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Abstract
Weighted voting games (WVGs) model decision
making bodies such as parliaments and councils.
In such settings, it is often important to provide a
measure of the influence a player has on the vote.
Two highly popular such measures are the Shapley–
Shubik power index, and the Banzhaf power index.
Given a power measure, proportional representa-
tion is the property of having players’ voting power
proportional to the number of parliament seats they
receive. Approximate proportional representation
(w.r.t. the Banzhaf power index) can be ensured by
changing the number of parliament seats each party
receives; this is known as Penrose’s square root
method. However, a discrepancy between player
weights and parliament seats is often undesirable
or unfeasible; a simpler way of achieving approxi-
mate proportional representation is by changing the
quota, i.e. the number of votes required in order to
pass a bill.
It is known that a player’s Shapley–Shubik power
index is proportional to his weight when one
chooses a quota at random; that is, when taking a
random quota, proportional representation holds in
expectation. In our work, we show that not only
does proportional representation hold in expecta-
tion, it also holds for many quotas. We do so by
providing bounds on the variance of the Shapley
value when the quota is chosen at random, assum-
ing certain weight distributions. We further explore
the case where weights are sampled from i.i.d. bi-
nomial distributions; for this case, we show good
bounds on an important parameter governing the
behavior of the variance, as well as substantiating
our claims with empirical analysis.

1 Introduction
In weighted voting games (WVGs), there is a group of play-
ers N = {1, . . . , n}, each player i ∈ N has a positive weight
wi ∈ Z+. A subset of players S ⊆ N is called winning if
the total weight of its members is at least some given thresh-
old (often referred to as a quota). Weighted voting games are
a simple yet expressive method of representing and studying

electoral bodies such as political parties or company share-
holders. In particular, they are used to evaluate the a-priori
voting power of players. WVGs play an important role in
modelling multi-agent systems. For example, player weights
can be thought of as resources (computing power, fuel, etc.),
and the threshold as the minimum amount of resources re-
quired to complete a task. Consider also the following exam-
ple: a group of agents has committed to spending no more
than q resources (say, in an energy market); however, each
agent i ∈ N has spent an amount of wi, where total con-
sumption exceeds q. In this setting, voting power could be
seen as the share each agent has in the exceeded cost.1

A power index is a measure of players’ influence in a
WVG. Briefly, given a set of players N , a weight vector
w ∈ Zn+, and some quota q, we write the WVG induced as
G = 〈N,w, q〉; a power measure is a function α whose in-
put is a WVG G, and whose output is a vector α(G) ∈ Rn
whose i-th coordinate is the power of player i under G ac-
cording to α. Two popular power measures are the Banzhaf
power index [Banzhaf, 1964], and the Shapley–Shubik power
index [Shapley and Shubik, 1954] (SSPI); the latter is the fo-
cus of this work.

Given a weighted voting game, it is often desirable to
ensure that the voting power of a party (as given by some
power measure) is proportional to its weight; this is known
as proportional representation [Penrose, 1946]. Intuitively,
if weights represent state populations (say, in the case of the
EU council of members), then a game with good proportional
representation is one where each citizen is equally influential,
regardless of the state he belongs to. In a multi-agent system,
if a game has the proportional representation property, then
players’ power is approximately proportional to their weights.
Players’ power is often used in order to divide rewards (say,
for completing a task): each agent receives a reward propor-
tional to his power; such payoff divisions have several highly-
desirable properties. However, sharing rewards in proportion
to agent weights is often simpler and more intuitive. Thus,
if proportional representation holds, then proportional reward
sharing will have those properties as well. Formally, given a
power measure α and a weighted voting game G = 〈N,w, q〉,
G has the ε-proportional representation property if for all

1see also Chalkiadakis et al. [2011] for a discussion of WVGs in
multi-agent systems.



players i, j ∈ N , |αi(G)
αj(G) −

wi
wj
| ≤ ε. ε-proportional represen-

tation means that the weighted voting game satisfies the “one
person – one vote” rule, up to an error term of ε. An alterna-
tive approach to proportional representation is given by Mon-
roe [1995] and by Chamberlin and Courant [1983]; in this
setting, we are given a group of voters, each listing his pref-
erence over a set of candidates. The objective is to find a set
of k candidates that best represent the voters. We stress that
we follow the interpretation of proportional representation
given by Penrose [1946], and not the one in [Monroe, 1995;
Chamberlin and Courant, 1983].

Penrose’s square root method ensures ε-proportional rep-
resentation w.r.t. the Banzhaf power index via changing the
actual number of parliament seats each party/state receives.
The square root method states that voting bodies whose par-
ties correspond to populations should have their number of
seats proportional to the square root of the weight (popula-
tion size). If weights are w1, . . . , wn, the actual number of
seats for i ∈ N should be

√
wi; this is because the Banzhaf

power index of player i tends to 1√
wi

as the number of players
grows.

Quota manipulation can be used in order to achieve ε-
proportional representation; that is, given a vector of weights
w and ε > 0, find q0 s.t. for some power measure α, the
weighted voting game G0 = 〈N,w, q0〉 has ε-proportional
representation. Quota manipulation is preferable to weight
reassignment in many scenarios. First, in multi-agent sys-
tems, weights correspond to agent resources, which cannot
be easily changed; second, even when weight changes are
feasible, changes to the quota are more subtle: they are more
easily made, but their effects not immediately obvious. This
means that it is easier for parties to agree upon changes to the
quota, rather than to changes to the number seats they receive.

Manipulating the quota is a delicate matter; power indices
tend to be highly sensitive to small changes in the underlying
voting game, and in particular to changes in the quota [Zick
et al., 2011; Zuckerman et al., 2012]. These changes can,
however, occur fairly often: the amount of resources required
to complete a task may change, or in the voting perspective,
the number of votes required to pass a law may be changed.

1.1 Our Contribution
We analyze approximate proportional representation under
the Shapley–Shubik power index, and propose some con-
ditions under which it is maintained via selecting a proper
quota. We provide a general bound on the variance of the
Shapley value, and show that an improved bound holds for
the player with the smallest weight. While our bounds are
not particularly tight for general weights, if one assumes that
weights exhibit some clustering, we show that the variance
tends to be low, especially for players with small weights.
Further, we identify a parameter which to a great extent gov-
erns the variance of the Shapley value as a function of the
quota. We study expected bounds on that parameter when
weights are selected from a binomial distribution. These find-
ings are further corroborated by empirical analysis.

From the multi-agent perspective, our results show that un-
der certain assumptions on agent weights, small changes to
the amount of resources required to complete a task will not

greatly affect the influence agents have: they will, on aver-
age, have influence proportional to their weight. From the
majority voting perspective, our results show that quota ma-
nipulation is not likely to result in great changes to players’
power, especially if the threshold is set at 50% of the votes.
For both frameworks, weight clustering is an important factor
in making players’ power resistent to changes to the quota.

1.2 Related Work
Proportional representation is a well-studied problem, initi-
ated by Penrose [1946].2 The effects of changes to the quota
have been previously studied (see, e.g. [Leech and Machover,
2003; Machover, 2007]).

Recently, Tauman and Jelnov [2012] show that approxi-
mate proportional representation is achieved in expectation
when weights are chosen at random for a fixed quota. These
results hold for both the Shapley–Shubik and the Banzhaf
power indices. Rather than choosing weights at random, we
fix the set of weights and choose a quota at random. Despite
the difference in the probability space, our theoretical results
strongly support the empirical observations made in [Tau-
man and Jelnov, 2012]. Neyman [1982], followed by Lind-
ner [2004] perform asymptotic analysis of certain classes of
weighted voting games, showing that approximate propor-
tional representation is achieved as the number of players
goes to infinity, assuming the weighted voting game has cer-
tain properties. Häggström et al. [2006] also study the asymp-
totic behavior of weighted voting games.

Changes to the quota have been extensively studied from
a computational perspective. Faliszewski and Hemaspan-
ndra [2009] study computational aspects of comparing a
player’s power in two weighted voting games. Słomczyński
and Życzkowski [2006] use a brute force method in order
to find a quota that minimizes the total distance of players’
Banzhaf power index from their proportional weight in the
EU Council (the quota is approximately 61.5%). However,
previous hardness results for computing power indices im-
ply that their algorithm is inefficient (see [Chalkiadakis et al.,
2011] for an overview). Zuckerman et al. [2012] and Zick
et al. [2011] study computational and non-computational as-
pects of changes to the quota in WVGs. Finally, while we use
probabilistic tools in a more traditional manner, probabilis-
tic analysis is also used in order to approximately compute
power indices [Bachrach et al., 2010; Fatima et al., 2008].

2 Preliminaries
Throughout the paper, we refer to vectors as boldface lower-
case characters and sets as uppercase letters. Given a set S,
|S| refers to the size of S. Given a random variable X , let
E[X] denote its expected value, and var[X] denote its vari-
ance; the standard deviation of X is

√
var[X]. A weighted

voting game (WVG) G = 〈N,w, q〉 is given by a set of play-
ers N = {1, . . . , n}, a vector w = (w1, . . . , wn) ∈ Zn+ and a
quota q ∈ Z+. Given a set S ⊆ N ,w(S) is the total weight of
the members of S, i.e. w(S) =

∑
i∈S wi. S is called winning

2Penrose’ proposed power measure is similar to that proposed
by Banzhaf [1964]; see also [Felsenthal and Machover, 2005] for an
overview of various power indices and their history.



(has value 1) if w(S) ≥ q and is called losing (has value 0)
otherwise. We write v(S) = 1 if S is winning, and v(S) = 0
otherwise. We say that a player i is pivotal for a set S if
v(S) = 0, but v(S ∪{i}) = 1. Let Π(N) denote the space of
all permutations (also referred to as orderings) overN . Given
some σ ∈ Π(N), let Pi(σ) be the set of all of i’s predeces-
sors in σ; that is, Pi(σ) equals {j ∈ N | σ(j) < σ(i)}.
We say that i is pivotal for σ if i is pivotal for Pi(σ), i.e. if
w(Pi(σ)) < q, but w(Pi(σ)) + wi ≥ q.

The Shapley-Shubik power index [Shapley and Shubik,
1954; Shapley, 1953] is a function ϕ whose input is a WVG
G, and whose output is a list of valuesϕ1(G), . . . , ϕn(G). The
value ϕi(G) is the probability that i is pivotal for a permuta-
tion σ selected uniformly at random from Π(N). Formally:

ϕi(G) =
∑

σ∈Π(N)

v(Pi(σ) ∪ {i})− v(Pi(σ)).

In what follows, we fix the weights w1, . . . , wn, and as-
sume that they are positive, whereas q is a random vari-
able. Specifically, we let q be a random variable accord-
ing to the uniform distribution over {1, . . . , w(N)}, denoted
U(1, w(N)).

We are interested in the random variable ϕi(q), which is
the Shapley value of player i when the quota is q. That is,
fixing the weights of all players, we randomly pick a quota
from 1, . . . , w(N) and measure the Shapley value of player i.

3 The Variance of ϕi(q)

Let us set

Pivi,σ(q) =

{
1 if i is pivotal for σ when the quota is q
0 otherwise.

.

We observe that ϕi(q) = 1
n!

∑
σ∈Π(N) Pivi,σ(q).

It is a well-known fact that Eq∼U [1,w(N)][ϕi(q)] =
wi
w(N)

[Mann and Shapley, 1960]. While proportional rep-
resentation is achievable (in expectation) by taking a random
quota, ϕi(q) may exhibit a high degree of fluctuation. We are
thus interested in bounding the margin of error between ϕi(q)
and wi

w(N) .
Experimental results in [Zick et al., 2011] indicate that

ϕi(q) generally exhibits low variance, assuming that one
takes a quota not too far from 50% of the total weight. That is,
approximate proportional representation is achieved for a ran-
domly chosen quota, if one selects a quota close to 0.5w(N).
These results are in line with the observations made by Jelnov
and Tauman [2012]. We now identify conditions that ensure
that this is indeed the case.

Given two permutations σ, τ ∈ Π(N), let us observe the
random variable Pivi,σ(q) · Pivi,τ (q); it takes a value of 1
whenever player i is pivotal for both σ and τ , and is 0 other-
wise. Intuitively, player i can be pivotal for two permutations
only if the weight of the predecessors of i is not too differ-
ent in σ and τ . If the weights of the predecessors are too far
apart, then whenever a quota q allows i to be pivotal for one
permutation, it prohibits him from being pivotal for the other.
We formalize this notion in the following lemma.

Lemma 3.1. Given a player i ∈ N and two permutations
σ, τ ∈ Π(N), Pr(Pivi,σ(q)Pivi,τ (q) = 1) equals

max{0, wi − |w(Pi(σ))− w(Pi(τ))|
w(N)

}.

Proof. Player i is pivotal for σ only when w(Pi(σ)) <
q ≤ w(Pi(σ)) + wi; similarly, player i is pivotal
for τ only when w(Pi(τ)) < q ≤ w(Pi(τ)) +
wi. He is pivotal for both permutations only when
q is strictly greater than max{w(Pi(σ)), w(Pi(τ))}, and
is at most min{w(Pi(σ)), w(Pi(τ))} + wi. Note that
max{a, b} − min{a, b} = |a − b|; therefore, if
wi ≤ |w(Pi(σ)) − w(Pi(τ))| then i is never pivotal
for both σ and τ . Otherwise, player i is pivotal for
both σ and τ when q = max{w(Pi(σ)), w(Pi(τ))} +
1, . . . ,min{w(Pi(σ)), w(Pi(τ))} + wi. This is a total of
wi − |w(Pi(σ))− w(Pi(τ))| quotas.

Recall that var[X] = E[X2] − E[X]2. Thus, in order to
compute var[ϕi(q)] we must first derive an explicit formula
for E[ϕi(q)

2]. Let us first analyze the expression ϕi(q)
2.

Given some w ∈ Z, we set

Πi,σ(w) = {τ ∈ Π(N) | |w(Pi(σ))− w(Pi(τ))| = w}.

Πi,σ(w) is the set of all permutations such that the weight of
i’s predecessors is a distance of exactly w from the weight of
i’s predecessors in σ. We observe that

ϕi(q)
2 =

1

(n!)2

∑
σ∈Π(N)

∑
τ∈Π(N)

Pivi,σ(q)Pivi,τ (q) (1)

=
1

(n!)2

∑
σ∈Π(N)

wi−1∑
w=0

∑
τ∈Πi,σ(w)

Pivi,σ(q)Pivi,τ (q)

Thus, by linearity of expectation, we get that E[ϕi(q)
2] equals

1

(n!)2

∑
σ∈Π(N)

wi−1∑
w=0

∑
τ∈Πi,σ(w)

E[Pivi,σ(q)Pivi,τ (q)]

which, by Lemma 3.1, equals

1

(n!)2w(N)

∑
σ∈Π(N)

wi−1∑
w=0

|Πi,σ(w)|(wi − w). (2)

Using (2), we now proceed to provide some upper bounds on
the variance of ϕi(q). We recall the following lemma from
Zick et al. [2011] (Lemma 4.1).
Lemma 3.2. Let Φi(w) be the set of permutations such that
the weight of i’s predecessors is at strictly less than w; then
for all a, b ∈ Z+, |Φi(a)|+ |Φi(b)| ≥ |Φi(a+ b)|.

Let Πi(w) be the set of all permutations such that the
weight of i’s predecessors is exactly w; Lemma 3.2 implies
the following corollary.
Corollary 3.3. |Πi(w)| ≤ (n − 1)!; moreover, if wi =
minj∈N wj , then the set of all permutations such that i’s pre-
decessors have a weight between w and w+wi−1 has a size
of at most (n− 1)!.



Proof. We observe that Πi(w) = Φi(w + 1) \ Φi(w); since
Φi(w) ⊆ Φi(w + 1), we have that |Πi(w)| = |Φi(w + 1)| −
|Φi(w)|. By Lemma 3.2, |Φi(w + 1)| − |Φi(w)| ≤ |Φi(1)|;
however, Φi(1) is the set of all permutations where the weight
of i’s predecessors is exactly 0. Since all weights are positive,
Φi(1) is the set of all permutations where i is first, thus has a
size of (n− 1)!, which concludes the proof.

Similarly, The size of the set Φi(w+wi)\Φi(w) is at most
|Φi(wi)|. If wi = minj∈N wj , Φi(wi) consists only of the
permutations where i is first, which proves the second part of
the claim.

Using Corollary 3.3, we are able to prove the following
result.

Lemma 3.4. For all i ∈ N and all σ ∈ Π(N),
|Πi,σ(w)| ≤ 2(n − 1)!. Moreover, if wi = minj∈N wj , then
|
⋃wi−1
w=0 Πi,σ(w)| ≤ 2(n− 1)!.

Proof. Both claims follow immediately from the observation
that

|Πi,σ(w)| = |Πi(w(Pi(σ))− w)|+ |Πi(w(Pi(σ)) + w)|,

and then invoking the upper bounds set in Corollary 3.3.

Lemma 3.4 provides an upper bound on the size of
Πi,σ(w), which proves to be instrumental in showing the fol-
lowing result:

Theorem 3.5. For all i ∈ N :

var[ϕi(q)] ≤
wi

w(N)

(
wi + 1

n
− wi
w(N)

)
.

Moreover, if wi ≤ wj for all j in N , then

var[ϕi(q)] ≤
wi

w(N)

(
1

n
− wi
w(N)

)
.

Proof. Using Lemma 3.4, we obtain the following upper
bound on E[ϕi(q)

2]:

E[ϕi(q)
2] =

1

(n!)2w(N)

∑
σ∈Π(N)

wi−1∑
w=0

|Πi,σ(w)|(wi − w)

≤ 1

(n!)2w(N)

∑
σ∈Π(N)

wi−1∑
w=0

2(n− 1)!(wi − w)

=
1

(n!)2w(N)

∑
σ∈Π(N)

(n− 1)!wi(wi + 1)

=
n!(n− 1)!wi(wi + 1)

(n!)2w(N)
=
wi(wi + 1)

nw(N)
.

Finally, we deduct E[ϕi(q)]
2 =

w2
i

w(N)2 from the final term to
obtain the desired upper bound on var[ϕi(q)]. For the player
with the smallest weight, we can obtain a better bound on

E[ϕi(q)
2] via Corollary 3.3.

E[ϕi(q)
2] =

1

(n!)2w(N)

∑
σ∈Π(N)

wi−1∑
w=0

|Πi,σ(w)|(wi − w)

≤ 1

(n!)2w(N)

∑
σ∈Π(N)

wi|
wi−1⋃
w=0

Πi,σ(w)|

≤ 1

(n!)2w(N)

∑
σ∈Π(N)

wi(n− 1)! =
wi

nw(N)

which gives a bound of wi
w(N)

(
1
n −

wi
w(N)

)
.

Theorem 3.5 implies the following corollary
Corollary 3.6. Suppose that all weights are drawn from an
interval [a, b], where both a and b are constants independent
of n; then var[ϕi(q)] is in O( 1

n2 )

Proof. According to Theorem 3.5,

var[ϕi(q)] ≤
wi(wi + 1)

nw(N)
≤ b(b+ 1)

n2a

where the last expression is in O( 1
n2 )

Note that if we assume that weights are bounded by a con-
stant, wi

w(N) is in O( 1
n ); therefore, Corollary 3.6 simply im-

plies that the standard deviation and the mean of ϕi(q) de-
crease in the same rate, i.e. are within a multiplicative con-
stant of each other. We observe that the bounds derived in
Theorem 3.5 can be rewritten as(

wi
w(N)

)2(
wi + 1

wi

w(N)

n
− 1

)
;

this implies that the constant term in the ratio between the
standard deviation and the mean (also known as the coeffi-

cient of variation) is given by
√

wi+1
wi

w(N)
n − 1. The con-

stant term is dominated by the value w(N)
n , or the average

weight of the players. In general, the bound derived in The-
orem 3.5 does not strongly depend on wi, as wi+1

wi
is at most

2, and tends to 1 as wi grows. In general, the standard devia-
tion tends to 0 as w(N)

n tends to 1. That is, var[ϕi(q)] grows
smaller as weights grow smaller.

For the player with the smallest weight, the variation co-

efficient is
√

1
nw(N)

wi
− 1. This means that if the smallest

weight is close to the average weight, then the variation coef-
ficient tends to 0. For example, in a setting where weights are
clustered, there will be many quotas for which the Shapley
value of the players with a small weight is close to wi

w(N) .

4 Bounds on |Πi(w)|
Recall that Πi(w) is the set of permutations such that the
weight of i’s predecessors is exactly w.

Consider the following setting: we sample n weights inde-
pendently at random from a binomial distribution, and then
randomly choose a quota. Formally, let W1, . . . ,Wn ∼



B(Q, 1
2 ), i.e. Pr[Wi = w] =

(
Q
w

)
1

2Q
. In order to set the

weight of player i, we simply sample a value 0, . . . , Q from
a binomial distribution. In this setting, we provide bounds on
the expected size of Πi(w). As shown in Theorem 3.5, gen-
eral bounds on the size of Πi(w) would be useful in bounding
var[ϕi(q)].

Fixing i, let Pi,q be a random variable corresponding to
the number of permutations for which Pi(σ) has a weight
of q. Let Pi,q,k be the number of permutations such that
Pi(σ) has a weight of q and size k. Observe that Pi,q =∑n−1
k=0 Pi,q,k. Let Si,q,k be the number of subsets of N \ {i}

such that w(S) = q and |S| = k. We write Ni,k to be
{S ⊆ N \ {i} | |S| = k}. Let IS,q be a random variable
that equals 1 if w(S) = q and 0 otherwise. We note that if
|S| = k, E[IS,q = 1] =

(
kQ
q

)
2−kQ. Assuming that k ≤ q,

E[Pi,q,k] = E[
∑

S∈Ni,k

IS,q · k!(n− k − 1)!] (3)

=
(n− 1)!(
n−1
k

) ∑
S∈Ni,k

E[IS,q]

=
(n− 1)!(
n−1
k

) ∑
S∈Ni,k

(
kQ

q

)
2−kQ

= (n− 1)!

(
kQ

q

)
2−kQ.

We conclude that

E[Pi,q] = (n− 1)!

n−1∑
k=0

(
kQ

q

)
2−kQ,

where we assume that if m < k, then
(
m
k

)
= 0. Note that∑n−1

k=0

(
kQ
q

)
2−kQ is upper bounded by

∑(n−1)Q
j=q

(
j
q

)
2−j . Let

us denote ξm,k =
∑m
j=k

(
j
k

)
2−j . Since some of the real-

ized values of W1, . . . ,Wn may be 0, we cannot rely on
Lemma 3.4 to upper-bound E[Pi,q]. However, as the follow-
ing lemma shows, a similar bound holds in expectation.
Lemma 4.1. Given m, k ∈ Z+ such that k ≤ m, ξm,k ≤ 2;
moreover, for any k > 0, limm→∞ ξm,k = 2.

Proof. Let us observe the function f(x) = xk

(1−x)k+1 , for k ≥
1; whenever x < 1 we have

f(x) = xk

 ∞∑
j=0

xj

k+1

=

∞∑
j=0

(
j + k

k

)
xj+k.

The righthand expression simply equals
∑∞
j=k

(
j
k

)
xj . Now,

on one hand, f( 1
2 ) = 2; on the other hand, f( 1

2 ) =∑∞
j=k

(
j
k

)
2−j . Since ξm,k is a partial sum of f( 1

2 ), and all
summands are positive, we have ξm,k ≤ f( 1

2 ) = 2; moreover
we have limm→∞ ξm,k = f( 1

2 ) = 2, so this upper bound is
tight.

Lemma 4.1 implies that E[Pi,q] ≤ 2(n − 1)! for all i and
all q. The upper bound shown in Lemma 4.1 can be further

improved for many values of q; we now provide an improved
bound of O( q2q ) on all ξnQ,q such that q is far from nQ

2 .

Theorem 4.2. For all q such that q ≥ ρ−1
ρ nQ or 1 ≤ q ≤

1
ρnQ, ξnQ,q is inO( q2q ), where ρ is a constant between 3 and
3.055.

Proof. We observe that for allm, k ∈ Z+ such thatm > k ≥
1, we have(
m

k

)
=

(
m

m− k

)
<

(
em

m− k

)m−k
= 2(m−k) log(e m

m−k )

where log is the base-2 logarithm and e is Euler’s constant.
Let us now look at the function f(x) = x − log ex. The
function f has two real roots, one of them, denoted by ρ, is
slightly greater than 3 (3 < ρ < 3.055). Setting x = m

m−k
we get that f( m

m−k ) > 0 if m
m−k > ρ, or if m < ρ

ρ−1k.
Now, suppose that q > ρ−1

ρ nQ; for all j > q, there is some
εj ∈ (0, 1) such that(

j

q

)
< 2(j−q) log(e j

j−q ) = 2j−(j−q)f( j
j−q ) < 2εjj

Setting ε = maxj>q εj , we take c = 2ε

2 . We obtain that

ξnQ,q <
q

2q
+

nQ∑
j=q+1

(
j

q

)
2−j <

q

2q
+

nQ∑
j=q+1

cj <
q

2q
+cq+1.

We observe that we make no assumptions on Q itself; that
is, unlike the general O( 1

n2 ) bound shown in Corollary 3.6,
the result shown in Theorem 4.2 holds for any value of Q.
In fact, the bound on E[Pi,q] decreases exponentially as Q
goes to infinity. Intuitively, by selecting weights from a bi-
nomial distribution, we are very likely to select weights that
are close to one another. By employing Chernoff bounds, it
can be shown that as Q grows, weights are likely to be very
close to Q

2 , and in particular to one another; thus the resulting
weighted voting game is likely to have smaller perturbations
when varying the quota.

5 Empirical Analysis
Our results do not show a general bound on |Πi(w)| when
weights are drawn from a binomial distribution; however,
simulations show that in general, |Πi(w)| tends to be quite
low. In fact, our results show that when one samples w from
a region not too far from a quota of 1

2w(N), the values of
|Πi(w)| tend to cluster around the mean.
Experimental Setup We have drawn 30 weights from a bi-
nomial distribution B(50, 1

2 ), and sorted them so that w1 ≤
· · · ≤ w30; this was repeated 100 times. For each player in the
resulting weighted voting game, we have computed |Πi(w)|;
this was done using dynamic programming, a method sim-
ilar to that used to compute the Shapley value in weighted
voting games (see [Chalkiadakis et al., 2011] for further
details). We then compute the ratio of the standard devi-
ation to the mean (the variation coefficient) of the values



|Πi(1)|, . . . , |Πi(w(N)−1)|; a low correlation coefficient in-
dicates that the values |Πi(1)|, . . . , |Πi(w(N) − 1)| tend to
be clustered together, i.e. they are not too far from the mean,
and in particular from each other. The correlation coefficient
is a measure which does not depend on the actual value of
the mean, hence allowing us to effectively compare different
samples with different means.
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Figure 1: The average correlation coefficient for players
1, . . . , 30. The x axis is the player index, and the y axis is
the average correlation coefficient over 100 trials. The four
graphs are taken with ever decreasing distance from 1

2w(N):
the data series labeled 1 takes all quotas 1, . . . , w(N); the
data series labeled 50 takes all quotas 51, . . . , w(N)−50 etc.

Experimental Results The results in Section 3, as well as
the results in [Zick et al., 2011], indicate that different play-
ers will display different behavior. Our results show that this
is indeed the case. As seen in Figure 1, we have measured
the average clustering of the values of |Πi(w)| when taking
values ofw at different distances from 0.5w(N). The data se-
ries labeled 1 shows the average variation coefficient for the
players as a function of their rank, when w ranged from 1 to
w(N). As is observed in Theorem 3.5, the average variation
coefficient is slightly over 1 for all players. However, taking
the variation coefficient over the weights ranged from 51 to
w(N) − 50 results in a significantly lower average variation
coefficient. Further limiting the values of w to those closer
to 0.5w(N) results in further decreasing the variation coeffi-
cient. To conclude, when limited to a small interval around
0.5w(N), the values of |Πi(w)| are, on average, very close to
one another.

6 Conclusions and Future Work
The main implication of our research is that manipulating the
quota is not likely to dramatically change player influence,
under some assumptions on the underlying WVG. First, as
our empirical analysis shows, the Shapley value changes lit-
tle if quotas are close to 50% of the total weight; second,
weights must be not too far apart, as is shown in our theoreti-
cal results. As our analysis shows, the Shapley value exhibits
higher fluctuation in the range of very large (or very small)

quotas; while this is mitigated in expectation for binomially
distributed weights, this effect is not yet fully understood for
the general case. However, our results provide theoretical jus-
tification to choosing quotas close to 50% in voting bodies:
in addition to mitigating fluctuations in the Shapley values
of players, they are likelier to ensure proportional representa-
tion.

Our work also identifies a parameter that strongly gov-
erns the behavior of var[ϕi(q)], |Πi(w)|. Providing upper
bounds on |Πi(w)| is thus an important part of the analysis of
var[ϕi(q)]. We show that this quantity is small in expectation
when one samples weights from a binomial distribution. This
fact is further corroborated by empirical analysis; we show
that for WVGs whose weights are sampled from a binomial
distribution, permutations tend to be evenly distributed in the
sense that |Πi(w)| is close to |Πi(w

′)| for most values of w
and w′, and are almost always orders of magnitude smaller
than the general upper bound of (n − 1)!. These results im-
ply better (expected) bounds for weights sampled from bino-
mial distributions. Other distributions of weights are likely to
provide more insight into the problem, as they will result in
different clustering behavior (in expectation).

Our theoretical results indicate that the fluctuation of ϕi(q)
is low, and our empirical analysis indicates a range where low
fluctuation occurs. However, it remains to be proven that in-
deed, under some assumptions on weight distribution, ϕi(q)
has low fluctuation when quotas are close to 50%. Weaker
results would also shed light on the behavior of ϕi(q). For
example, Zick et al. [2011] show that maxϕi(q) = ϕi(wi)
for all i ∈ N ; however, not much is known about minϕi(q).
Showing that the global minimum of ϕi(q) is never close to
50% for some classes of weights would be an important step
in the understanding of the behavior of the Shapley value as
a function of the quota.

In general, uncertainty in weighted voting games would be
interesting to analyze: one can analyze uncertainty in WVGs
when players’ weights are randomized as is the case in Tau-
man and Jelnov [2012], or assume a different distribution of
quotas e.g. a quota is sampled from a binomial distribution.
Alternatively, one can study uncertainty in a natural general-
ization of WVGs, threshold task games. In a threshold task
game, there is a list of tasks, each with a weight and a value;
like a WVG, players have weights, and the value of a coali-
tion is the largest value of a task that it complete using the
total weight of its constituent players (see Chalkiadakis et
al. [2010] for a detailed description of threshold task games).
In this setting, one can analyze both threshold uncertainty, i.e.
uncertainty w.r.t. the amount of resources that tasks require,
or value uncertainty, i.e. uncertainty w.r.t. the value of tasks.
Applying our analysis and methods to this more general set-
ting would be an important step in understanding uncertainty
and its effect on payoff divisions in multi-agent systems.
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