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Abstract
This paper proposes a new negotiation game, based
on the weighted voting paradigm in cooperative
game theory, where agents need to form coalitions
and agree on how to share the gains. Despite the
prevalence of weighted voting in the real world,
there has been little work studying people’s behav-
ior in such settings. We show that solution concepts
from cooperative game theory (in particular, an ex-
tension of the Deegan-Packel Index) provide a good
prediction of people’s decisions to join coalitions in
an online version of a weighted voting game. We
design an agent that combines supervised learning
with decision theory to make offers to people in
this game. We show that the agent was able to ob-
tain higher shares from coalitions than did people
playing other people, without reducing the accep-
tance rate of its offers. We also find that people dis-
play certain biases in weighted voting settings, like
creating unnecessarily large coalitions, and not re-
warding strong players. These results demonstrate
the benefit of incorporating concepts from coopera-
tive game theory in the design of agents that interact
with other people in weighted voting systems.

1 Introduction
Weighted voting games are types of cooperative games in
which agents can form binding coalitions, but differ in the
amount of resources that they contribute to the coalition. A
simple example of such settings is the parliamentary govern-
ment system used in many countries, and the EU council,
where the number of votes of each member state is propor-
tional to the size of that state’s population [Leech, 2002].

While an agent’s ability to influence the outcome of the
game is related to its amount of resources, it is not necessar-
ily directly proportional to it. For example, consider a par-
liament with three parties, A, B and C: A and B both have
50 seats, while C has 20. Suppose that a government must
control a majority of the house (i.e. at least 60 votes). If one
equates voting power with weight, then A and B are signifi-
cantly more powerful than C. However, as a government can
be formed by any two coalitions, no single party can form
a government on its own; thus, one might reasonably argue

that all parties are equally powerful. Thus, in many settings,
it makes sense to talk about parties’ electoral power, rather
than weight. Many researchers tried to formally quantify
voting power, under various assumptions (see Felsenthal and
Machover [2005] for an overview). Despite their widespread
study, little is known about how people actually make deci-
sions in weighted voting settings. This paper addresses this
gap by introducing a configurable software platform that al-
lows users to play variants of weighted voting games with
other people or with computer agents. In our setting, par-
ticipants negotiate revenue division proposals under different
weight configurations, eventually forming a coalition if they
reach an agreement. Using this platform, we collected hun-
dreds of instances of users’ negotiation dynamics, the coali-
tions they formed, and the way revenue was shared.

We designed a negotiating software agent and tested its
performance when interacting with other people playing this
game. Our agent uses influence measures from the coopera-
tive game theory literature [Banzhaf, 1965; Shapley and Shu-
bik, 1954; Deegan and Packel, 1978] to predict how people
respond to offers to join a coalition in the game. Our re-
sults show that the agent significantly outperforms its human
counterparts. It can retain a relatively high revenue, without
incurring a drop in acceptance rates. These results can be
explained by the agent’s ability to predict which coalitions
would be accepted, but also by the fact that people tend to
exhibit biases. For instance, some human proposers took low
amount for themselves, just so that the coalition would form,
and some tried to form coalitions that were too large, forcing
a thin payoff spread among too many members.

Our agent uses machine learning and game theory to de-
cide on proposals that maximize its expected revenue. These
results demonstrate a novel use of cooperative game theo-
retic concepts for revenue division systems, comprising of
both people and computers. In the spirit of public reposito-
ries in computational social choice [Mattei and Walsh, 2013;
Tal et al., 2015], we are making our platform open source,
and have created a public library which will include all of
the collected data, and made freely available to the research
community at https://tinyurl.com/mrna7w6.

2 Related Work
There exists an extensive body of work on weighted vot-
ing games, and their applications, such as predicting nego-



tiation outcomes, pricing cloud services or crypto-currencies
and evaluating contribution in crowdsourcing settings [Blocq
et al., 2014; Lewenberg et al., 2015; Bachrach et al., 2012];
Chalkiadakis and Wooldridge [2011] and Chalkiadakis et al.
provide an overview of such applications [2016]. Most of
these works handle computational and mathematical chal-
lenges raised by weighted voting, e.g. computing influ-
ence measures [Bachrach et al., 2010; Elkind et al., 2007;
Klinz and Woeginger, 2005]; our work, on the other hand,
takes an empirical approach, analyzing human actors and
their decision making in the weighted voting setting.

The round-based negotiation implemented by our work re-
lates to work on coalitional bargaining. Some works in this
realm focus on bargaining dynamics and the solutions they
converge to [Rapoport et al., 1995; Hart and Mas-Colell, ;
Ausubel et al., 2002; Zick et al., 2015; Maschler et al., 2013;
See et al., 2014, chapter 15], while others focus on computa-
tional aspects of coalition formation (see overview by Rah-
wan et al. [2015]). However, as is the case for weighted
voting games, empirical work studying human coalition for-
mation is relatively sparse. One exception is the work by
Bachrach et al. [2011] who propose an asynchronous coop-
erative negotiation game (any player can make an offer at
any time); Bachrach et al. show that payoffs correlate to
the Shapley value averaged across many games. In contrast,
we predict which offers are going to be accepted, and use
these predictions to build a negotiating agent that performs
well against humans.

Lastly, previous works have analyzed human behavior
in ultimatum games [Güth, 1995; Oosterbeek et al., 2004;
Azoulay et al., 2014], bilateral negotiation [Oshrat et al.,
2009; Rosenfeld and Kraus, 2016; Haim et al., 2017] and
strategic voting [Bitan et al., 2013]. The weighted voting set-
ting (and the cooperative negotiation game it induces) offers
a more complex interaction space.

3 Weighted Voting Games
Our work studies Weighted Voting Games (WVG) which re-
flect situations in which each agent has a certain amount of
a resource; in order to achieve a task (e.g. pass a bill, gener-
ate revenue), a minimal amount of that resource is required.
Any coalition whose members have a total weight exceed-
ing the threshold is called winning, and is called losing oth-
erwise. More formally, a WVG is a tuple 〈~w; t, r〉: we are
given a set of agents N = {1, . . . , n}, each agent i ∈ N has
a weight wi. A coalition S ⊆ N has a value of r if its total
weight, w(S) =

∑
i∈S wi, exceeds a given threshold t and

has a value of 0 otherwise. Traditionally, WVGs are defined
with the reward r set to 1, forming a subclass of cooperative
simple games. Our formalism allows an arbitrary reward r.
We often refer to the value of a coalition, v(S), defined as

v(S) =

{
r if w(S) ≥ t
0 otherwise.

Power Indices in WVGs capture the influence or voting
power of agents. A power index is a function φ mapping
weighted voting games to vectors in Rn, where φi(~w, t, r)

should roughly correspond to i’s ability to influence out-
comes. To illustrate the application of these indices for
weighted voting games, we use a simple WVG with 3 agents
defined by the tuple 〈8, 2, 3; 10, 1〉 (i.e. the threshold is
t = 10, and the reward is r = 1).

3.1 The Shapley-Shubik Power Index and the
Banzhaf Index

Given a coalition S, we say that i is pivotal for S if S is
losing, but S ∪ {i} is winning. Formally, i is pivotal for S
iff the marginal contribution of i to S, defined as mi(S) =
v(S∪{i})−v(S), is r. The Banzhaf index [Banzhaf, 1965] of
agent i is the expected marginal contribution of i for a coali-
tion sampled uniformly at random from N \ {i}. Formally:

βi(~w; t) = ES∼U(N\{i})[mi(S)] =
1

2n−1

∑
S⊆N\{i}

mi(S)

In our example, the winning coalitions are {1, 2}, {1, 3},
and {1, 2, 3}. Agent 1 (whose weight is 8) is pivotal in all of
these coalitions, agent 2 (with weight 2) is pivotal for {1, 2},
and agent 3 (with weight 3) is pivotal for {1, 3}. Thus the
Banzahaf index of the three agents is (3/4, 1/4, 1/4).

The Shapley-Shubik power index [Shapley and Shubik,
1954] differs from the Banzhaf Index in that it measures the
average marginal contribution of each agent to permutations
on the set of coalitions (i.e. orderings of the agent set N ).
Given a permutation σ : N → N , let Pi(σ) = {p ∈ N :
σ(j) < σ(i)} be the set of i’s predecessors under σ; we de-
fine the marginal contribution of i to σ, denoted mi(σ), to be
simply mi(Pi(σ)): i’s marginal contribution to its predeces-
sors under σ. The Shapley value of agent i is the expected
marginal contribution of i to a permutation chosen uniformly
at random. Formally:

ϕi(~w; t) = Eσ∼U(Π(N))[mi(σ)] =
1

n!

∑
σ∈Π(N)

mi(σ) (1)

where Π(N) denotes the set of all permutations of N . In our
example, agent 1 is pivotal for the agent orderings (2, 1, 3),
(2, 3, 1), (3, 2, 1) and (3, 1, 2); agent 2 is pivotal for the order-
ing (1, 2, 3); and agent 3 is pivotal for the ordering (1, 3, 2).
Thus, the Shapley-Shublik power indices for our agents are
(2/3, 1/6, 1/6).

3.2 The Deegan-Packel Index
By assigning a positive probability to every coalition, both
the Banzhaf and Shapley-Shubik power indices implicitly as-
sume that all coalitions might form. The Deegan-Packel in-
dex [Deegan and Packel, 1978], on the other hand, assumes
that once a coalition has sufficiently many members as to en-
sure that it has a value of 1, it will not accept others. Deegan
and Packel [1978] measure power in the following manner:
whenever a minimal winning coalition forms, all of its mem-
bers are equally powerful, and all minimal winning coalitions
are equally likely to form. Formally, letWmin(~w; t, r) be the
set of all winning coalitions in the WVG 〈~w; t, r〉 (we refer
to Wmin(~w; t, r) as Wmin when 〈~w; t, r〉 is clear from con-
text). Fixing a agent i ∈ N , we letWmin,i(~w; t, r) = {S ∈



Figure 1: Snapshot of the Cooperative Negotiation Game for three
agents showing Proposal Phase

Wmin(~w; t, r) : i ∈ S}. The Deegan-Packel index is then

DP i(~w; t, r) =
r

|Wmin(~w; t, r)|
∑

S∈Wmin,i(~w;t,r)

1

|S|
(2)

In our example, the minimal winning coalitions are
{1, 2}, and {1, 3}; thus, the Deegan-Packel indices are
(1/2, 1/4, 1/4).

4 The Cooperative Negotiation Game
In the real world, coalition formation is a process of ne-
gotiation between multiple parties who combine their re-
sources [Dupont, 1996; Bachrach et al., 2013]. To reflect this
aspect, we designed an online version of a WVG called the
Cooperative Negotiation Game. The game consists of two
phases; in the proposal phase, a randomly chosen proposer
p can suggest a coalition S ⊆ N . A coalition S is derived
via a payoff division ~x ∈ Rn+ such that supp(~x) = S and∑
i∈S xi = r (i.e. S is the set of agents getting a positive

payoff, and the total payoff is r). In addition, S must be win-
ning, and contain p.

In the response phase, every designated member of S can
either accept or reject its offered share. If all agents in S
accept their share, S forms, and its members receive their
respective share. Otherwise, the coalition fails, and no agent
receives any payoff.

Figure 1 shows a snapshot of the proposal phase of the
cooperative negotiation game with three agents, with weight
configuration 〈8, 2, 3〉. The snapshot is shown from the pro-
poser’s perspective (here, the proposer p is agent 2, and the
reward r is set to 100). The proposer is attempting to form a
coalition {1, 2}, where her share is 30 and the share of agent
1 is 70.

4.1 Data Collection
We recruited 111 subjects (2nd year software engineering un-
dergraduates) with no prior background in game theory. Sub-
jects were given a detailed tutorial of the game; participa-
tion in the study was contingent on passing a comprehension
quiz. IRB approval was obtained from the institution running
the study. All subjects played a 5-agent configuration of the
cooperative negotiation game, in which agent weights varied
between 1 and 9, the threshold t was set to 10, and the coali-
tion value r was set to 100.

All subjects received the equivalent of an $8 show-up fee,
as well as a bonus that depended on their performance in the
game (see Section 5), computed as follows: For each success-
ful coalition, participants received a payoff that was equal to
their share in the coalition. At the end of the experiment, the
total payoff for each participant was converted to a bonus pay-
ment. For example, a participant who received a total payoff
of 322 points would receive a cash bonus of 3 dollars and 22
cents.

Each subject played a series of 5-agent cooperative ne-
gotiation games. The weight for each agent varied from 1
(weakest) to 9 (strongest), and was sampled from a normal
distribution. The weights of all agents were common knowl-
edge between participants. At each round of the game, one
of the participants was randomly chosen to be a proposer,
while the other participants were responders. All members
of a coalition could observe the proposals (including the pro-
poser’s own share in the coalition), as well as the others’ re-
sponses. When a coalition succeeded, the game ended, and a
new game started with different participants and weight con-
figurations; otherwise, a new round of the game ensues for the
same participants, and a new proposer is chosen at random.
The maximal number of rounds was set to 3 for all games
(this information was not conveyed to any of the agents to
avoid backward induction type reasoning, and was not used
by the agent to make proposals in the game). In all, we col-
lected 180 games and 343 coalition proposals.

4.2 The Extended Deegan-Packel Index
In this section we describe an extension of the original
Deegan-Packel index, adapted to the cooperative negotiation
game. The new measure differs in two ways: first, it is de-
fined with respect to a specific agent acting as a proposer and
assumes that the proposer is always a member of the coali-
tion she proposes. Second, it shares the revenue of winning
coalitions in proportion to agent weights (rather than assume
that all members are equally powerful).

Let W ′min,i(~w; t, r) be the set of all minimally winning
coalitions, under the condition that agent i may not be ex-
cluded. Let us defineW ′min,i(~w, t, r) as

W ′min,i(~w, t, r) =

{
S ⊆ N :

w(S) ≥ t, i ∈ S,
∀S′ ⊂ S : i ∈ S′, w(S′) < t

}
Note that W ′min,i may not necessarily equal Wmin,i (the

set of all minimally winning coalitions that contain i), nor
does it necessarily contain any minimally winning coalition.
To illustrate, consider the WVG 〈1, 4, 6; 10, 1〉. In this case,
W ′min,1 contains only {1, 2, 3}, butWmin,1 = ∅: {2, 3} is the
unique minimally winning coalition.

We define EDP i,p(~w; t, r) to be the extended Deegan
Packel index of a agent i given that p is the proposer. This is
the expected revenue of i from a coalition S inW ′min,p cho-
sen uniformly at random, in which p allocates each member
of S a share proportional to her weight.

Note that strictly speaking, EDP is not a function from a
WVG to a vector, thus it is not a power index: it uses addi-
tional information, namely the identity of the proposer, which
is common knowledge among the coalition members. We



abuse notation and still refer to it as a power index because
it provides a measure of influence for a coalition members in
the cooperative negotiation game.

EDP i,p(~w; t, r) =
1

|W ′min,p|
∑

C∈W ′
min,p,i∈S

r · wi
w(S)

(3)

In our example 〈8, 2, 3; 10, 1〉, suppose that agent 2 is cho-
sen to be the proposer. The only minimal winning coalition
which contains agent 2 is {1, 2}; thus, the Extended-Deegan-
Packel power index for the agents is (4/5, 1/5, 0). One can
make EDP i,p into a power index by selecting the identity of
p uniformly at random. Note that EDP i = 1

n

∑
p∈N EDP i,p

has some interesting properties (for example, EDP i > 0 for
all i ∈ N , unlike most other power indices), which we leave
for future work.

4.3 Predictive Model
In this section, we describe a supervised learning model that
was used to predict responder acceptance in the coopera-
tive negotiation game. We begin with the following defini-
tions: Let ~x ∈ Rn+ be a vector of shares for all agents; that
is,
∑
i∈N xi = r. We use (supp(~x), p) to refer to a pro-

posed coalition between a proposer p and a set of responders
{i ∈ supp(~x), i 6= p}. We always assume that xp > 0. The
proportional power index of a responder i given proposer p,
denoted PP i,p, is the ratio between the power index for i and
for p (PP i,p = φi(~w, t, r)/φp(~w, t, r). This measures the
extent to which the proposer is more powerful in the game.

In our example 〈8, 2, 3; 10, 1〉, suppose that agent 2 is
elected to be the proposer. For the extended Deegan-Packel
index, we have that PP1,2 = 4 and that PP3,2 = 0. Note
that by definition, it is always the case that EDPp,p > 0, so
PP i,p is well-defined when using EDP ; for the other power
indices, if φi = 0, we add a small ε = 10−6 to φp to ensure
that PP is well defined. The proportional share of a respon-
der i, denoted PS i,p is the ratio between the share for i and
the proposer p given ~x: (PS i,p = xi/xp). In our example, if
~x = (70, 30, 0), then PS1,2 = 7/3.

We use the following set of features to predict the proba-
bility of acceptance by responder i given the offer ~x:

1. The power index of the responder i. (φi(~w, t, r)).
2. The power index of the proposer p. (φp(~w, t, r)).
3. The share of the proposer p in the coalition ~x: (xp).
4. The share of the responder the coalition ~x. (xi).
5. The ratio between the proportional share and the propor-

tional power of the responder (PSi,p/PPi,p).
The last feature measures the extent to which the relative
difference in shares between the proposer and the respon-
der agrees with their relative difference in power. Suppose
the responder is more powerful than the proposer (as in our
example), i.e. PP i,p > 1. A proposal that respects this
difference would offer a more equal share to the respon-
der. In our example, PP1,2 = 4 and PS 1,2 = 7/3, so
PS 1,2/PP1,2 = (7/3)/4 = 7/12. Intuitively this ratio cap-
tures a notion of payment fairness (with respect to a given

Method AUC
EDP 0.71

Deegan-Packel 0.669
Shapley-value 0.68
Banzhaf-index 0.65
Always accept 0.5

Table 1: Performance of Logistic regression model when using dif-
ferent power indices to predict acceptance of proposal

power index): no responder should reasonably agree to an of-
fer that offers it a small share relative to the proposer, when
its power is much greater.

We compare several predictive models using the above
features, varying the type of power index used (Banzhaf,
Shapley-Shubik, Banzhaf, Deegan-Packel, Extended
Deegan-Packel). For each power index configuration, we
implement several supervised machine learning models:
logistic regression, a multilayer neural network (3 hidden
layers, 3 decision nodes in each layer), and a Naive Bayes
model. We report the receiver-operator characteristic curve
(AUC), which measures the sensitivity of performance to the
choice of the threshold for determining acceptance. AUC is
a useful performance measure when evaluating unbalanced
datasets (Although 85% of proposals were accepted, just
70% of coalition formation attempts were successful, see
section 5) [Hanley and McNeil, 1982; Bradley, 1997;
Provost et al., 1998].

Table 1 describes the AUC score the logistic regression for
the different indices using ten-fold cross validation. We also
include an “always accept” predictor as a baseline. As shown
in the figure, all power indices were beneficial for predicting
the acceptance of responders in the game. However, the Ex-
tended Deegan-Packel index achieved the best performance
by a small margin. The most important features, determined
by their weights in the regression model, were as follows, or-
dered in decreasing order: the extended Deegan-Packel in-
dex of the proposer, the extended Deegan-Packel index of
the responder, the proposed share of the proposer, the pro-
posed share of the responder, the ratio between the propor-
tional share and the proportional power of the proposer and
the responder.

5 The EDP Agent
In this section we describe an agent termed EDP, which com-
bines a decision-theoretic approach with the predictive model
(using Deegan-Packel) that was described in the last sec-
tion. Assuming each responder makes an independent de-
cision whether to accept or reject the offer, the agent chooses
a payoff division ~x∗ that maximizes its expected revenue:

~x∗ ∈ arg max
~x

xp ·
∏

i∈supp(~x),i6=p

Pr(Acci | ~x, p) (4)

Finding an approximately optimal ~x∗ is done by iterating over
all possible payoff divisions in 5 unit intervals. The rea-
son for this was twofold: There are approximately 45, 000
possible payoff divisions to consider in this configuration, so
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Figure 2: Comparison of total revenue gained on average in propos-
als.

brute-force search can be achieve in a short amount of time.
Second, over 95% of shares made by human proposers were
multiples of five; a software agent making arbitrary proposals
would easily stand out from its human counterparts.

We evaluate the EDP agent by comparing its performance
to that of people playing against other people. To this end we
recruited an additional 32 human subjects to play the coopera-
tive negotiation game. All games included either five humans,
or four humans and the EDP agent. In all, we collected 120
games including 163 proposals. The EDP agent was chosen
to be the proposer 32 times. All results reported in this sec-
tion are statistically significant in the p < 0.01 range using
Mann-Whitney tests.

We measure the performance of the EDP agent by the to-
tal revenue gained, averaged over all games played. For each
game, the EDP agent share was equal to zero (if no success-
ful coalition was formed) or the proposed share of the EDP
agent (if the proposed coalition was successful). We compare
the total number of shares obtained by the EDP agent to that
obtained by human proposers, averaged over all games.

5.1 Results and Discussion
We first describe the EDP agent’s performance as a proposer.
Figure 2 compares between the performance of agent and hu-
man proposers, as well as summary statistics of the distri-
bution (quartiles). As shown by the figure, the total aver-
age share obtained by the EDP agent (43.78) is significantly
higher than that obtained by people (27.26).

Figure 3 shows the average shares requested by human and
computer proposers for themselves. As seen in the figure, the
EDP agent requested a much higher share for itself on average
that did people; moreover, people’s proposals were more di-
verse than the agent’s, with some requesting very low shares
for themselves (low quartile for people’s requested share is
20, vs. 40 for the EDP agent).

The EDP agent also outperforms humans in forming coali-
tions (i.e. when all responders accept their individual share
in the proposal): 79% of coalitions proposed by the EDP
agent were successful, compared to 70% of human-proposed
coalitions. The acceptance rate for individual responders to
proposals made by the EDP agent (86%) which was not sig-
nificantly different from that of people playing other people

0 20 40 60 80 100

Humans

EDP agent

Figure 3: Average share requested by proposer
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Figure 4: Offers made by the people; note that the green dots repre-
sent non-power-preserving offers.

(85%).
These statistics show that on the one hand, the EDP agent

made offers that were less advantageous to human responders
than did humans; however, people were as likely to accept
these offers as those made by other people. We offer several
possible explanations for this discrepancy, by analyzing the
behavior of human proposers and responders in the game.

The first explanation for the lower performance is that peo-
ple make offers that do not align with responders’ power.
The scatter-plot in Figure 4 shows the ratio between the EDP
index of any responder pair (i, j) in a proposed coalition
(x axis) and the ratio between the shares proposed to (i, j)
(y axis) by proposer p. For each coalition, any given re-
sponder pair (i, j) contributed a single point to the scatter-
plot, with the constraint that EDP j,p ≥ EDP i,p. Thus, all
points on the x = 1 line represent equal EDP power be-
tween responders i and j. For all points to the left of this
line, EDP j,p > EDP i,p. Similarly, points on the y = 1
line represent equal shares proposed to i and j. Points to
the above this line represent offers that propose more to re-
sponder i than to j. The offers marked in green are not
“power preserving”, in that EDP i,p ≥ EDP j,p but pi < pj ,
or EDP i,p > EDP j,p but pi = pj . Many of the human-
proposed offers were non power preserving (41% of all of-
fers), and most of them were declined. As an example from
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Figure 5: Offers made by the EDP agent; note that the agent always
makes power-preserving offers

the collected data, consider the game 〈6, 2, 2, 2, 1〉 in which
p = 5. The extended Deegan-Packel power indices of the
participants are EDP i,5 = (0.6, 0.15, 0.1, 0.05, 0.1). The
proposed coalition, ~x = (15, 15, 20, 20, 30) was not power
preserving: we can see that EDP1,5 ≥ EDP i,5 for 2 ≤ i ≤ 4
but the share for agent 1 is smaller or equal to the shares for
agents 2, 3, and 4.

In contrast, Figure 5 shows a scatter-plot of offers made
by EDP agent according to the same criteria. As shown by
the figure, there were 8 classes of offers made by the agent,
all of them were “power preserving.” In particular, when the
power of responder i and j were equal, the agent gave them
equal shares. As the power of j grows, it receives a higher
share, with a “jump” from 0.3 to 0.8 in the relative difference
between the shares j and i when j’s power increases to three
times higher than that of i.

When acting as a responder, we measured performance by
totaling the average share over all successful coalitions in
which the responder was a member. The agent’s performance
(34.7 average total share) was significantly larger than that of
human responders (27.9 average total share). Here, the EDP
agent used a simple strategy – accept all proposals offering
it at least 5% of total revenue; i.e. those that it perceived as
offering it a strictly positive utility. Figure 6 shows the cumu-
lative distribution over human acceptance rates with games
played with people. The figure shows that 35% of people re-
ject offers with shares of 20% of lower. This bias, also docu-
mented in the ultimatum game [Camerer, 2003], explains the
success of the EDP agent’s strategy as a responder.

A final explanation that can explain lower human perfor-
mance is that 23% of the coalitions formed by people were
non-minimal, i.e. the coalitions were not in W ′min,p. Larger
coalitions are less likely to succeed than smaller coalitions,
as coalitions require all members to agree to the proposals.
In addition, spreading the reward among more responders re-
sults smaller shares on average, further decreasing the likeli-
hood of acceptance.

Lastly, we present an example from the data that illustrates
the difference in behavior between human proposers and the
EDP agent. Consider the weight configuration 〈4, 4, 3, 3, 3〉
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Figure 6: Cumulative distribution over the humans’ acceptance rate.
The x axis indicates the responder’s share.

when p = 1. The Extended Deegan-Packel power index for
the agents is (0.381, 0.181, 0.145, 0.145, 0.145). When the
DP-agent was elected to be the proposer it formed the coali-
tion supp(~x) = {1, 3, 4} with the shares (50, 25, 25) respec-
tively. The agent received a 100% success rate for this coali-
tion proposal. When human proposers formed the same coali-
tion {1, 3, 4}, they awarded themselves a lower average share
(35). For the same weight configuration, people also formed
the coalition supp(~x) = {1, 2, 3} that included agent 2 in-
stead of agent 3. Since agent 2 is more powerful than agent
3 ( EDP2,1 > EDP3,1), it generally received a higher pro-
posed share, at the expense of the proposer and agent 3. These
coalitions were significantly less likely to succeed (75%) than
the coalitions proposed by the agent (100%).

6 Discussion and Conclusions
The performance of the EDP agent makes a compelling ar-
gument for the combination of game-theoretic and ML based
agents in coalitional bargaining domains. Our results can in-
form the design of future voting systems in which people and
computers interact, by 1) creating agents that serve as proxies
for people in future voting systems, or as training tools for
people to improve their bargaining skills in voting settings;
2) modeling how people vote in computerized environments;
3) using these models to inform the design of improved vot-
ing systems that lead voters to better outcomes (whether for
individuals or society).

We are currently extending our model to include repeated
settings in which participants interact over time and partici-
pants need to consider the effects of reciprocity on their vot-
ing strategies. We are also studying how to create environ-
ments where humans can easily negotiate with one another
(and with software agents) would be a challenge as the game
grows more complex.
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