; t , r ) =
r

|Wmin (�w ; t , r ) |
∑

S ∈Wmin,i (�w ;t,r )

1

|S | . (4)

In our example, the minimal winning coalitions are {1, 2}, and {1, 3}; thus, the Deegan-Packel in-
dices are (1/2, 1/4, 1/4).

4 METHODOLOGY

In this section, we describe our methodology for designing an agent for interacting with people in
a WVG.
We designed an online variant of a WVG called the Cooperative Negotiation Game, in which

players with different amounts of resources can cooperate and divide profits. The input to the
game is a set of agents N , weights �w , threshold t , and reward r , which are common knowledge to
all players. There are two phases in the game. In the proposal phase, a randomly chosen proposer p
can suggest a coalition S ⊆ N . A coalition S is derived via a proposed payoff division �x ∈ Rn

+ such
that supp(�x ) = S and

∑
i ∈S xi = r (i.e., S is the set of agents getting a positive payoff, and the total

payoff is r ). In addition, S must be winning and contain p.
In the response phase, every designated member of S can either accept or reject its offered share.

If all agents in S accept their share, S forms, and its members receive their respective share. Other-
wise, the coalition fails, and no agent receives any payoff. The proposal is visible only to the players
who receive a positive share in the proposal, and these players can see each other’s proposals and
responses.
Figure 1 shows a snapshot of the proposal phase in one of the game configurations in the study.

There are three players, with correspondingweights 〈7, 5, 4〉. The proposerp is Player 3; the thresh-
old t is 10; and the reward r is set to 100. The snapshot is shown from the perspective of Player 1.
The proposed is attempting to form the grand coalition with all three players, with corresponding
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shares 〈10, 20, 70〉. We note that player 1 is a veto player, as it is a member of all winning coalitions
in this game. In this example, Player 1 rejected the proposal, and the proposed coalition failed.

4.1 Extending the Deegan-Packel Index

We begin by providing an extension to the classic Deegan-Packel index (Equation (4)) and apply it
to measuring power in the Cooperative Negotiation Game. The extended Deegan-Packel measure
differs from the original index in two ways:

• It is defined with respect to a specific agent acting as a proposer and assumes that the
proposer is always a member of the coalition it proposes.

• It shares the revenue of winning coalitions in proportion to agent weights (rather than
assume that all members are equally powerful as in the original Deegan-Packel index).

LetW′
min,i (�w ; t , r ) be the set of all minimally winning coalitions, under the condition that agent i

may not be excluded. Consider the following scenario: Player i is selected to be a proposer in the
cooperative negotiation game; intuitively, it should form a coalition that is winning, but does not
include extraneous players (the collation will still win without them). This leads us to the following
definition:

W′
min,i (�w ; t , r ) =

{
S ⊆ N :

w (S ) ≥ t , i ∈ S,
∀S ′ ⊂ S : i ∈ S ′,w (S ′) < t

}
. (5)

Note thatW′
min,i may not necessarily equalWmin,i (the set of all minimally winning coalitions

that contain i), nor does it necessarily contain any minimally winning coalition. To illustrate, con-
sider the WVG 〈(1, 4, 6); 10, 1〉. In this case,W′

min,1 contains only {1, 2, 3}, butWmin,1 = ∅, because
{2, 3} is the unique minimally winning coalition.
We define EDPi,p (�w ; t , r ) to be the extended Deegan Packel index of agent i given that p is

the proposer. This is the expected revenue of i from a coalition S inW′
min,p chosen uniformly at

random, in which p allocates each member of S a share proportional to her weight.
Note that, strictly speaking, EDP is not a function from aWVG to a vector, thus it is not a power

index: It uses additional information, namely, the identity of the proposer, which is common knowl-
edge among the coalition members. We abuse notation and refer to it as a power index, because it
provides a measure of influence of each coalition’s member in the cooperative negotiation game:

EDPi,p (�w ; t , r ) =
1

|W′
min,p |

∑
C ∈W ′

min,p,i ∈S

r ·wi

w (S )
. (6)

In our example 〈(8, 2, 3); 10, 1〉, suppose that agent 2 is chosen to be the proposer. The only minimal
winning coalition that contains agent 2 is {1, 2}; thus, the Extended-Deegan-Packel power index
for the agents is (4/5, 1/5, 0). One can make EDPi,p into a power index by selecting the identity of
p uniformly at random.

A player i is considered a dummy in a WVG 〈�w ; t , r 〉, if v (i ∪ S ) = v (S ) for all coalitions, S . That
is, the player does not add value to any coalition. Player i is considered a veto player in a WVG
〈�w ; t , r 〉, if v (N \ {i}) = 0. That is, the player is a necessary participant of all possible coalitions.
Note that EDPi =

1
n

∑
p∈N EDPi,p has some interesting properties. For example, unlike most power

indices, EDPi does not satisfy the dummy property: even dummy players have a strictly positive
influence on the game.

4.2 Least-core Solution

We also considered a baseline model that used a power index that is based on the standard epsilon-
core solution from the cooperative game theoretic literature [14]. This is the set of all coalitions

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 6, Article 73. Publication date: October 2020.



Human-computer Coalition Formation in Weighted Voting Games 73:7

Table 1. Distribution of Player Weights in Game Configurations

W 1 2 3 4 5 6 7 8 9

P 0.31 0.27 0.13 0.11 0.08 0.03 0.03 0.02 0.01

that are immune to defection assuming players pay a penalty ε for leaving the coalition (e.g., none
of the participants in a coalition in the epsilon-core can improve their performance by joining an
alternative winning coalition and paying penalty ε):

Cϵ (�w ; t , r ) =

{
x ∈ RN : ∀S ⊆ N ,

{∑
i ∈N xi = r ;

∑
i ∈S xi ≥ r − ε, ifw (S ) ≥ t

∀i ∈Sxi ≥ 0, ifw (S ) < t

}
. (7)

The least-core solution is the epsilon-core for the smallest ε value such that the epsilon-core
of Equation (7) is non-empty. For example, consider the following voting game: 〈(6, 4, 4, 3); 10, 1〉.
The least-core solution for this game is the payoff vector 〈1/3, 1/3, 1/3, 0〉 with a minimal epsilon
ε ∼= 1/3. According to this baseline approach, we assign the power index of the responder to its
weight in an arbitrary coalition in the least-core solution.
When a solution exists with ε = 0, there exist coalitions in the strong-core, which is immune to

defection of participants with no penalties.1 For example, in the voting game 〈(8, 2, 3); 10, 1〉, the
first player is a veto player who must exist in all possible coalitions. In this game, the strong core
solution is the payoff vector 〈1, 0, 0〉 that assigns all of the reward to the veto player. Note that all
conditions of the least-core will hold for ε = 0, i.e., any coalition that does not pass the threshold
necessarily do not include the veto player, and all successful coalitions necessarily contain the veto
player.

4.3 Data Collection

We recruited 111 subjects (second-year software engineering undergraduates from Ben-Gurion
University who have not taken a game theory course). Subjects were given a detailed tutorial of the
game; participation in the study was contingent on passing a comprehension quiz. IRB approval
was obtained from Ben-Gurion University for conducting this study. All subjects played a five-
agent cooperative negotiation game with other people, in which the weight configuration satisfied
the following constraints: Player weights varied between 1 and 9, and the sum of the weights for all
agents was between 13 and 17, so as to create games with several possible successful coalitions. For
all games, the threshold t was set to 10, and the coalition value r was set to 100. These constraints
were imposed so there would be several possible coalitions in each game, the weight distribution
over players would be sufficiently wide, and games would vary in the number of veto and dummy
players. Table 1 shows the empirical weight distribution over players in the games, which were
randomly generated. The weights of all players were common knowledge between participants.
At each round of the game, one of the participants was randomly chosen to be a proposer, while

the other participants were responders. All the participants could observe the proposals (including
the proposer’s own share in the coalition), as well as the responses of all responders; however, the
decisions of the players were displayed only after all the responders have replied to their proposals
(to prevent influence of the decisions of the other responders in the current round, on the decisions
of a particular responder).
When a coalition succeeded, the game ended, and a new game started with different partici-

pants and weight configurations; otherwise, a new round of the game commenced for the same

1A necessary condition for a strong-core solution is a pivot player that exists in all winning coalitions. This was the case
in some of our game settings.
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Table 2. Performance of the Logistic Regression Model

When Using Different Power Indices to Predict

Proposal Acceptance

Method AUC STD

EDP 0.721 0.088
Shapley-value 0.719 0.088
Banzhaf-index 0.717 0.090
Deegan-Packel 0.717 0.089
Least-Core 0.715 0.091

Always accept 0.5 0

participants, and a new proposer was chosen at random. The maximal number of rounds was set
to three for all games (this was not conveyed to any of the participants). In all, we collected 180
games and 343 coalition proposals.
All subjects received the equivalent of an $8 show-up fee, as well as a bonus that depended on

their performance in the game, computed as follows: For each successful coalition, participants
received a payoff that was equal to their share in the coalition. At the end of the experiment, the
total payoff for each participant was converted to a bonus payment. For example, a participant
who received a total payoff of 322 points would receive a cash bonus of 3 dollars and 22 cents.

4.4 Predicting Human Responses

In this section, we describe a model for using power indices to predict how people respond to
offers to join coalitions in the game. Before we describe the features used in the model, we make
the following definitions: Let �x ∈ Rn

+ be a vector of shares for all agents; that is,
∑

i ∈N xi = r . We
use (supp(�x ),p) to refer to a proposed coalition between a proposer p and a set of responders
{i ∈ supp(�x ), i � p}. We assume that xp > 0.
We wish to predict the probability of acceptance by responder i given the offer �x . We considered

two types of features. The first type of features depended on the power index of the players:

• The power index of the responder i . (ϕi (�w ; t , r )).
• The power index of the proposer p. (ϕp (�w ; t , r )).

We varied the type of power index used (Banzhaf, Deegan-Packel, Shapley-Shubik, Extended
Deegan-Packel), such that each power index generated a different set of features.
The second type of features depended on the weight and proposed share of players:

• The share of the proposer p in the coalition �x : (xp ).
• The share of the responder in the coalition �x : (xi ).
• The weight of the proposer (wp ).
• The weight of the responder (wi ).

We compared different machine learningmodels, including logistic regression, a multilayer neu-
ral network, a Decision Tree model (J48), and a Naive Bayes model, training each of the models
separately. The best result was obtained with logistic regression for all possible sets of features
that we considered.
Table 2 describes the AUC score (measured by 10-fold cross-validation) achieved by logistic

regression for the different indices, as well as standard deviation measures over the 10 folds. We
also include an “always accept” predictor. As shown in the table, all power indices were beneficial
for predicting the acceptance of responders in the game, with the Extended Deegan-Packel and
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the Shapely-value indices achieving the best performance. The Least-Core solution achieved the
lowest performance.
Other features that relate to the proposed shares of the other responders, their power indices,

as well as proportional shares and proportional power indices between responders and between
responders and the proposer, were examined as well but did not provide a significant contribution
to the model’s performance.
We also computed the correlations between the different power indices. The EDP and Shapley-

value power indices exhibited the highest correlation (0.97), while the Least-Core and EDP exhib-
ited the lowest correlation (0.63). These results are compatible with the performance of the logistic
regression model. Interestingly, the correlation between the EDP and Deegan-Packel indices (0.83)
were lower than the correlation between the EDP and any other index. A possible reason for this is
that DP is the only index that considers minimal coalitions, while the EDP index requires players
to form non-minimal coalitions.

4.5 Agent Strategies

In this section, we describe three types of agents that used the indices described in Sections 3
and 4.1 to play the Cooperative Negotiation Game. The agents combined decision-theoretic rea-
soning with the supervised learning model that was described in the previous section.
All agents used the predictive model to compute the acceptance probability Pr(Acci | �x ,p) of a

proposed share for a responder i . They differed in how they computed the features for the power
index (ϕp (�w ; t , r )) and the ratio between the proportional share and the proportional power in-
dices of the responder (PSi,p/PPi,p ). Specifically, the EDP agent used the Extended Deegan-Packel
Index (EDPi,p (�w ; t , r )) of Equation (6); the Shapley agent used the Shapley Index (φi (�w ; t , r )) of
Equation (3); and the Banzhaf agent used the Banzhaf Index (βi (�w ; t , r )) of Equation (2).
Given a payoff division �x proposed by p, we write

E[revp | �x ,p] = xp ·
∏

i ∈supp(�x ),i�p
Pr(Acci | �x ,p) (8)

to be the expected revenue received by p if they propose �x . Naturally, agents choose a payoff
division �x∗ that maximizes the expected revenue:

�x∗ ∈ argmax
�x

E[revp | �x ,p]. (9)

The following theorem states that a payoff division �x∗ that maximizes expected revenue is nec-
essarily a minimally winning coalition that contains the proposer p.

Theorem 4.1. Given a negotiation game 〈�w ; t , r 〉 let �x∗ be a payoff division, if �x∗ ∈ argmax�xxp ·∏
i ∈supp(�x ),i�p Pr(Acci | �x ,p), then supp( �x∗) ∈ W′

min,p (�w ; t , r ).

Proof. We firstmake two assumptions on Pr(Acci | �x ,p): First, ifxi = 0, then Pr(Acci | �x ,p) = 0
(agents will never accept a proposal that offers them no reward); second, Pr(Acci | �x ,p) is strictly
monotone increasing in xi (agents are likelier to accept proposals that offer them a higher reward).
Also note that Pr(Acci | �x ,p) depends only on the payoffs to i and the proposer and the underlying
WVG (vis-à-vis the power indices).
Given a negotiation game 〈�w ; t , r 〉 let �x be a payoff division; we show that if supp(�x ) �
W′

min,p (�w ; t , r ), then there exists another payoff division �x ′ such that E[revp | �x ,p] < E[revp |
�x ′,p].

If supp(�x ) is a losing coalition, then we are done; thus, we assume that supp(�x ) is winning. Since
supp(�x ) is not inW′

min,p , there is a player j � p, such that supp(�x ) \ {j} is a winning coalition
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as well. If x j = 0, then j will not accept �x and E[revp | �x ,p] = 0. Thus, we assume that x j > 0.
If supp(�x ) = {p, j}, then p has veto power and forming a coalition alone is optimal; otherwise,
we choose an arbitrary player k in supp(�x ) \ {j,p} and offer her xk + x j . Since the rewards to
other players and the proposer are unchanged, their acceptance probabilities remain the same.
Moreover, the acceptance probability for k is strictly increasing (as k’s payoff increased). This
implies that E[revp | �x ,p] < E[revp | �x ′,p] for every �x such that supp(�x ) �W′

min,p ; in particular,

if �x∗ maximizes expected revenue for p, then supp(�x∗) ∈ W′
min,p . �

4.6 Evaluation

We evaluated the agents by comparing their performance to that of people playing against other
people. To this end, we recruited an additional 107 human subjects to play the cooperative negotia-
tion game. In all, we collected 594 games including 681 proposals. All games included four humans
and computer agents. As a proposer, the software agents implemented the proposal strategies of
the EDP agent, Shapley agent, or Banzhaf agent according to Equation (9). People were told that
they may be playing other people or computer agents, and the strategies used by the computer
agents were not disclosed. In all other respects, the setting was the same as the one used for data
collection in which people played other people (Section 4.3).
To compute this proposal, we note that the search space defined by Equation (9) includes all

possible payoff divisions. To find an optimal payoff division, we iterate over all possible divisions
in 5 unit increments (i.e., approximately 45K divisions in each configuration). The reason for the
brute-force search approach is twofold: First, due to the relatively small number of payoffs, the
brute-force search can be concluded in a short amount of time; second, over 95% of shares made
by human proposers were percentage values that divided by five (e.g., 20%, 35%); a software agent
making other types of proposals would easily stand out from its human counterparts.
As a responder, all of the software agents used a simple strategy: Accept all proposals offering it

at least 5% of total revenue; i.e., those that it perceived as offering it a strictly positive utility. The
EDP, Shapley, and Banzhaf agents played 281, 152, 161 games and were elected to be the proposer
84, 44, 57 times, respectively.

5 RESULTS AND DISCUSSION

We measure the performance of a player by the total revenue gained, averaged over all games
in which the player was chosen to be a proposer. For a given game, the revenue was defined as
follows: If no successful coalition was formed, then the revenue for all agents equaled zero. If the
proposed coalition was successful, the revenue for all agents equaled their respective share in the
proposal. All results reported in Section 5 are statistically significant in the p < 0.05 range using
Mann-Whitney tests [17].2

Figure 2 shows the performance (measured by average revenue over all games) and the average
requested shares of the agents and human proposers. As shown by the figure, both the EDP and
Shapley agents outperformed people (Mann-Whitney test: α ≈ 0 and α = 0.033), while there was
no significant difference between the performance of the Banzhaf agent and people’s performance.
Also shown in Figure 2 is that all the agents (EDP, Shapley, and Banzhaf) requested significantly

greater shares for themselves than did people (Mann-Whitney test: α ≈ 0). The Banzhaf agent
requests more for itself than the EDP agent (Mann-Whitney test: α = 0.026).

Figure 3 presents the percentage of successful coalitions (when all the members accept their
proposals) and the average acceptance rate of proposals. As seen in the figure, the number of

2We used the Mann-Whitney test, because it does not require the data to be normally distributed.
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Fig. 2. Average revenue and shares requested by proposer.

Fig. 3. Ratio of successful coalitions and the acceptance rates of proposals.

successful coalitions formed by people was higher than those formed by Shapley and Banzhaf
agents (Mann-Whitney test: α ≈ 0). There was no statistically significant difference between the
number of successful coalitions formed by human proposers and the EDP agent.
The acceptance rate of people playingwith the EDP agent was higher than that of people playing

with the Shapley and Banzhaf agents (Mann-Whitney test: α < 0.04). There was no statistically
significant difference between the acceptance rates of people playing the EDP agent and people
playing other people.
To summarize, the EDP (and Shapley agents) achieved the highest performance, with the EDP

agent having the best coalition success rate out of all the other agents. The Banzhaf agent exhibited
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Fig. 4. Ratio between the index of any human responder pair (i, j ) in a human proposed coalition (x axis)

and the ratio between the shares proposed to (i, j ) (y axis).

the lowest coalition success rate out of all of the other agents. We present an example from the
data that illustrates the difference in behavior between human proposers and the EDP agent.

Example 5.1. Consider the weight configuration 〈4, 4, 3, 3, 3〉whenp = 1. The Extended Deegan-
Packel power index for the agents is (0.381, 0.181, 0.145, 0.145, 0.145). When the EDP-agent was
elected to be the proposer it formed the coalition supp(�x ) = {1, 3, 4} with the shares (50, 25, 25),
respectively. This coalition proposal was always accepted by human responders. When humans
formed the same coalition {1, 3, 4}, they always included agent 2 in the coalition. Since agent 2
is more powerful than agent 3 (EDP2,1 > EDP3,1), it was offered a higher proposed share, at the
expense of the proposer and agent 3.

We provide two possible explanations for the lower human performance that was exhibited in
our experiments. First, human proposers make offers that do not align with the power index of
responders in the game. To see this, consider the scatter-plot in Figure 4, which shows the ratio
between the EDP power indices of responder pair (i, j ) (x axis) and the ratio between the actual
shares proposed to the responder pair (y axis) by proposer p.
For each coalition, any responder pair (i, j ) contributed a single point to the scatter-plot, with

the constraint that EDP j,p ≥ EDPi,p . Thus, all points on the x = 1 line represent equal EDP power
between responders i and j. For all points to the left of this line, EDP j,p > EDPi,p . Similarly, points
on the y = 1 line represent equal shares proposed to i and j. Points above this line represent offers
that propose more to responder i than to j. The offers marked in green are not “power preserving,”
in that EDPi,p < EDP j,p but xi > x j , or EDPi,p = EDP j,p but xi � x j .

Many of the human-proposed offers were non power preserving (41% of all offers), and most of
them were declined. To illustrate, consider the following game collected from the data:

Example 5.2. Consider the game 〈6, 2, 2, 2, 1〉 inwhichp = 5. The extendedDeegan-Packel power
indices of the participants are EDPi,5 = (0.58, 0.12, 0.12, 0.12, 0.09). The proposed coalition by one
of the human participants was �x = (15, 15, 20, 20, 30), which is not power preserving: We can see
that EDP1,5 ≥ EDPi,5 for 2 ≤ i ≤ 4 but the share for agent 1 is smaller or equal to the shares for
agents 2, 3, and 4.
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Fig. 5. Ratio between the different power indices of any responder pair (i; j ) in a proposed coalition of the

different types of agents (x axis) and the ratio between the shares proposed to (i; j ) (y axis).

Figure 5 shows a scatter-plot of offersmade by the different agents according to the same criteria.
The power preserving ratio is computed for proposers made by the EDP agent (top), the Banzhaf
agent (middle), and the Shapley agent (bottom). The terms Banzhaf i , Shapleyi in the figure refer,
respectively, to the Banzhaf and Shapley-Shubik power index of the responder i . As shown by the
figure, all of the offers made by the agents were power preserving. When the power of responders
i and j were equal, the agents always gave them equal shares. As the power of j grows, it receives
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Table 3. Size and Number of Formed Coalitions

coalition size 2 3 4 5

Humans 15.54% 49.56% 19.06% 15.83%
EDP 36.05% 51.16% 12.79% 0

Banzhaf 40.91% 43.18% 15.91% 0
Shapley 44.64% 41.07% 14.29% 0

Table 4. Performance of Human Proposers (Playing Other Humans)

Round Requested Share Accept Rate Succ. Coalitions Avg. Revenue

1 39.6 86% 73% 29.1
2 38.5 83% 69% 26.3
3 37.38 79% 57% 19.7

Avg 39.07 85% 71% 27.9

a higher share than does i . Interestingly, the Banzhaf power index ratios are clustered around low
values (0.25) and high values (0.75). Thus, the Banzhaf agent perceived players as either “weak”
or “strong,” which limited the range of offers it made to responders, while the Shapley and EDP
agents exhibited a wider range of values. This can be a possible reason for the poorer performance
of the Banzhaf agent compared to the Shapley and EDP agents.
Another explanation for lower human performance is that 23% of the coalitions formed by peo-

ple were non-minimal, i.e., the coalitions were not inW′
min,p . Larger coalitions are less likely to

succeed than smaller coalitions, as coalitions require all members to agree to the proposals. Spread-
ing the reward among more responders results in smaller shares on average, further decreasing
the likelihood of acceptance.
Table 3 shows the number of coalitions the agents and humans formed by coalition size. As

shown by the table, 19.06% of the coalitions formed by people included four members and 15.83%
included all all five members (the grand coalition). In contrast, only 12.79%, 15.91%, and 14.29% of
the coalitions formed by the EDP, Banzhaf, and Shapley agents included four members (respec-
tively) and they never formed the grand coalition.
Table 4 analyzes the behavior of proposers for the cohort of human participants. It shows the

average share requested by proposers, the acceptance rate of proposals, and the success rate of the
resulting coalitions. As shown by the table, the acceptance rate of all proposals is generally high
(on average, 85% of proposals were accepted). Also, as rounds progress, there is a slight decline in
the average share requested by the proposer, and a significant decline in the acceptance rate and
successful coalition rate decreases with the number of rounds. A possible reason for this behavior
is that some responders expect offers to be more generous as rounds progress, and although there
is a slight increase in offers made by proposers, it was not high enough to increase the acceptance
rate.
Finally, we compare the performance of the different agents as responders. Here, we measured

performance by the average share over all successful coalitions in which the responder was a
member. The performance of the EDP, Banzhaf, and Shapley agents (30.2, 36.23, 30.02 average
total shares, respectively) were significantly greater than that of human responders (27.9 average
total share). We also found that 35% of people reject proposals offering them ≤ 20% of the revenue,
which is a similar result to that reported for canonical games in behavioral economics such as the
ultimatum game [4].
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Fig. 6. Extensive form game of the cooperative negotiation game.

6 EQUILIBRIUM ANALYSIS

In this section, we provide an equilibrium analysis of the Cooperative Negotiation Game. This
equilibrium was subsequently used by a computer agent to play people in the game.
The Cooperative Negotiation Game can be modeled as an extensive-form game. At each time-

step t , nature makes a move (choosing a proposer), following which the proposer chooses a set of
players to which it proposes a payoff division. Each of these players then decides whether to accept
or reject the proposal. If any one of them rejects the proposal, the game proceeds to the next time-
step. Figure 6 shows a partial tree in which the chosen proposer is p3 offers the following shares
(60, 10, 30) in round 1. Both responders p1 and p2 have to decide whether to accept or refuse the
coalition; if both of them accept it the payments are (60, 10, 30); otherwise, another proposer will
be elected at random.
Letn be the number of players andT denote themaximal number of rounds in the game. Suppose

player i is the proposer at round t . LetNi = {S ⊆ N : i ∈ S } be the set of all coalitions that contain
player i . Let Cti be the set of winning coalitions (containing i) that minimize the total shares that
i offers to the other players in round t . The acceptance reward threshold of responder k in round
t is r t

k
. Player i will join any coalition that rewards it with at least r ti reward:

Cti = argmin
S ∈Ni

∑
k ∈S/i

r tk . (10)

Proposer player i will propose any coalition in C ∈ Cti .
Now suppose player i is the responder in round t . The set of coalitions that can be formed by

proposer player j in round t is Ctj . The number of winning coalitions that include both players i

and j is |Ctj ∩ Ni |. The probability that i will be chosen by j to join a coalition is defined as |C
t
j
∩Ni |
|Ct
j
| .

The acceptance threshold r ti of player i in round t can now be defined as follows: At the last
round T , the acceptance threshold is ϵ . For any other round t < T , this threshold depends on the
expected value for the player in round t + 1. This value depends in turn on whether the player will
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Table 5. SPNE Equilibrium of the Cooperative Negotiation Game for the Setting: 〈8, 2, 3; 10, 1〉, T = 4

Player /
Round

1 2 3 4

1
{0.727, 0.233, 0},
{0.727, 0, 0.233}

{0.723, 0.277, 0},
{0.723, 0, 0.277}

{0.666, 0.333, 0},
{0.666, 0, 0.333}

{1 − ϵ, ϵ, 0},
{1 − ϵ, 0, ϵ }

2 {0.537, 0.463, 0} {0.444, 0.666, 0} {0.333, 0.666, 0} {ϵ, 1 − ϵ, 0}
3 {0.537, 0, 0.463} {0.444, 0, 0.666} {0.333, 0, 0.666} {ϵ, 0, 1 − ϵ }

Player / Round 1 2 3 4
1 0.537 0.444 0.333 ϵ
2 0.231 0.277 0.333 ϵ
3 0.231 0.277 0.333 ϵ

Top table refers to proposer strategies, bottom table refers to responder strategies.

be chosen as a proposer (with probability 1/n) or a responder in round t + 1:

r ti =
⎧⎪⎪⎨
⎪⎪
⎩

ϵ if t = T
1
n

(
(r − pt+1i ) +

∑
j�i
|Ct+1
j
∩Ni | ·r t+1i

|Ct+1
j
|
)

if t < T
. (11)

Here,pt+1i =
∑

j ∈S, j�i r t+1j is the sum of shares offered by a proposer i to the responders in coalition

S in round t , where S ∈ Ct+1i is any coalition in the set of possible coalitions made by the proposer.
In particular, if t = T − 1 (second to last round), the acceptance threshold is r/n.
We now provide the following equilibrium definition for the cooperative negotiation game:

Proposition 6.1. The subgame perfect Nash equilibrium of the WVG is as follows: If player i is a
responder, then it will accept any proposal awarding it with positive utility in the final round T and

accept any proposal with reward of at least r ti in round t when 1 ≤ t < T . If player i is a proposer, it
will form a coalitionC , whereC ∈ Cti and offer ϵ to all responders in the final roundT , and r ti to each
responder in round t when 1 ≤ t < T .

To illustrate the equilibrium, consider the cooperative negotiation game example of Section 3,
〈8, 2, 3; 10, 1〉. The strategies for proposer players are described in Table 5 (top), by listing the shares
made to responders in each round. A share of 0 means that the corresponding agent is not included
in the coalition. The strategies for responder players are described in Table 5 (bottom) by listing
the expectance threshold for each player.
In round 4 (final round) the responders accept any positive proposal and the proposer takes

(1 − ϵ) for itself while it offers ϵ to the coalition’s members (e.g., player 1 offers ϵ to player 2 or
player 3, and player 2 and 3 offer ϵ to player 1). The expected revenue of player 1 is (r − ϵ )/n + ϵ ·
((n − 1)/n) and of players 2 and 3 is (r − ϵ )/n + ϵ · (1/2) · (1/n) (player 1 has two options to form a
coalition, so the probability that it will choose player 1 or 2 to the coalition is 1/2).We assume ϵ ≈ 0,
so the expected revenues of all the players are r/n, which is 1/3 ≈ 0.333. In round 3, the players
accept any proposal above (or equal) their expected revenues in round 4 (0.333). Therefore, the
proposer offers 0.333 to each member of the coalition and it forms a minimal coalition (therefore,
it pays a minimal value). For example, player 1 forms a coalition with player 1 or 2, pays 0.333 for
each of them, and takes 0.666 for itself. Players 2 and 3 offer 0.333 to player 1 and take 0.666 for
themselves. Therefore, the expected revenue of player 1 is 1/3 · 0.666 + 2/3 · 0.333 ≈ 0.444 in this
round. When player 1 is elected to be the proposer it has two options to form a coalition while
in each of them it needs to pay 0.333 to player 2 or 3, therefore the probability for each coalition
is 1/2 and the expected revenues of players 2 and 3 are 1/3 · 0.666 + 1/3 · 1/2 · 0.333 ≈ 0.277 in
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this round. Rounds 2 and 1 are calculated in the same manner. Furthermore, we expect that the
proposer in the first round will form the coalition of the equilibrium and the responders will accept
it, so the payments will be determined according to this round. For example, if player 2 is elected
to be the proposer in the first round it offers 0.531 for player 1 (and takes 0.469 for herself) and
player 1 accepts it. We now present a proof for the SPNE specified in Proposition 6.1.

Proof. We now prove Proposition 6.1. The subgame perfect Nash equilibrium of the game is
obtained using backward induction. The proof relies on the finite horizon nature of the game.3 In
the last round, whether the coalition is not successful the payment of all the players is zero, so the
responders accept any proposal that they received (they are indifferent between acceptance and
refusal of a null proposal); thus, the coalition succeeds in any case, so the proposer offers zero to
all members (it takes r for itself). In this round, the proposer forms any winning coalition, because
its share is still r (it offers null proposals to all members). Hence, given a uniform probability
distribution of the proposer role in roundT , the expected revenue of a player i in this round is r/n.
We assume that at round t + 1, all players use the strategy specified in Proposition 6.1. We prove

that the proposition holds at round t .
Suppose player i is a responder at round t . Any offer providing less than r ti should be rejected,

because the player can guarantee the expected value in the next round as specified in Equation (11).
Specifically, if the player is a proposer at round t + 1 (with probability 1/n), it will receive a reward
of r − pt+1i ) where pt+1i =

∑
j ∈S, j�i r t+1j . By the induction assumption, any responder j will accept

the share of r t+1j in round t + 1. If it is a responder at round t + 1 with probability n − 1/n, it will
be chosen for a coalition with probability

|Ct+1
j
∩Ni |

|Ct+1
j
| and will receive a reward of r t+1i . We can thus

conclude that r ti is the acceptance threshold for the responder at round t .
Suppose player i is the proposer at round t . Any proposal less than r ti will be refused by the

responders, therefore player i should offer to any coalition member j at least r tj and a rational

player will offer them excatly this value. Specifically, it will propose a coalition such that pt+1i is
minimal (a coalition in the set Ct

i ). �

6.1 Using Equilibrium Strategy When Playing with Humans

In this section, we directly evaluate the equilibrium strategy with that of people playing the game.
To this end, we recruited 20 subjects (fourth-year software engineering undergraduates from

Ben-Gurion University) to play the Cooperative Negotiation Game. The configurations of the game
are the same as of those used in Section 4.3 with one exception: People were told that there were
three rounds in the game, to provide them with the same information as for the equilibrium agent.
Participants were divided into two pools. The first pool included 11 people playing 5-player

cooperative negotiation games with other people. In total, we collected 74 games and 105 coalition
proposals from this pool. The second pool included 8 people playing 5-player games consisting of
4 people and an SPNE agent. In total, we collected 75 games and 106 coalition proposals; of these,
28 proposals were made by the agent in this pool.
The equilibrium agent played according to the subgame perfect Nash equilibrium of Proposi-

tion 6.1. In the last round, the agent will accept any proposal above (or equal) a predetermined
epsilon value of 5 cents (to align with the type of minimal offers made by people). All the results
were evaluated using Mann-Whitney test with p-value < 0.05.

Tables 6 and 7 compare the performance of the SPNE agent and human proposers in each round
as well as on all the rounds together. As can be seen in the tables, the average share that the agent

3For additional information about backward induction and Sub-game Perfect Nash Equilibrium, see Shoham et al. [28].
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Table 6. Performance of Humans as Proposers

Round Requested Share Acceptance Rate Successful Coalitions Average Revenue
1 32 81% 71% 22.48
2 32.66 69% 52% 19.57
3 45.5 81% 70% 25.5

Avg 32.46 78% 67% 22.19

Table 7. Performance of the SPNE Agent as Proposer

Round Average Request Acceptance Rate Successful Coalitions Average Revenue
1 48.26 57% 31% 15.78
2 58 10% 0% 0
3 90 12% 0% 0

Avg 55.96 42% 21% 10.71

requested for itself as the proposer (55.96) was significantly higher than the requests of human
proposers (32.46). Furthermore, The average agent request is higher than the human average re-
quest in each round. The failure of the agent is particularly apparent in rounds 2 and 3 where
all the agent-formed coalitions failed. This result, in turn, can explain why humans were more
willing to accept other humans’ proposals (78%) than agent proposals (42%). The average ratio of
successful coalitions formed by humans (67%) was also significantly higher than the success rate
obtained from SPNE agent proposals (21%). We present an example from the data that illustrate
the proposals offered by the SPNE agent and people’s responses.

Example 6.2. Consider the weight configuration 〈5, 5, 3, 2, 2〉 when p = 3 and t = 2 (second
round). When the SPNE-agent was elected to be the proposer it formed the coalition supp(�x ) =
{2, 3, 5} with the shares (22, 59, 19), respectively (the agent request 59 for itself). Both the respon-
ders (agent 2 and agent 4) refused the proposal.

Last, we compare between the performance of human proposers who played the equilibrium
agent (Table 6) with human proposers who played other people (Table 4). We see that human pro-
posers playing other humans generated more revenue than those playing the equilibrium agent.
A possible reason for this is that the SPNE agent proposed significantly lower shares to respon-
ders than did human proposers. These offers were more likely to be rejected by human responders
than those made by other people. Interestingly, for the final round, human proposers offered sig-
nificantly less shares to responders than in previous rounds. This trend was not observed for the
case in which human proposers played other people, where the number of rounds was not known
to particpants. This shows that human proposers may have been affected by backward induction
type reasoning in their play.

7 CONCLUSIONS

In this article, we have studied the problem of coalition formation in settings that include both
human and computer players. The performance of the EDP and Shapley agentsmakes a compelling
argument for the combination of game-theoretic and machine learning based agents in coalitional
bargaining domains. We showed that including concepts from cooperative game theory was able
to significantly increase the predictive power of our models and to inform the design of successful
agents for playing the game. We also showed that machine learning is a necessary condition for
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successful agent performance in weighted voting games, as people play quite differently than what
is predicted by Nash equilibrium. The best-performing EDP proposer agent was able to increase its
own performance when compared to other agents and human proposers, without hurting people’s
performance.
Our results can inform the design of future voting systems in which people and computers

interact, by (1) creating agents that serve as proxies for people in future voting systems, or as
training tools for people to improve their bargaining skills in voting settings; (2) modeling how
people vote in computerized environments; (3) using these models to inform the design of im-
proved voting systems that lead voters to better outcomes (whether for individuals or society). We
are currently extending the model to include repeated settings in which participants interact over
time and need to consider the effects of reciprocity on their voting strategies.
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