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In this article, we introduce and analyze an extension to the matching problem on a weighted bipartite graph

(i.e., the assignment problem): Assignment with Type Constraints. Here, the two parts of the graph are each

partitioned into subsets, called types and blocks, respectively; we seek a matching with the largest sum of

weights under the constraint that there is a pre-specified cap on the number of vertices matched in every

type-block pair. Our primary motivation stems from the large-scale public housing program run by the state

of Singapore, accounting for over 70% of its residential real estate. To promote ethnic diversity within its

housing projects, Singapore imposes ethnicity quotas: The population is divided into ethnicity-based groups

and each new housing development into blocks of flats such that each group must not own more than a cer-

tain percentage of flats in a block. However, other domains use similar hard capacity constraints to maintain

diversity: These include matching prospective students to schools or medical residents to hospitals. Limiting

agents’ choices for ensuring diversity in this manner naturally entails some welfare loss. One of our goals is

to study the tradeoff between diversity and (utilitarian) social welfare in such settings. We first show that,

while the classic assignment program is polynomial-time computable, adding diversity constraints makes the

problem computationally intractable; however, we identify a 1
2 -approximation algorithm, as well as reason-

able assumptions on the structure of utilities (or weights) that permit poly-time algorithms. Next, we provide

two upper bounds on the price of diversity—a measure of the loss in welfare incurred by imposing diver-

sity constraints—as functions of natural problem parameters. We conclude the article with simulations based

on publicly available data from two diversity-constrained allocation problems—Singapore Public Housing

and Chicago School Choice—which shed light on how the constrained maximization as well as lottery-based

variants perform in practice.

This work is an extension of the paper “Diversity Constraints in Public Housing Allocation,” published in Proceedings of

the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’18), pp. 973–981.

This work was done while the authors were at the National University of Singapore, supported by the National Research

Foundation Fellowship.

This research was funded by an MOE Grant (no. R-252-000-625-133) and an NRF Research Fellowship (no. R-252-000-750-

733).

Authors’ addresses: N. Benabbou, Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6 F-75005, Paris,

France; email: nawal.benabbou@lip6.fr; M, Chakraborty, University of Michigan, Ann Arbor, 2260 Hayward Street, Ann

Arbor, MI 48109; email: dcsmc@umich.edu; X.-V. Ho, Micron Technology, No. 1 Woodlands Industrial, Park D, Street 1,

Singapore 738799, Republic of Singapore; email: hxvinh.hcmus@gmail.com; J. Sliwinski, ETH Zürich, Rämistrasse 101,

8092, Zurich, Switzerland; email: sljakub@ethz.ch; Y. Zick, University of Massachusetts, Amherst, 140 Governors Drive,

Amherst, MA 01002; email: yairzick@cs.umass.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2167-8375/2020/09-ART14 $15.00

https://doi.org/10.1145/3411513

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 14. Publication date: September 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3411513


14:2 N. Benabbou et al.

CCS Concepts: • Theory of computation → Problems, reductions and completeness; • Computing

methodologies → Artificial intelligence;

Additional Key Words and Phrases: Assignment problem, diversity constraints, price of diversity

ACM Reference format:

Nawal Benabbou, Mithun Chakraborty, Xuan-Vinh Ho, Jakub Sliwinski, and Yair Zick. 2020. The Price of

Quota-based Diversity in Assignment Problems. ACM Trans. Econ. Comput. 8, 3, Article 14 (September 2020),

32 pages.

https://doi.org/10.1145/3411513

1 INTRODUCTION

Consider a mechanism that allocates a set of goods to agents; agents have utilities over items, and
we are interested in finding a socially optimal allocation. This setting (known in the literature as
the assignment problem) is often used to model real-world problems such as allocating public hous-
ing, assigning slots in schools, or courses to students. But it is also often the case in these contexts
that one wishes to maintain a diverse allocation: It would be undesirable (from the mechanism
designer’s perspective) to have certain apartment blocks that predominantly consist of a specific
ethnic group or to have a public school serving students from a specific district. In both cases,
agents have different types, and goods are partitioned into blocks; our goal is to ensure that each
block of goods is allocated to a diverse population of agent types. A diverse allocation of goods is
desirable for many reasons (especially in the case of government-funded public goods). First and
foremost, it avoids the inadvertent creation of segregated communities; second, by ensuring equal
access to a public resource, one avoids the risk of discriminatory funding, for example, systemat-
ically underfunding schools that serve certain segments of the population, or investing in parks
and public facilities in neighborhoods dominated by certain ethnic groups.

In this work, we study quota-based mechanisms for maintaining diversity; the initial motivation
for this work stems from Singapore’s public housing system.

The state of Singapore operates a unique national public housing program, offering a variety of
flats for sale at subsidized rates to Singapore citizens and permanent residents. The construction of
public housing projects as well as the sale of the flats in these projects on a large-scale public market
is centrally managed by a government body called the Housing and Development Board (HDB),1

a statutory board of the Ministry of National Development.2 As per the latest reports available at
the time of writing this article, an estimated 82% of the resident population of Singapore live in
HDB flats [Housing and Development Board, Singapore 2017] that constitute approximately 73%
of all apartments in the country [Department of Statistics, Singapore 2017]. Since its inception in
1960, HDB has been providing a public good—affordable apartments in a small country with little
real estate—but by 1989, the system began to exhibit an unforeseen side-effect: the emergence
of de facto ethnic enclaves. Mr. S. Dhanabalan, then Minister for National Development, voiced
the following concerns as he introduced the Ethnic Integration Policy (EIP) in parliament on 16
February 1989 [Parliament of Singapore. Parliament Debates: Official Report. 1989]:

[P]roportionately more Chinese applied for flats in Ang Mo Kio/Hougang Zone
and proportionately more Malays applied for flats in the Bedok/Tampines Zone.
[. . .] Malays bought more than half (55%) of the flats in the Bedok/Tampines Zone.

1http://www.hdb.gov.sg.
2https://www.mnd.gov.sg/.
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In Bedok new town alone, if present trends continue, the proportion of Malays will
reach 30% by 1991, and will exceed 40% in 10 years’ time. [. . .]
There are clear signs that racial congregations are re-emerging. Although the prob-
lem has not reached crisis proportions, the experience in other multi-racial soci-
eties such as the United States shows that while racial groupings start slowly, once
a critical point is passed, racial groupings accelerate suddenly.3

The EIP was officially implemented on March 1, 1989; it imposes quotas on the number of units
occupied by each of the three ethnic groups: Chinese, Malay and Indian/Others. In 1989, when the
percentages of the three ethnic groups (Chinese, Malay, and Indian/Others) in the population were
76.0%, 15.1%, and 8.9%, the corresponding quotas (a cap on the percentage of flats in every block
that can be occupied by families of each ethnic group) were set at 87%, 25%, and 13%, respectively;
since March 5, 2010, the quota for Indian/Others has been revised to 15% [Deng et al. 2013; Housing
and Development Board, Singapore 2010].4

Ethnic quotas add another layer of complexity to what is, at its foundation, a straightforward
allocation problem. HDB uses a lottery mechanism to allocate new developments: All applicants
who apply for a particular development pick their flats in random order (see Section 1.3 for further
details). Consider an applicant i of Chinese ethnicity applying for an estate with 100 flats per block,
up to 87 of which may be assigned to ethnically Chinese applicants and at most 25 of which can be
assigned to ethnically Malay applicants. Assume that i is 90th in line to select an apartment; will
she get a chance to pick a flat in a block she prefers? If at least 87 Chinese applicants were allowed
to choose a flat before i and all of them picked flats in this block, then the Chinese ethnic quota
for the block will have been filled and applicant i will no longer be eligible for the block, even if
it still has vacant flats. However, suppose that i is 105th in line to select an apartment. If 40 of the
applicants picked before i are Malay, then 15 of them will be rejected from i’s preferred block and
at least 75 of the flats will be available for non-Malay applicants. Hence, i will have a spot even if
all other 64 applicants before her also received flats in the same block.5

As the example above shows, diversity constraints interact with the allocation mechanism in
peculiar ways to affect the overall welfare of the allocation. This issue is not restricted to Singapore
public housing; the following are a few examples where upper bounds similar to those in the above
housing allocation problem are applied (see Fragiadakis and Troyan [2017] and references therein
for more detailed expositions). To circumvent a shortage of doctors in rural areas due to medical
graduates’ preference for urban residency programs, the Japanese government places a “regional
cap” on the total number of residents matched within each of its 47 prefectures [Kamada and
Kojima 2015]; here, the population of residency applicants is not partitioned, but hospitals within
a prefecture can be thought of as forming a block of items. Many school districts in the U.S.A. take

3We note that this aligns with long-known models of segregation: in his seminal paper, Schelling [1971] shows how agents

of two types, who are allowed to distribute themselves over an area based on their preferences for the composition of their

immediate neigborhoods, lead to the emergence of segregated enclaves, even when each individual prefers a minority of

neighbors of a different type to having all neighbors of the same type as herself.
4In addition to these block capacities, the EIP also imposes neighborhood capacities, where each neighborhood comprises

several blocks. Thus, an estate is partitioned into neighborhoods and a neighborhood into blocks with the neighborhood

capacity being naturally smaller than the block capacity for each ethnic group: 84%, 22%, and 12% (increased from 10% in

2010) for Chinese, Malay, and Indian/Others, respectively. Moreover, the EIP applies to both new and resale flats, e.g., a

Chinese occupant of an HDB flat is free to resell it to another Chinese buyer but will not be able to resell to a Malay buyer

if the Malay ethnic quota for that block is already filled. In this article, we do not address these complications for the most

part.
5While this example is stylized, the effects it describes are quite real: One often hears stories of young couples who arrive

at the HDB office to select a flat, only to be notified that their ethnic quota has just been filled.
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active measures for the integration of students from families with differing soci-economic statuses

(SES) [U.S. Department of Education, Office of Elementary and Secondary Education 2017], one
of which is to allot a fraction of the vacant spots in schools via lotteries with percentage caps for
all SES groups, as is done in the city of Chicago, Illinois (see Section 1.4 for further details). The
United States Military Academy assigns newly graduated cadets to positions in the army branches,
taking cadets’ preferences into account but under “artificial caps”6 on the number of assignments
per branch [Fragiadakis and Troyan 2017].

The imposition of diversity constraints as above can naturally lead to a reduction in the to-
tal achievable utility/economic value by the assignment, but we must bear in mind that diver-
sity is a social desideratum external to any such economic consideration. For purposes such as
policy making and the proper functioning of diversity-inducing measures included in automated
decision-making systems, it is imperative to deepen our understanding of the impact that these
measures have on the underlying assignment mechanism. In this article, we investigate this impact
from both computational and economic angles.

1.1 Our Contributions

We study the interplay between diversity and utility in assignment problems; we set up a bench-
mark where a central planner (e.g., HDB) has access to the correct utilities (or, in general, weights)
of all agents (e.g., applicant households) for all items (e.g., flats); agents are partitioned into types

with respect to a single attribute (e.g., ethnic groups) and goods are also similarly divided into
disjoint blocks (e.g., blocks of flats as defined by HDB); a limited number of goods in each block
can be allocated to agents of each type. We call these upper limits type-block capacities.

These restrictions result in several interesting outcomes. While the unconstrained optimal as-
signment problem is well known to be polynomial-time solvable [Kuhn 1955], we show that im-
posing type-block constraints makes it computationally intractable (Section 3). However, we also
show that, in general, a polynomial-time 1

2 -approximation algorithm (Section 3.1) exists, and we
identify utility models for which one can find the optimal assignment with type-block constraints
in polynomial time (Section 3.2). In Section 4, we study the potential welfare loss from imposing
type-block constraints, which we term the price of diversity as in Ahmed et al. [2017], and we show
that it can be bounded by natural problem parameters. Finally, we analyze the empirical price of
diversity as well as the welfare loss induced by the lottery mechanism on simulated instances
generated from publicly available, real-world data pertaining to public housing in Singapore and
school choice in Chicago, Illinois (Section 5).

1.2 Related Work

The problem we study is an extension to the bipartite matching problem [Lovász and Plummer
2009] where each edge joins an agent to an item and is weighted with the utility the agent will
receive if she is allocated that item. There is a rich body of literature on weighted bipartite matching
problems (also known as assignment problems [Munkres 1957]), and polynomial-time algorithms
for the unconstrained version have long been known (e.g., [Kuhn 1955]). Several generalizations
and/or constrained versions have been studied, e.g., recent work by Lian et al. [2018], who allow
each agent (respectively, item) to be matched to multiple items (respectively, agents) but within
upper and lower capacities. Some previously studied variants correspond to (polynomial-time)
special cases of our problem. For example, the assignment problem with subset constraints studied
by Bauer [2004] can be thought of as a special case of our problem, with a single block or a single

6These caps are called “artificial,” since they are calculated by the Academy in such a way that any feasible assignment ex

post satisfies the maximum and minimum quotas for each branch that are based on actual staffing needs.
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type; if all agents of each type have identical utilities for all apartments in each block, and each
type-block capacity is smaller than both the corresponding type and block sizes, then our problem
reduces to a special case of the polynomial-time solvable capacitated b-matching on a bipartite
graph [Ahn and Guha 2014].

In addition to our main motivating problem of HDB housing allocation and the other docu-
mented examples [Fragiadakis and Troyan 2017] noted in the Introduction, type-block constraints
can naturally arise in many other settings related to assignment/allocation problems with no
monetary transfers [Hylland and Zeckhauser 1979; Zhou 1990]. For example, consider the
course allocation problem analyzed by Budish and Cantillon [2012]; one might require that
each course has students from different departments and impose maximal quotas to ensure this.
Other examples include allocating subsidized on-campus housing to students [Abdulkadiroğlu
and Sönmez 1998], appointing teachers at public schools in different regions as done by some
non-profit organizations [Featherstone 2015], or assigning first-year business school students to
overseas programs [Featherstone 2015]. Our results apply to the seminal work on public school
allocation [Abdulkadiroğlu et al. 2009; Abdulkadiroğlu and Sönmez 2003; Pathak and Sönmez
2013] and matching medical interns or residents to hospitals [Roth 1984] that does not concern
itself with diversity/distributional constraints. This line of work mainly explores the interaction
between individual selfish behavior and allocative efficiency (e.g., Pareto-optimality) of matching
mechanisms, under either ordinal preferences or cardinal utilities, one-sided or two-sided (see,
e.g., Anshelevich et al. [2013], Bade [2016], Bhalgat et al. [2011], and Bogomolnaia and Moulin
[2001] and references therein); we, however, focus on the impact of type-block constraints on
welfare loss, when agents’ utilities are known to a central planner.

Another relevant strand of literature is that on the fair allocation of indivisible goods (see, e.g.,
Barman et al. [2017], Barman and Murthy [2017], Caragiannis et al. [2016], Kurokawa et al. [2016],
and Procaccia and Wang [2014] and references therein): Fairness is usually quantified in terms of
the utilities or preferences of agents for allocated items (e.g., proportionality, envy-freeness and
the maximin share guarantee) but our contribution deals with a different notion of fairness: the
proportionate representation of groups in the realized allocation, with no regard to agents’ utilities.

Some recent work has formally addressed diversity issues in computational social choice. Unlike
our article, Ahmed et al. [2017] treat “diversity as an objective, not a constraint” in a b-matching
context (e.g., matching papers to reviewers with diverse interests): They minimize a supermodular
objective function to encourage the matching of each item to agents of different types. Our diver-
sity concept comes close to that of Bredereck et al. [2018], who also achieve diversity by imposing
hard constraints on the maximization of a (submodular) objective that measures the quality of the
solution; however, they work in a committee (subset) selection setting with variously structured
agent labels while we solve a matching problem with both agents and items split into disjoint sub-
sets. Lang and Skowron [2016] focus on multi-attribute proportional representation in committee
selection where they essentially define diversity in terms of the divergence between the realized
distribution of attribute values in the outcome and some target distribution but admit no notion
of solution quality in addition to diversity.

In a recent paper, Immorlica et al. [2017] study the efficiency of lottery mechanisms such as the
ones used by HDB to allocate apartments; however, their work does not account for block ethnicity
constraints; as we show both theoretically and empirically, these type-block constraints can have
a significant effect on allocative efficiency.

1.3 The Singapore Public Housing Allocation System

A few facts about HDB public housing, a dominant force in Singapore, are in order. New HDB flats
are purchased directly from the government, which offers them at a heavily subsidized rate. New
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apartments are typically released at quarterly sales launches; these normally consist of plans for
several estates at various locations around Singapore, an estate consisting of four or five blocks
(each apartment block has approximately 100 apartments) sharing some communal facilities (e.g., a
playground, a food court, a few shops, etc.). Estates take between 3 and 5 years to complete, during
which HDB publicly advertises calls to ballot for an apartment in the new estate. A household
(say, a newly married couple looking for a new house) would normally ballot for a few estates
(balloting is cheap: only S$10 per application [Housing and Development Board, Singapore 2015]).
HDB allocates apartments using a lottery: All applicants to a certain estate choose their flat in
some random order; they are only allowed to select an apartment in a block such that their ethnic
quota is not reached.

The lottery mechanism actually employed by HDB has further necessary complications: HDB
has elaborate eligibility criteria7 as well as privilege and priority schemes8 that take into account
sales launch types, flat types, and relevant attributes of the applicants, e.g., first-timers and low-
income families usually have improved chances of being balloted for a flat; moreover, the same
estate may have several balloting rounds to ensure that all apartments are allocated by the time of
completion. However, the focus of this work is on the welfare effects of using ethnic quotas rather
than the intricacies of the HDB lottery mechanism. Hence, we use a simplified version of the
HDB lottery mechanism where applicants are selected one by one uniformly at random from the
remaining pool and assigned the available flat that they value the most, respecting ethnic quotas
(see Section 5).

We must mention the existing literature on the documentation of Singapore’s residential deseg-
regation policies [Chua 1991; Deng et al. 2013; Phang and Kim 2013] and the empirical evaluation
of their impact on various socioeconomic factors [Sim et al. 2003; Wong 2014]; to the best of our
knowledge, ours is the first formal approach toward this problem.

1.4 Public School Choice in Chicago, Illinois

Many school districts across the U.S. employ a variety of strategies for promoting student diversity
[Kahlenberg 2016; U.S. Department of Education, Office of Elementary and Secondary Education
2017], e.g., controlled choice systems wherein parents are allowed to apply for options beyond
their neighborhood schools, thereby counteracting underlying residential segregation. Following
restrictions placed on the explicit use of race in defining diversity goals in school choice by the
U.S. Supreme Court in 2007, it has been common to use some indicator of the socio-economic status

(SES) of a family in integration efforts. The system in Chicago, Illiois, is a notable example.
Chicago Public Schools (CPS) is one of the largest school districts in the U.S.,9 overseeing

more than 600 schools of various types: neighborhood schools, selective schools, magnet schools,
and charter schools.10 The application and selection processes for these schools [Chicago Public
Schools 2017] may involve a number of computerized lotteries with no diversity component, e.g.,
sibling lottery, proximity lottery, school staff preference lottery; however, a significant number
of entry-level seats in magnet and selective enrollment schools are filled by lotteries based on a
tier system. We briefly describe its operation as follows. A composite SES score is computed for
each of the census tracts that Chicago is divided into, based on six factors (median family income,
adult education level, home-ownership rate, single-parent family rate, rate of English-speaking,
and neighborhood school performance), and each tract is placed in one of four tiers based on its

7http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/hdb-flat.
8http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/eligibility/priority-schemes.
9http://www.cps.edu/About_CPS/At-a-glance/Pages/Stats_and_facts.aspx.
10http://cpstiers.opencityapps.org/about.html.
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score. The maximum and minimum scores defining a tier are set in such a way that (roughly) a
quarter of school-aged children end up in each tier, with Tier 1 having the lowest scores. The tier
of a child is determined by the residential address furnished by the parents. Of the seats in each
school earmarked for a citywide SES lottery or general lottery, an equal number is allocated to each
tier. There is an upper limit on the number of schools that a child can apply to, and each applicant
is entered into a lottery for each school they apply to, for their own tier (thus, there is a lottery per
school per tier); an applicant, who comes up in the lottery and accepts the offer from the school
under consideration, is removed from all lotteries. If the size of the applicant pool from a tier to a
school falls short of the number of its allocated seats for that tier at any stage, then “the unfilled
seats will be divided evenly and redistributed across the remaining tier(s) as the process continues”
[Chicago Public Schools 2017].

For an empirical study of the impact of Chicago’s diversity-promoting measures on integration
and student outcomes, the interested reader is referred to Quick [2016] and citations therein.

2 PRELIMINARIES

We first describe a formal model for the allocation problem with diversity quotas. Throughout the
paper, given s ∈ N , we denote the set {1, 2, . . . , s} by [s].

Definition 2.1 (AssignTC). An instance of the Assignment with Type Constraints (AssignTC)
problem is given by:

(i) a set N of n agents partitioned into k types N1, . . . ,Nk ,
(ii) a set M ofm items/goods partitioned into l blocks M1, . . . ,Ml ,

(iii) a utility u (i, j ) ∈ R+ for each agent i ∈ N and each item j ∈ M ,
(iv) a capacity λpq ∈N for all (p,q) ∈ [k]×[l], indicating the upper bound on the number of

agents of type Np allowed in the block Mq .

Without loss of generality, we assume that the inequality λpq ≤ |Mq | holds for all type-block
pairs (p,q) ∈ [k] × [l], since it is not possible to assign more than |Mq | agents of type Np to block
Mq by definition. In general, agents types could be based on any criterion such as gender, profes-
sion, or geographical location. We consider the idealized scenario where we have a central planner
who has access to the utilities of each agent for all items, and determines an assignment that max-
imizes social welfare under type-block constraints.

A few words about the type-block capacities are in order. Note that our analysis is agnostic to
how these capacities are determined and just treats the vector {λpq }p∈[k],q∈[l ] as a problem input.11

Moreover, neither do we assume inequalities of the form λpq ≤ |Np | nor is there any positive lower
bound on the number of assignments for any type-block pair: This is in keeping with the actual
HDB housing problem where λpq ’s are fixed by policy (as percentages of block size) even before
observing the applicant pool so that capacities larger than the size of an ethnic group are possible.
Adding lower bounds a priori may render the problem infeasible if there not enough applicants of
a certain type.12

11The Singapore EIP percentage caps consider various factors such as “[t]he racial composition of the population[,] [. . .]

the rate at which new households are being formed in each one of the racial groups and the present composition of

applications” [Parliament of Singapore. Parliament Debates: Official Report. 1989], but these aspects of the problem are

beyond the scope of the present work.
12Fragiadakis and Troyan [2017] show that, for some assignment problems with actual floor and ceiling constraints for

each type-block pair, where the agent population is known beforehand and there is a guarantee that no agent remains

unassigned, it is possible to reformulate the problem constraints in terms of “artificial caps” (modifying block sizes as well

as type-block ceilings) and no floors: Our analysis applies to these problems in this modified form.
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An assignment of items to agents can be represented by a (0, 1)-matrixX = (xi j )n×m , where xi j =

1 if and only if item j is assigned to agent i; a feasible solution is an assignment in which each item
is allocated to at most one agent, and each agent receives at most one item, respecting the type-
block capacities defined in (iv). We define the objective value (or total utility) as the utilitarian social

welfare, i.e., the sum of the utilities of all agents in an assignment u (X ) � ∑
i ∈N

∑
j ∈M xi ju (i, j ).

Clearly, this optimization problem can be formulated as the following integer linear program:

max
∑
i ∈N

∑
j ∈M

xi ju (i, j ), (1)

s.t.
∑

i ∈Np

∑
j ∈Mq

xi j ≤ λpq ∀p ∈ [k],∀q ∈ [l], (2)

∑
j ∈M

xi j ≤ 1 ∀i ∈ N , (3)

∑
i ∈N

xi j ≤ 1 ∀j ∈ M, (4)

xi j ∈ {0, 1} ∀i ∈ N ,∀j ∈ M, (5)

where constraints (3)–(5) jointly ensure thatX is a matching of items to agents, and inequalities (2)
embody our type-block constraints.

Finally, an instance of the decision version of AssignTC consists of parameters (i) to (iv) in Def-
inition 2.1, as well as a positive valueU : It is a “yes”-instance iff there exists a feasible assignment,
satisfying constraints (2)–(5), whose objective value is at least U .

3 THE COMPLEXITY OF THE ASSIGNMENT PROBLEM WITH TYPE CONSTRAINTS

The hardness and approximation results in this section are based on a deep connection between
AssignTC and the known NP-complete problem, Bounded Color Matching problem [Garey and
Johnson 1979], defined as follows.

Definition 3.1 (BCMatching). An instance of the Bounded Color Matching (BCMatching) prob-
lem is given by (i) a bipartite graph G = (A ∪ B,E), where the set of edges E is partitioned into r
subsets E1, . . . ,Er representing the r different edge colors, (ii) a capacity wt ∈ N for each color
t ∈ [r ], (iii) a profit πe ∈ Q+ for each edge e ∈ E, and (iv) a positive integer P called the threshold.
It is a “yes”-instance iff there exists a matching (i.e., a collection of pairwise non-adjacent edges)
E ′ ⊆ E such that the sum of the profits of all edges in the matching is at least P , and there are at
most wt edges of color t in it, i.e.,

∑
e ∈E′ πe ≥ P and |E ′ ∩ Et | ≤ wt for all t ∈ [r ].

The following lemma, together with its proof, establishes that AssignTC is, in fact, a special
case of BCMatching.

Lemma 3.2. There exists an S-reduction [Crescenzi 1997; Crescenzi et al. 1991] from the AssignTC

problem to the BCMatching problem.

Proof. Given an instance of the AssignTC problem, we construct a graph as follows. We define
a node corresponding to each agent inN and also each item inM ; we draw an edge from agent-node
i to item-node j and make the associated profit equal to the utility u (i, j ) for all i ∈ N , j ∈ M . This
gives us a complete bipartite graph with bipartition (N ,M ). We also give all edges joining agents
of one type to items in one block the same color, one unique color for each agent-item pair. Thus,
there arekl colors indexed lexicographically by pairs (p,q) ∈ [k] × [l]. We set the capacity for color
(p,q) at λpq . This produces, inO (mn) time, an instance of BCMatching (Definition 3.1). The size of
this instance is obviously polynomial in that of the original. By construction, there is a one-to-one
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Fig. 1. An instance of BCMatching that does not trivially reduce to AssignTC.

correspondence between the sets of feasible solutions of the original and reduced instances with
each corresponding pair having the same objective value (sum of edge-profits/utilities). Hence, the
optimal values of the instances are also equal. �

This result will be useful in Section 3.1 for obtaining approximation guarantees. But it does not
settle the question of the hardness of AssignTC, since a special case of an NP-complete problem
may be tractable. We could consider AssignTC and BCMatching to be identical if there existed
a trivial reduction from BCMatching to AssignTC in the following sense. For a BCMatching
instance, define an agent for each node in one part of the graph and an item for each node in
the other; make the utility of an agent-item pair equal to the profit of the edge joining the corre-
sponding pair of nodes; define types of agents and blocks of items such that each type-block pair
corresponds to a unique edge-color. Unfortunately, the last part may not be possible depending on
how the edges are colored, as illustrated by the following example.

Example 3.3. Consider the instance of the BCMatching problem defined on the graph in
Figure 1. There are three colors: (a1,b1) and (a1,b2) are blue, (a2,b1) is red, and (a2,b2) is gray.
The color-capacities, the edge-profits, and the threshold are arbitrary, hence omitted.

Let the sets of agents and items be N = {a1,a2} and M = {b1,b2}, respectively. Let us now try
to define types and blocks that are consistent with edge-colors. Recall that, to achieve the desired
reduction, no two edges joining a1 to items in different blocks can have the same color. Since edges
(a1,b1) and (a1,b2) have the same color, b1 and b2 must be in the same block. This also implies that
all edges joining b1 and b2 to a2 must be of the same color, regardless of whether a1 and a2 belong
to the same type. However, (a2,b1) and (a2,b2) are of different colors—a contradiction.

However, we will now show that there does exist a non-trivial polynomial-time reduction in the
desired direction where edges of the graph map to agents (the colors corresponding to types), and
items are defined in a more complicated way based on the nodes (the two parts of the bipartition
corresponding to blocks)!

Theorem 3.4. The AssignTC problem is NP-complete.

We will prove this by describing a polynomial-time reduction from BCMatching to the decision
problem we introduced in Section 2.

Proof. That the problem is in NP is immediate: Given an assignment, one can verify in poly-
time that it satisfies the problem constraints and compute total social welfare. Given an instance
〈G; �w ; �π ; P〉 of BCMatching, we construct an instance of the AssignTC problem as follows (see
Example 3.5 for an illustration). Each edge e ∈ E is an agent, whose type is its color. Items in our
construction are partitioned into two blocks: M1 and M2. The items in block M1 correspond to the
vertices in B: There is one item jb for each node b ∈ B. For every a ∈ A, we add deg(a) − 1 items

j1a , . . . , j
deg(a)−1
a to M2, for a total of |E | − |A| items. Thus, there is a total of m = |B | + |E | − |A|

items. Block M1 accepts at mostwp agents of type Np , whereas block M2 has unlimited type-block
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capacity; in other words, λp1 = wp and λp2 = min{|Np |, |M2 |} for all p ∈ [k]. Given e = (a,b), we
define the utility function of agent e as follows:

u (e, j ) =
⎧⎪⎪⎨⎪⎪⎩

πe if j = jb ,
Φ if j = jsa for some s ∈ [deg(a) − 1],
0 otherwise.

Here Φ is an arbitrarily large constant, e.g., Φ = 1 +
∑

e ∈E πe . Finally, letU = P + Φ( |E | − |A|); that
is, our derived AssignTC instance is a “yes” instance iff there is some assignment of items to agents
such that the social welfare exceeds U .

We begin by showing that if the original BCMatching instance is a “yes” instance, then so is
our constructed AssignTC instance. Let E ′ ⊆ E be a valid matching whose value is at least P ; let
us construct an assignment X of items to agents via E ′ as follows. Observe some node a ∈ A; if
(a,b) ∈ E ′, then we assign the item jb ∈ M1 to the agent (a,b); the remaining deg(a) − 1 agents

of the form (a,b ′), with b ′ ∈ B, are arbitrarily assigned to the items j1a , . . . , j
deg(a)−1
a ∈ M2. If E ′

contains no edges adjacent to a, then we arbitrarily choose deg(a) − 1 edges adjacent to a and

assign the corresponding agents to the items j1a , . . . , j
deg(a)−1
a . We now show that this indeed results

in a valid assignment satisfying the type-block constraints.
First, by construction, every agent (a,b) is assigned at most one item. Moreover, since E ′ is a

matching, every item jb ∈ M1 is assigned to at most one agent of the form (a,b); hence, every item
in M2 is assigned to at most one agent.

Let E ′p = Ep ∩ E ′ be the edges of color p in E ′. Since the matching E ′ satisfies the capacity con-

straints of the BCMatching instance, we have |E ′p | ≤ wp for all p ∈ [k]; in particular, the number
of items in M1 assigned to agents of type p is no more than wp = λp1. Thus, the type-block con-
straints for M1 are satisfied. However, the type-block constraints for M2 are trivially satisfied. We
conclude that our constructed assignment is indeed valid and satisfies the type-block constraints.

Finally, we want to show that total social welfare exceeds U the prescribed bound. Let us fix a
node a ∈ A. By our construction, if the edge e = (a,b) is in the matching E ′, then agent e is assigned
the item jb for a utility of πe . Thus the total welfare of agents in E ′ equals

∑
e ∈E′ πe , which is at

least P by choice of E ′. In addition, for every a ∈ A, there are exactly deg(a) − 1 agents assigned
to items in M2 for a total utility of Φ(deg(a) − 1). Summing over all a ∈ A, we have that the total
utility derived by agents in E \ E ′ is

∑
a∈A

Φ(deg(a) − 1) = Φ �
�
∑
a∈A

deg(a) −
∑
a∈A

1�
	
= Φ( |E | − |A|).

Putting it all together, we have that the total utility obtained by our assignment is at least P +
Φ( |E | − |A|) = U .

Next, we assume that our constructed AssignTC instance is a “yes” instance and show that the
original BCMatching instance must also be a “yes” instance. Let X be a constrained assignment
whose social welfare is at least U = P + Φ( |E | − |A|). Let E ′ be the set of edges corresponding to
agents (a,b) assigned to items in M1; we show that E ′ is a valid matching whose value is at least
P . First, for any b ∈ B, X must assign the item jb to at most one agent e ∈ E ′. Next, since Φ is
greater than the total utility obtainable from assigning all items in M1, it must be the case that

X assigns all items j1a , . . . , j
deg(a)−1
a to deg(a) − 1 agents of the form (a,b), with b ∈ B, for every

node a ∈ A; thus, there can be one edge in E ′ that is incident on a for every a ∈ A. Next, since
X satisfies the type-block constraints, we know that for every p ∈ [k], there are at most λp1 = wp

agents from Ep that are assigned items in M1; thus, E ′ satisfies the capacity constraints. Finally, the
utility extracted from the agents assigned to items in M2 is exactly Φ( |E | − |A|); the total utility of
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Fig. 2. A reduction from BCMatching to AssignTC.

the matchingX is at leastU = P + Φ( |E | − |A|), thus E ′ has a total profit of at least P in the original
BCMatching instance, and we are done. �

Example 3.5. In Figure 2, the graph G = (A ∪ B,E1 ∪ E2), with A = {a1,a2}, B = {b1,b2,b3},
E1 = {(a1,b1), (a2,b2)}, and E2 = {(a1,b2), (a2,b1), (a2,b3)}, is an instance of the BCMatching
problem; edge labels are profits. The associated instance of the AssignTC problem is defined
by N = N1 ∪ N2 and M = M1 ∪M2, where N1 = {(a1,b1), (a2,b2)}, N2 = {(a1,b2), (a2,b1), (a2,b3)},
M1 = {jb1

, jb2
, jb3
}, and M2 = {j1a1

, j1a2
, j2a2
}; the utility of an agent for an item is equal to 0 if there is

no edge between them, to Φ if the edge is dashed, and to the edge label otherwise.

3.1 Polynomial-Time Constant-Factor Approximation

Having established that the AssignTC problem is computationally intractable in general, we next
present an efficient constant-factor approximation algorithm, based on a known polynomial-time
approximation algorithm for the BCMatching problem.

Theorem 3.6. There exists a polynomial-time 1
2 -approximation algorithm for the AssignTC prob-

lem.

Proof. Note that S-reduction is an approximation-preserving reduction [Crescenzi 1997;
Orponen and Mannila 1987]. Thus, given an instance of the AssignTC problem, we transform it
into the corresponding BCMatching instance in accordance with Lemma 3.2 and then apply the
polynomial-time 1

2 -approximation algorithm introduced by Stamoulis [2014] for BCMatching
on general weighted graphs. �

Theorem 3.6 does not prove that 1
2 is the best approximation-ratio possible for the AssignTC

problem. It is left for future work to investigate whether a better polynomial-time approximation
algorithm exists.

3.2 Uniformity Breeds Simplicity: Polynomial-Time Special Cases

Our results thus far make no assumptions on agent-item utilities; as we now show, the AssignTC
problem admits a polynomial-time algorithm under some assumptions on the utility model.
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Definition 3.7 (Type-uniformity and Block-uniformity). A utility modelu is called type-uniform if
all agents of the same type have the same utility for each item, i.e., for all p ∈ [k] and for all j ∈ M ,
there existsUpj ∈ R+ such thatu (i, j ) = Upj for all i ∈ Np . A utility modelu is called block-uniform

if all items in the same block offer the same utility to every agent; that is, for all q ∈ [l] and for all
i ∈ N , there exists Uiq ∈ R+ such that u (i, j ) = Uiq for all j ∈ Mq .

In the context of the HDB allocation problem, type uniformity implies that Singaporeans of the
same ethnicity share the same preferences over apartments (perhaps due to cultural or socioeco-
nomic factors). Cases that deal with uniform goods satisfy the block-uniformity assumption: e.g.,
students applying for spots in public schools or job applicants applying for multiple (identical)
positions; in the HDB domain, block-uniformity captures purely location-based preferences, i.e.,
a tenant does not care which apartment she gets as long as it is in a specific block close to her
workplace, family, or favorite public space.

Theorem 3.8. The AssignTC problem can be solved in poly (n,m) time under either a type-uniform

or a block-uniform utility model.

We prove the result for a type-uniform utility model; the result for block-uniform utilities can
be similarly derived. We propose a polynomial time algorithm based on the Minimum-Cost Flow

problem that is known to be solvable in polynomial time. Recall that a flow network is a directed
graph G = (V ,E) with a source node s ∈ V and a sink node t ∈ V , where each arc (a,b) ∈ E has a
costγ (a,b) ∈ R and a capacityψ (a,b) > 0 representing the maximum amount that can flow on the
arc; for convenience, we set γ (a,b) = 0 and ψ (a,b) = 0 for all a,b ∈ V such that (a,b) � E. Let us
denote by Γ and Ψ the matrices of costs and capacities respectively defined by Γ = (γ (a,b)) |V |× |V |
and Ψ = (ψ (a,b)) |V |× |V | . A flow in the network is a function f : V ×V → R+ satisfying:

(i) f (a,b) ≤ ψ (a,b) for all a,b ∈ V (capacity constraints),
(ii) f (a,b) = −f (b,a) for all a,b ∈ V (skew symmetry), and

(iii)
∑

b ∈V f (a,b) = 0 for all a ∈ V \{s, t } (flow conservation).

The valuev ( f ) of a flow f is defined byv ( f ) =
∑

a∈V f (s,a) =
∑

a∈V f (a, t ), and its cost is given
by γ ( f ) =

∑
(a,b )∈E f (a,b)γ (a,b). The optimization problem can be formulated as follows. Given a

value F , find a flow f that minimizes the cost γ ( f ) subject tov ( f ) = F . This optimization problem
that takes as input the graph G = (V ,E), the matrices Γ and Ψ, and the value F , will be denoted
by MinCostFlow hereafter; given an instance 〈G; Γ; Ψ; F 〉 of the MinCostFlow problem, we let
γ (G, Γ,Ψ, F ) be the cost of the optimal flow for that instance.

Given an instance I of AssignTC, we construct a flow network GI (V ,E) and matrices ΓI and
ΨI as follows (see Figure 3 for an illustration). The node setV is partitioned into layers:V = {s} ∪
A ∪ B ∪C ∪ {t }. A is the agent type layer: there is one node ap ∈ A for all agent types Np ,p ∈ [k].
B is the type-block layer: it has a node bpq ∈ B for every type-block pair (p,q) ∈ [k] × [l]. Finally,
C is the item layer: There is one node c j ∈ C for all items j ∈ M . The arcs in E are as follows: For
every ap in A, there is an arc from s to ap whose capacity ψ (s,ap ) is |Np |. Fixing p ∈ [k], there is
an arc from ap ∈ A to every bpq ∈ B, where the capacity of (ap ,bpq ) is the quota for type Np in
block Mq (i.e., ψ (ap ,bpq ) = λpq ). Finally, given q ∈ [l], there is an arc from bpq to c j iff j ∈ Mq ; in
that case, we haveψ (bpq , c j ) = 1. The costs associated with arcs from B to C (i.e., arcs of the form
(bpq , c j ) where j ∈ Mq ) are −Upj ; recall thatUpj is the utility that every agent of type Np assigns to
item j. All other arc costs are set to 0. We begin by proving a few technical lemmas on the above
network.

Given a positive integer F , there exists an optimal flow that is integer-valued, since
〈GI ; ΓI ; ΨI ; F 〉 is integer valued as well. Let f ∗ be an integer-valued optimal flow, taken over
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Fig. 3. Network flow constructed for the proof of Theorem 3.8; in this case, we have 2 types and 2 blocks:

M1 = {1, 2} and M2 = {3, 4, 5}. Arc capacities are given in red. All arcs have a cost of 0, except those between

bpq ∈ B and c j ∈ C , whose cost equals −Upj .

all possible values of F ; that is,

f ∗ ∈ argmin
F ∈[n]

γ (GI , ΓI ,ΨI , F ). (6)

Finding the flow f ∗ involves solving n instances of MinCostFlow by definition; thus, one can find
f ∗ in polynomial time. Given f ∗ as defined in Equation (6), letX ∗ = (x∗i j )n×m be defined as follows:

For every item j ∈ Mq , if f ∗ (bpq , c j ) = 1 for some p ∈ [k], then we choose an arbitrary unassigned
agent i ∈ Np and set x∗i j = 1.

Lemma 3.9. X ∗ is a feasible solution of the AssignTC instance I.

Proof. First, we assign at most one item to every agent by construction; next, let us show that

each item j ∈ Mq is assigned to at most one agent. Since f ∗ is a flow, we have
∑k

p=1 f
∗ (bpq , c j ) =

f ∗ (c j , t ) due to flow conservation; note that the capacity of the arc (c j , t ) is 1, thus at most one arc
(bpq , c j ) has f ∗ (bpq , c j ) = 1. Finally, since item j is assigned to an agent in Np iff f ∗ (bpq , c j ) = 1,
we conclude that item j is assigned to at most one of the agents in N .

Next, let us prove that assignment X ∗ satisfies the type-block constraints; in other words, we
need to show that: ∑

i ∈Np

∑
j ∈Mq

x∗i j ≤ λpq , ∀p ∈ [k],∀q ∈ [l]. (7)

Since f ∗ is a flow, we have f ∗ (ap ,bpq ) =
∑

j ∈Mq
f ∗ (bpq , c j ) for every type-block pair (p,q) ∈ [k] ×

[l] due to flow conservation; moreover, we have f ∗ (ap ,bpq ) ≤ ψ (bpq , c j ) = λpq by construction. As
a consequence, we necessarily have

∑
j ∈Mq

f ∗ (bpq , c j ) ≤ λpq for all p ∈ [k]. Since an item j ∈ Mq is

matched with some agent i ∈ Np if and only if we have f ∗ (bpq , c j ) = 1, we conclude that Equation
(7) indeed holds. �

Now, let us establish a relation between the cost of f ∗ and the utility of the feasible assignment
X ∗.

Lemma 3.10. The cost of the flow f ∗ satisfies γ ( f ∗) = −u (X ∗).
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Proof. By construction, the cost of f ∗ can only be induced by arcs from nodes in B to nodes
in C , where the cost of all arcs of the form (bpq , c j ), with j ∈ Mq , is equal to −Upj (the negative of
the uniform utility derived from item j by members of Np ). In other words, the cost of f ∗ can be
written as follows:

γ ( f ∗) = −
k∑

p=1

l∑
q=1

∑
j ∈Mq

f ∗ (bpq , c j )Upj .

As previously argued, we have that f ∗ (bpq , c j ) ∈ {0, 1} for all arcs (bpq , c j ); moreover, f ∗ (bpq , c j ) =
1 iff item j is assigned to some agent in Np . Therefore, we obtain:

γ ( f ∗) = −
k∑

p=1

∑
i ∈Np

∑
j ∈M

x∗i jUpj = −
∑
i ∈N

∑
j ∈M

x∗i ju (i, j ) = −u (X ∗),

where the second equality holds, since all agents in Np have the same utility by assumption. �

Finally, we show that for every feasible solution to the AssignTC instance I, there exists a flow
with a matching cost.

Lemma 3.11. LetX be a feasible assignment for the AssignTC instance I; there exists some feasible

flow f such that γ ( f ) = −u (X ). Moreover, we have v ( f ) = |{i ∈ N :
∑

j ∈M xi j = 1}|.

Proof. Given a feasible assignment X = (xi j )n×m , we define f : V ×V → R+ as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (s,ap ) =
∑

i ∈Np

∑
j ∈M xi j ∀ap ∈ A

f (ap ,bpq ) =
∑

i ∈Np

∑
j ∈Mq

xi j ∀(ap ,bpq ) ∈ E
f (bpq , c j ) =

∑
i ∈Np

xi j ∀(bpq , c j ) ∈ E
f (c j , t ) =

∑
i ∈N xi j ∀c j ∈ C

f (a,b) = −f (b,a) ∀(a,b) ∈ E
f (a,b) = 0 ∀(a,b) � E

.

The function f is indeed a flow: f trivially satisfies the skew symmetry condition by con-
struction; next, we show that f satisfies flow conservation. For all ap ∈ A, the incoming flow
to node ap from node s is f (s,ap ) =

∑
i ∈Np

∑
j ∈M xi j , and the outgoing flow to every bpq is∑l

q=1 f (ap ,bpq ) =
∑

i ∈Np

∑
j ∈M xi j , since M is partitioned into M1, . . . ,Ml ; hence, flow is con-

served. For a nodebpq ∈ B, the incoming flow equals f (ap ,bpq ) =
∑

i ∈Np

∑
j ∈Mq

xi j , and an amount

of f (bpq , c j ) =
∑

i ∈Np
xi j flows to every node c j such that j ∈ Mq , and thus flow is conserved. For a

node c j ∈ C such that j ∈ Mq , its incoming flow equals f (bpq , c j ) =
∑

i ∈Np
xi j from every bpq , for

a total flow of
∑k

p=1

∑
i ∈Np

xi j , which equals its outgoing flow to t . To conclude, f satisfies flow
conservation.

Now let us prove that f satisfies the capacity constraints (i.e., f (a,b) ≤ ψ (a,b) for all arcs (a,b) ∈
E). For all (s,ap ) ∈ E, we have f (s,ap ) =

∑
i ∈Np

∑
j ∈M xi j ≤ |Np | = ψ (s,ap ), since every agent i ∈

Np is matched with at most one item. For all (ap ,bpq ) ∈ E, we have f (ap ,bpq ) =
∑

i ∈Np

∑
j ∈Ml

xi j ≤
λpq = ψ (ap ,bpq ), since X satisfies the type-block constraints. For all arcs (bpq , c j ) ∈ E, we have
f (bpq , c j ) =

∑
i ∈Np

xi j ≤ 1 = ψ (bpq , c j ), since item j is matched with at most one of the agents in

Np . For all (c j , t ) ∈ E, we have f (c j , t ) =
∑

i ∈N xi j ≤ 1 = ψ (c j , t ), since item j is matched with at
most one of the agents in N . Hence, f satisfies the capacity constraints and is a valid flow. Note
that we have:

v ( f ) =
∑
a∈V

f (s,a) =
k∑

p=1

f (s,ap ) =
k∑

p=1

∑
i ∈Np

∑
j ∈M

xi j =
∑
i ∈N

∑
j ∈M

xi j .
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Then, since X is a feasible assignment of the AssignTC instance I, we conclude that we have
v ( f ) = |{i ∈ N :

∑
j ∈M xi j = 1}|. We just need to prove that we have γ ( f ) = −u (X ), and we are

done. By definition of the flow network, only arcs of the form (bpq , c j ) contribute to the cost γ ( f )
and we have γ (bpq , c j ) = −Upj ; therefore, γ ( f ) = −∑

(bpq,c j )∈E f (bpq , c j )Upj . Since f (bpq , c j )=∑
i ∈Np

xi j (by definition of f ) andu (i, j )=Upj for all agents i ∈Np (by hypothesis), we finally obtain

γ ( f )=−∑
j ∈M

∑k
p=1

∑
i ∈Np

xi ju (i, j )=−∑
j ∈M

∑
i ∈N xi ju (i, j ) = −u (X ). �

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. We begin by observing the flow f ∗ as defined in Equation (6) and the
assignment X ∗ derived from it. First, according to Lemma 3.9, X ∗ is a feasible assignment of the
AssignTC instance I. Moreover, we have u (X ∗) = −γ ( f ∗) according to Lemma 3.10. Finally, for
any feasible assignment X of the AssignTC instance I, there exists a flow f such that γ ( f ) =
−u (X ); furthermore, since v ( f ) = |{i ∈ N :

∑
j ∈M xi j = 1}| ∈ [n], flow f is a feasible solution of

the MinCostFlow instance 〈GI ; ΓI ; ΨI ; F 〉 for some F ∈ [n]. Therefore, we have:

u (X ) = −γ ( f ) ≤ −γ (GI , ΓI ,ΨI ,v ( f )) ≤ −γ ( f ∗) = u (X ∗).

Thus,X ∗ is an optimal solution of the AssignTC instanceI; sinceX ∗ can be computed in poly-time
(Proposition 6), we are done. �

4 THE PRICE OF DIVERSITY

We now turn to the allocative efficiency of the constrained assignment. As before, an instance of
the AssignTC problem is given by a set of n agents N partitioned into types N1, . . . ,Nk , a set ofm
items M partitioned into M1, . . . ,Ml , a list of capacity values (λpq )k×l , and agent utilities for items
given by u = (u (i, j ))n×m . We denote the set of all assignments X of items to agents satisfying
only the matching constraints (3)–(5) of Section 2 by X and that of all assignments additionally
satisfying the type-block constraints (2) by XC ; the corresponding optimal social welfares for any
given utility matrix (u (i, j ))n×m are

OPT (u) � max
X ∈X

u (X ); OPTC (u) � max
X ∈XC

u (X ).

Clearly, OPTC (u) ≤ OPT (u), sinceXC ⊆ X; we define the following natural measure of this welfare
loss that lies in [1,∞]:

Definition 4.1. For any instance of the AssignTC problem, we define the Price of Diversity as
follows, along the lines of Ahmed et al. [2017] and Bredereck et al. [2018]:

PoD(u) � OPT (u)

OPTC (u)
.

The main result of this section is to establish an upper bound on PoD(u) that is independent of
the utility model. Denote the ratio of a type-block capacity to the size of the corresponding block
by:

αpq �
λpq

|Mq |
.

Theorem 4.2. For any instance of AssignTC, we have:

PoD(u) ≤ 1

min(p,q )∈[k]×[l ] αpq
,

and the above upper bound is tight.
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In general, the bound in Theorem 4.2 can grow linearly inm; in the following family of problem
instances where the capacities λpq are fixed constants, the PoD can be indefinitely large.

Example 4.3. Consider any instance of the AssignTC problem with l = k and |Np | = |Mp | = μ
∀p ∈ [k] so that n =m = kμ; the utilities are as follows:

u (i, j ) =

{
1 if i ∈ Np and j ∈ Mp ∀p ∈ [k],
0 otherwise.

Evidently, any complete matching of items in Mp to agents in Np ∀p ∈ [k] is an optimal solution
for the unconstrained version of the problem, hence, OPT (u) = kμ. But if the capacities are λpq = 1
∀(p,q) ∈ [k] × [k], then only one agent per group can receive an item for which she has non-zero
utility, hence, OPTC (u) = k . Thus, PoD = kμ/k = μ.

However, type-block capacities are determined by a central planner in our model; a natural way
of setting them is to fix the proportional capacities or quotas αpq in advance and then compute
λpq = αpq × |Mq | when block sizes become available: By committing to a fixed minimum type-
block quota α∗ (i.e., αpq ≥ α∗ for all (p,q) ∈ [k] × [l]), the planner can ensure a PoD(u) of at most
1/α∗, regardless of the problem size and utility function. Higher values of α∗ reduce the upper
bound on PoD(u) but also increase the capacity of a block for every ethnicity, potentially affecting
the diversity objective adversely: It thus functions as a tunable tradeoff parameter between ethnic
integration and worst-case welfare loss. In fact, in the Singapore allocation problem, the Ethnic
Integration Policy fixes a universal percentage cap for each of the three ethnicities in all blocks;
these percentages are set slightly higher than the actual respective population proportions: The
current block quotas αpq are 0.87 for Chinese, 0.25 for Malays, and 0.15 for Indian/Others [Deng
et al. 2013]. Hence, for the Singapore housing system, we have min(p,q )∈[k]×[l ] αpq = 0.15, which
is achieved for Indian/Others and any block, so that from Theorem 4.2,

PoD(u) ≤ 1

0.15
≈ 6.67.

This bound makes no assumptions on agent utilities; in other words, it holds under any utility

model.13

The proof relies on the following lemma. Given an assignmentX ∈ X, letup (X ) denote the total
utility of agents in Np under X :

up (X ) �
∑

i ∈Np

∑
j ∈M

xi ju (i, j ) =
∑

q∈[l ]

∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ). (8)

Lemma 4.4. For any instance of AssignTC and any optimal unconstrained assignment X ∗ ∈ X, we

have:

PoD(u) ≤ u (X ∗)∑
p∈[k] up (X ∗) minq∈[l ] αpq

.

13In practice, the effective value of each fractional capacity λpq/ |Mq | might be smaller than the corresponding pre-

specified fraction αpq . Since each λpq must be an integer, we need to set λpq = �αpq × |Mq | � ∀(p, q ) ∈ [k] × [l ] to

respect all capacity constraints. Hence, for a given instance of AssignTC, the effective upper bound on PoD(u ) is given by

1/minp,q
�αpq×|Mq |�
|Mq | , which depends on the |Mq |-values and may be higher than 1/minp,q αpq . For example, if we have

a uniform block size of 10, then the actual numerical capacities for Chinese, Malay, and Indian/Others based on EIP quotas

become 8, 2, and 1, , respectively, so that the effective PoD-bound is 10. However, the effective bound is still independent

of utility values as well as the population size of agents of any type; moreover, larger block sizes reduce the discrepancy

between the effective bound and the theoretical bound 1/minp,q αpq provided by Theorem 4.2. For example, for the values

of αpq and |Mq | used in our experiments in Section 5 (see Figure 5), the minimum effective capacity of any block for any

type is 14.42%; hence, the effective upper bound on PoD(u ) is 6.93. Similar considerations apply to Theorem 4.6.
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Proof. Based on the optimal assignmentX ∗, we can construct an assignmentX ∈ XC satisfying
the type-block constraints by carefully “revoking” the smallest-utility items in Mq from agents in
Np for every (p,q)-pair that violates the corresponding type-block constraint. In other words,
let npq denote the number of items in Mq assigned to agents in Np under X ∗. If npq ≤ λpq , then
we leave that type-block pair untouched, so that

∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ) =
∑

i ∈Np

∑
j ∈Mq

x∗i ju (i, j ).
If npq > λpq , then we order these npq agents according to their utilities for the items they are
assigned and retain only the top λpq agents in that order (breaking ties lexicographically), setting
xi j = 0 for the remaining agents. This change increases the average utility of assignments for this
type-block pair: ∑

i ∈Np

∑
j ∈Mq

xi ju (i, j )

λpq
≥

∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j )

npq
.

(To see why this is true, consider a sequence z1 ≥ z2 ≥ . . . , where zi ≥ 0 and zi ≥ zi+1 ∀i =
1, 2, . . . , and two positive integers ν > μ ≥ 1. Clearly, (ν − μ )

∑μ
i=1 zi ≥ (ν − μ )μzμ ≥ μ

∑ν
i=μ+1 zi ,

since zi ≥ zμ ∀i = 1, 2, . . . , μ and zi ≤ zμ ∀i = μ + 1, μ + 2, . . . ,ν . Rearranging and simplifying, we

get 1
μ

∑μ
i=1 zi ≥ 1

ν

∑ν
i=1 zi .)

Further, since npq ≤ |Mq |, the above inequality implies that∑
i ∈Np

∑
j ∈Mq

xi ju (i, j )

λpq
≥

∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j )

|Mq |

=⇒
∑

i ∈Np

∑
j ∈Mq

xi ju (i, j ) ≥
λpq

|Mq |
∑

i ∈Np

∑
j ∈Mq

x∗i ju (i, j )

= αpq

∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j ), since αpq =
λpq

|Mq |
.

Thus, for every p ∈ [k] and every q ∈ [l], we have

∑
i ∈Np

∑
j ∈Mq

xi ju (i, j ) ≥
(
min
q∈[l ]

αpq

) ∑
i ∈Np

∑
j ∈Mq

x∗i ju (i, j ), since min
q∈[l ]

αpq ≤ αpq ≤ 1.

Summing over blocks, we obtain from Equation (8):

up (X ) ≥ up (X ∗) min
q∈[l ]

αpq , ∀p ∈ [k].

By definition,u (X ∗) = OPT (u). Moreover, sinceX ∈ XC , we haveu (X ) ≤ OPTC (u). Hence, by Def-
inition 4.1,

PoD(u) ≤ u (X ∗)

u (X )
≤ u (X ∗)∑

p∈[k] up (X ∗) minq∈[l ] αpq
. �

We can now complete the proof of the theorem.

Proof of Theorem 4.2. Since we have min(p,q )∈[k]×[l ] αpq ≤ minq∈[l ] αp′q for all p ′ ∈ [k],
Lemma 4.4 implies that:

PoD(u) ≤ u (X ∗)∑
p∈[k]

up (X ∗) min
(p,q )∈[k]×[l ]

αpq
=

1

min
(p,q )∈[k]×[l ]

αpq
.

Depending on the utility matrix u, this upper bound can be tight whenever |Np0 | ≥ |Mq0 | for some
type-block pair (p0,q0) in the set argmin(p,q )∈[k]×[l ]αpq . We identify an agent utility matrix for
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which the bound holds with equality:

u (i, j ) =

{
1 if i ∈ Np0 and j ∈ Mq0 ,
0 otherwise.

The optimal assignment without type-block constraints fully allocates the items in block Mq0 to
agents in Np0 for a total utility of |Mq0 |; furthermore, we know that any optimal constrained as-
signment allocates exactly λp0q0 items in Mq0 to agents in Np0 for a total utility of λp0q0 . Since
λp0q0 = αp0q0 × |Mq0 |, we have:

PoD(u) =
|Mq0 |

αp0q0 × |Mq0 |
=

1

αp0q0

=
1

min(p,q )∈[k]×[l ] αpq
. �

4.1 The Impact of Disparity among Types

Theorem 4.2 offers a worst-case tight bound on the price of diversity, making no assumptions on
agent utilities. However, its proof suggests that this upper bound is attained when social welfare
is solely extracted from a single agent type and a single block. Intuitively, we can obtain a better
bound on the price of diversity if a less “disparate” optimal assignment exists. To formalize this
notion, we introduce a new parameter:

Definition 4.5. For an optimal unconstrained assignment X ∗ ∈X, denote by βp (X ∗) the ratio of
the average utility of agents in Np to the average utility of all agents under X ∗. The inter-type

disparity parameter β (X ∗) is defined as:

β (X ∗) � min
p∈[k]

βp (X ∗) = min
p∈[k]

up (X ∗)/|Np |
u (X ∗)/n

.

Notice that β (X ∗) ∈ (0, 1] can be computed in polynomial time and is fully independent of the
type-block capacities. The closer β (X ∗) is to 1, the lower the disparity between average agents of
different types under X ∗.

Theorem 4.6. For any AssignTC instance and any unconstrained optimal assignmentX ∗ ∈ X, we

have:

PoD(u) ≤ 1/β (X ∗)∑
p∈[k] νp minq∈[l ] αpq

,

where νp =
|Np |

n
is the proportion of type p in the agent population, for every p ∈ [k].

Proof. By definition of β (X ∗), for every p ∈ [k], we have:

up (X ∗) ≥ β (X ∗)
|Np |
n

u (X ∗) = β (X ∗)νpu (X ∗).

Substituting this in Lemma 4.4, we obtain the desired bound. �

Let us now apply the result to the Singapore public housing domain; we use the ethnic pro-
portions reported in the 2010 census report [Department of Statistics, Singapore 2010] to obtain
|N1 |/n = 0.741 (Chinese), |N2 |/n = 0.134 (Malay), and |N3 |/n = 0.125 (Indian/Others). Using the
same block quotas αpq as before, we have:

PoD(u) ≤ 1/β (X ∗)

0.87 × 0.741 + 0.25 × 0.134 + 0.15 × 0.125
≈ 1.43

β (X ∗)
.
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In other words, if inter-type disparity is low, i.e., β (X ∗) is close to 1, then the PoD may be signifi-
cantly lower than the bound provided by Theorem 4.2.14

The two upper bounds provided by Theorems 4.2 and 4.6 are incomparable due to the depen-
dence of the latter on the parameter β (X ∗). We will elaborate on this point with the help of two
examples (4.7 and 4.8) in each of which every agent has a positive utility for every item (unlike
Example 4.3).

In each example, we have only one block of items M = [m] and two types N1 = {a1,a2, . . . ,am }
and N2 = {b1,b2, . . . ,bm } for an arbitrary positive integer m > 1. Hence, the proportion of each
type in the population is 1

2 . Let the proportional capacities of the single block for the two types
be α1 and α2, respectively, such that α1 + α2 ≥ 1 and α1m and α2m are both integers. Thus, for
each of these examples, Theorem 4.2 puts the upper bound on the price of diversity at 1

min{α1,α2 } .
In the first example, the bound based on the inter-type disparity parameter turns out to be use-
less/uninformative.

Example 4.7. For some ε � 1 − 1
m

, let the utilities be

u (ar , j ) =

{
1 − ε if j = r ,

ε
m−1 otherwise

∀r ∈ [m];

u (br , j ) =
1

m
∀j ∈ M,∀r ∈ [m].

Evidently, the unique unconstrained optimal assignment is to match item j with agent aj for every
j ∈ [m]. Hence, per-agent average utilities of N1 and N2 are 1 − ε and 0, respectively, making the
inter-type disparity parameter zero. Thus, Theorem 4.6 does not place any finite upper bound on
PoD(u).

However, a little thought reveals that, in a constrained optimal allocation, α1m items are allo-
cated to N1 such that each of these items j is assigned to the agent aj , and the remaining (1 − α1)m
items are allocated to N2 and arbitrarily assigned to one agent each. Since (1 − α1)m ≤ α2m, all
type-block capacities are satisfied. Thus,

PoD(u) =
m(1 − ε )

α1m(1 − ε ) + (1 − α1)m · 1
m

=
1

α1 +ψ · (1 − α1)
,

where ψ = 1
m (1−ε ) ∈ (0, 1). Since α1 < 1, the denominator exceeds α1, so that PoD(u) < 1

α1
. If

α1 > α2, then α1 +ψ · (1 − α1) = ψ + (1 −ψ )α1 > ψ + (1 −ψ )α2 = α2 +ψ · (1 − α2) > α2; hence,
PoD(u) < 1

α2
. In any case, PoD(u) ≤ max{ 1

α1
, 1

α2
} = 1

min{α1,α2 } , i.e., the realized price of diversity

respects the Theorem 4.2 bound.

In the next example, the parametrized bound is more informative than the other.

Example 4.8. We will further assume that m is even. Let u (ar , j ) = u (br , j ) =
1
m

for every r ∈
[m], j ∈ [m]. There is an unconstrained optimal assignment that also achieves β (X ∗) = 1: assign
m
2 items arbitrarily to m

2 agents of each type, giving OPT (u) = 1. Thus, the Theorem 4.6 bound
1

(α1+α2 )/2 ≤
1

min{α1,α2 } , the Theorem 4.2 bound. Sinceα1 + α2 ≥ 1, there are at least two assignments,

respecting capacity constraints, whose social welfare is OPT (u) = 1: either α1m to N1 and (1 −
α1)m to N2 or (1 − α2)m to N1 and α2m to N2. In either case, the constrained optimum is 1; hence,
PoD(u) has its ideal value of 1.

14If there are multiple optimal assignments, then they may have different values of the inter-type disparity parameter; if

that is the case, then we should choose the largest of these values for computing the upper bound provided by Theorem 4.6,

since the inequality holds for any unconstrained optimal assignment.
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Fig. 4. PoD vs disparity parameter for the HDB problem for ethnic proportions |N1 |/n = 0.741 (Chinese),

|N2 |/n = 0.134 (Malay), and |N3 |/n = 0.125 (Indian/Others), and corresponding quotas α1q = 0.87,α2q =

0.25 and α3q = 0.15 for every block Mq .

Finally, combining Theorems 4.2 and 4.6, we obtain the following upper bound on the price of
diversity of any instance of AssignTC:

PoD(u) ≤ min

{
1

min(p,q )∈[k]×[l ] αpq
,

1/β (X ∗)∑
p∈[k] νp minq∈[l ] αpq

}
. (9)

Thus, if we plot the PoD(u) against the disparity parameter β (X ∗), then the point corresponding
to any AssignTC instance with block quotas and ethnic proportions as in Singapore must lie in
the shaded region of Figure 4.

5 EXPERIMENTAL ANALYSIS

In this section, we simulate instances of the AssignTC problem using recent, publicly available
Singaporean demographic and housing allocation statistics and Chicago public school admission
data. We compare the welfare of three assignment mechanisms: the optimal unconstrained mech-
anism, the optimal constrained mechanism, and the lottery-based mechanism (see Section 5.1 be-
low). Both the unconstrained and constrained social welfare maximizations are solved using the
Gurobi Optimizer.15 We refer the reader to https://git.io/fNhhm for full implementation details.

5.1 The Lottery Mechanism

Sections 2 and 3 study an optimal mechanism for assigning goods to agents under diversity con-
straints. To the best of our knowledge, this mechanism is not used for allocating goods in practice;
rather, lotteries are used to allocate items in both real-world instances that inspire this work. The
mechanisms randomly order agents, and let each agent pick their favorite item in turn, while re-

specting predetermined quotas. In this section, we formulate a simple one-shot lottery-based mech-
anism that captures the aspect of the problems described in Sections 1.3 and 1.4 that we are most
interested in: the impact of type-block constraints (as defined by inequalities (2)) on assignment
by lottery. Algorithm 1 is not the actual mechanism used in Singapore public housing or Chicago
school choice (see the discussion in the respective sections). It is easy to see that the algorithm
takes poly(mn) time to run.

We know that this lottery mechanism with quotas cannot produce better welfare than the op-
timal constrained mechanism (AssignTC); one of the objectives of our experiments is to find out

15Each iteration of the constrained optimization problem took about 30 minutes while that of the unconstrained optimiza-

tion and the lottery mechanism took less than 1 minute of running time on a standard laptop (Intel i7-7600U Processor, 2.8

GHz, 8 GB RAM, and 256 GB SSD).
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ALGORITHM 1: Lottery Mechanism for Assignment with Type-Block Constraints

Input: Agents N grouped into types N1,N2, . . . ,Nk ; items M split into blocks M1,M2, . . . ,Ml ; type-block

capacities λpq ∀(p,q) ∈ [k] × [l]; utility matrix (u (i, j ))n×m .

Initialize: Allocation matrix X = (xi j )n×m ← (0)n×m ; remaining agents Nrem ← N ; unassigned items

Mrem ← M .

for t ∈ {1, 2, . . . ,n} do
Draw agent uniformly at random: it ∼ U (Nrem).
Find type of it : pt ← p ∈ [k] s.t. it ∈ Np .

Find blocks that have not hit capacity for type pt : Qt ← {q ∈ [l] :
∑

i ∈Npt

∑
j ∈Mq

xi j < λpt q }.
Find available items: Mt ← Mrem ∩ (∪q∈Qt

Mq ).

if Mt � ∅ then
Assign to it available item for which she has highest utility, breaking ties lexicographically:

jt ← arg maxj ∈Mt
u (it , j ).

xit jt ← 1.

Mrem ← Mrem\{jt }.
end

Nrem ← Nrem\{it }.
end

return X .

how much worse the lottery performs for various utility models. We define the price of (one in-
stance of) the diverse lottery as follows.

Definition 5.1. Let a denote an arbitary run of Algorithm 1 andXa the unique matching of items
to agents induced by the run a. Then, the price of the diverse lottery instance a under utilities
u = (u (i, j ))n×m is given by:

PoDL(u,a) � OPT (u)

u (Xa )
.

We will estimate and report the expected value of PoDL(u,a) (the expectation being over all
possible permutations of agents induced by the uniform random sampling without replacement
in Algorithm 1) alongside the realized value of PoD(u) (the corresponding performance measure
for the optimal constrained mechanism) for the same set of parameter values (agent-item utilities
and type-block capacities): See Sections 5.2 and 5.3. Note that the realized PoD(u) is a lower bound

on PoDL(u,a) for any run a of Algorithm 1 for the same problem instance; but the upper bounds
from Theorems 4.2 and 4.6 do not apply to PoDL(u,a) at all.

5.2 The Singapore Public Housing Allocation Problem

Data Collection. To create realistic instances of the AssignTC problem within the Singaporean
context, we collected data on the location and number of flats of recent HDB housing develop-
ment projects advertised over the second and third quarters of 2017.16 Each of these developments
corresponds to a block in our setup, for a total of m = 1350 flats partitioned into l = 9 blocks (a
detailed map is given in Figure 5). Moreover, each flat in any of these blocks belongs to one of
several pre-specified categories, viz. two-room flexi, three-room, four-room, and five-room; our
dataset includes lower and upper bounds, LB(t ,q) and UB(t ,q), respectively, on the monthly cost
(loan) for a flat of category t in block Mq for every t and q. We consider two applicant pools whose
ethnic composition follows the 2010 Singapore census report [Department of Statistics, Singapore
2010]: There are n =m = 1350 applicants in the first pool with |N1 | = 1,000 (≈74.1% Chinese),

16http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/bto-sbf.
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Fig. 5. Block locations and number of flats.

|N2 | = 180 (≈13.4% Malay), and |N3 | = 170 (≈12.5% Indian/Others); the second pool has n = 3,000
applicants with |N1 | = 2223, |N2 | = 402, and |N3 | = 375. From the 2010 Singapore census report,
we also collected the average salary S (p) of each ethnicity group p ∈ [k], given in Singapore dol-
lars: S (1) = 7,326, S (2) = 4,575, and S (3) = 7,664.17 From publicly available data18 on Singapore’s
Master Plan 2014,19 we collected the locations of the geographic centers of the 55 planning areas
that Singapore is divided into; we also obtained the population sizes of the three ethnicity groups
under consideration in each planning area from the General Household Survey 2015 data available
from the Department of Statistics, Singapore.20 Finally, we use a uniform block capacity using the
latest HDB block quotas [Deng et al. 2013]: For every block Mq , we have α1q = 0.87,α2q = 0.25,
and α3q = 0.15.

Utility Models. All parameters used to generate AssignTC instances in our simulations are based
on real data, except for agent utilities over apartments. Conducting large-scale surveys that elicit
user preferences over apartments is beyond the scope of this work; thus, we base our agent utility
models on simulated utilities. We examine four utility models, each characterized by a parameter
whose value does not come from the data: distance-based (Dist (σ 2)), type-based (Type(σ 2)), project

approval-based (Project (ρ)), and price-based (Price(σ 2)).

• In the distance-based utility model, each agent i ∈ N has a preferred geographic location
�ai ∈ R2 (chosen uniformly at random within the physical landmass of Singapore)21 that
she would like to live as close as possible to (say, the location of her parents’ apartment,
workplace, or preferred school). For every block Mq , we generate the utility that agent
i derives from apartment j ∈ Mq by first drawing a sample from the normal distribution

N (1/d (�ai , loc(Mq )),σ 2), where loc(Mq ) ∈ R2 is the geographical location of block Mq and

17We found no public data on applicant pools for public housing allocation in Singapore. We wanted to test the performance

of the constrained optimization approach (mainly) for representative values of n in the interesting domain n ≥ m. We chose

n =m (for which it is possible to achieve a perfect matching) and n = �2m × 10−3 � × 103; we observed a surprisingly small

difference in the realized PoD(u ) for these two values of n and did not repeat our expensive experiments for higher values

of n. Moreover, in both our motivating real-world problems, it is unlikely that the number of agents is orders of magnitude

higher than the number of items. Similar reasoning applies to our choices of n in Section 5.3.
18https://data.gov.sg/dataset/master-plan-2014-planning-area-boundary-web.
19https://www.ura.gov.sg/Corporate/Planning/Master-Plan/.
20https://www.singstat.gov.sg/publications/ghs/ghs2015content > Statistical Tables > Basic Demographic Characteristics.
21More precisely, we considered the largest rectangle that fits within the main island of Singapore, constructed a two-

dimensional Cartesian coordinate system with one degree of latitude/longitude (each roughly equal to 111 km at the loca-

tion of Singapore), and then picked x - and y-coordinates independently and uniformly within this rectangle.
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d (·, ·) represents Euclidean distance, and then renormalizing to make the sum of utilities of
each agent for all apartments in M equal to 1.

• In the type-based utility model, we assume that all agents of the same type (i.e., ethnic
group) have the same preferred location (i.e., ∀p ∈ [k],∀i, i ′ ∈ Np , �ai = �ai′). The rest of the
model description follows the above distance-based model.

• In the project approval-based utility model, we construct, for each type, a categorical distri-
bution over the 55 planning areas of Singapore, the probability of each area being propor-
tional to the fraction of the sub-population of that type living in that area; for each agent i ,
we sample a preferred planning area from the above distribution corresponding to i’s type;
if a project Mq is within a radius ρ of the geographic center of agent i’s preferred planning
area, then i approves of the project, i.e.,u (i, j ) = 1 ∀j ∈ Mq , else i disapproves of the project,
i.e., u (i, j ) = 0 ∀j ∈ Mq .22

• In the price-based utility model, each agent i ∈ Np has a salary si that is generated according

to the normal distribution N (S (p),σ 2). Each flat j ∈ Mq of category t has a monthly cost
pj that is chosen uniformly in [LB (t ,q),UB (t ,q)]. We assume that agent i is willing to pay
one-third of her monthly salary on mortgage installments.23 The utility that agent i derives
from flat j is then defined by

u (i, j ) =
1/(pj − si

3 )2

Ûi

,

where Ûi �
∑

z∈M 1/(pz − si

3 )2 is the normalization factor. The rationale for the utility for-
mula is that a much higher cost relative to the budget makes the flat unaffordable while
a much lower cost indicates unsatisfactory quality, making the agent unhappy in both
scenarios.

Evaluation. For each of our treatments (Figures 6–8); we report the price of diversity PoD(u)
as per Definition 4.1 (hatched bar); the theoretical upper bound on PoD(u) as per Theorem 4.6
(dark gray bar); and the price of the diverse lottery PoDL(u, ·) as per Definition 5.1, averaged over
100 agent permutations (light gray bar).24

First, we want to compare the distance-based utility model Dist (σ 2) and the type-based model
Type(σ 2) to estimate the welfare loss due to imposing ethnicity constraints. To do so, we vary both
σ 2 in {1, 5, 10} and n in {1,350, 3,000}; the results reported in Figures 6 are on average performance
over 100 randomly generated instances. Our first observation is that, in all our experiments, the
Dist (σ 2) exhibits virtually no reduction in welfare due to the imposition of type-block constraints
(see the hatched bars in the charts on the left). This is because utilities in Dist (σ 2) are independent
of ethnicities, resulting in a very low value for the inter-type disparity parameter (see the dark gray
bars)—in fact, for any utility model where utilities are independent of ethnicities, the value of the

22This is a specific instance of the approval model (or dichotomous preferences over items) where an agent either wants

or does not want an item but does not distinguish among the items she wants. This also corresponds to an unweighted

bipartite matching setting (between agents and items) where there is an edge between an agent and item if and only if the

agent approves/wants the item. In such a situation, the utilities of an agent are usually not normalized over items (see, e.g.,

[Bogomolnaia and Moulin 2004]).
23The choice of the one-third fraction is inspired by the “3-3-5 rule” for deciding whether one can afford a flat

given one’s income (https://www.areyouready.sg/YourInfoHub/Pages/News-How-to-use-the-3-3-5-rule-to-consider-if-

you-can-afford-your-new-home.aspx), endorsed by the Central Provident Fund Board of Singapore (https://www.cpf.gov.

sg/members).
24The error bars in Figures 6–8 and 10 represent one (estimated) standard error of the mean on either side; see e.g., Clymo

[2019] for recommendations on how many significant digits of the mean to report based on its standard error, which we

have tried to follow.
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Fig. 6. Averaged welfare ratios obtained for (a) Dist (σ 2) and (b) Type(σ 2) with n =m = 1,350 (left) and

n = 3,000 (right), m = 1,350 in our simulated instances of the Singapore public housing allocation problem.

Horizontal axis shows values of utility model parameter σ 2 (variance); vertical axis shows ratio (or upper

bound on ratio) of optimal unconstrained welfare to welfare induced by some constrained mechanism —

hatched bar: PoD(u) as per Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar:

PoDL(u, ·) as per Definition 5.1, averaged over 100 agent permutations.

disparity parameter should intuitively be close to 1 with a high probability. For utilities generated
based on the Type(σ 2) model, the disparity parameter is somewhat higher (utilities do strongly
depend on ethnicities), resulting in a higher PoD(u). Despite making no attempt to optimize social
welfare under type-block constraints, the HDB lottery mechanism does surprisingly well when
the number of agents equals the number of apartments (Figure 6(a)), extracting at least 84% of
the optimal unconstrained welfare under the Dist (σ 2) utility model and at least 79% of the social
welfare under the Type(σ 2) model. However, the welfare loss induced by the lottery mechanism
is negatively impacted by the number of agents (Figure 6(b)); for instance, it only extracts 65% of
the optimal unconstrained welfare under Dist (1) with n = 3,000, and, in fact, the lottery-induced
welfare loss for this treatment even exceeds the theoretical upper bound on the price of diversity.

Let us now turn to the project approval-based utility model Project (ρ). To compute distances in
km, we make use of the fact that one degree of latitude or longitude at the location of Singapore
corresponds to roughly 111 km; we vary the radius ρ in {5, 7.5, 10} (in km). The results averaged
over 100 runs are provided in Figure 7. In all instances, not only is the price of diversity almost one
but the lottery-induced welfare is also nearly as good, achieving at least 87% of the unconstrained
optimum for 1,350 agents and practically 100% for 3,000 agents; the disparity parameter is also
consistently close to its ideal value of 1, keeping the upper bound at around 1.45 regardless of the
radius. Thus, this can be considered an example of a utility model for which the lottery mechanism
virtually implements a constrained optimal allocation for a wide range of model parameters.

Finally, we study the price-based utility model Price(σ 2), varying σ 2 in {0, 10, 50}; the results
obtained by averaging over 100 runs are given in Figure 8. While the price of diversity is practically
equal to one in all instances, the welfare loss observed with the lottery mechanism drastically
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Fig. 7. Averaged welfare ratios obtained for Project (ρ) with n =m = 1,350 (left) and n = 3,000, m = 1,350

(right) in our simulated instances of the Singapore public housing allocation problem. Horizontal axis shows

values of the utility model parameter ρ (radius); vertical axis shows ratio (or upper bound on ratio) of optimal

unconstrained welfare to welfare induced by some constrained mechanism—hatched bar: PoD(u) as per

Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as per Definition 5.1,

averaged over 100 agent permutations.

Fig. 8. Averaged welfare ratios obtained for Price(σ 2) with n =m = 1,350 (left) and n = 3,000, m = 1,350

(right) in our simulated instances of the Singapore public housing allocation problem. Horizontal axis shows

values of utility model parameter σ 2 (variance); vertical axis shows ratio (or upper bound on ratio) of optimal

unconstrained welfare to welfare induced by some constrained mechanism—hatched bar: PoD(u) as per

Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as per Definition 5.1,

averaged over 100 agent permutations.

increases with σ 2 (recall that agents from the same ethnicity group have identical preferences
when σ 2 = 0): for instance, for 1,350 agents, it extracts 98% of the optimal unconstrained welfare
under Price(0) while it only extracts 35% of this value under Price(50). These numerical tests show
that utility models exist for which the lottery mechanism may perform poorly compared to the
optimal constrained allocation mechanism, even in allocation problems with a very low price of
diversity.

5.3 Chicago Public School Admissions

Data Collection. From the Chicago Public Schools website,25 we collected data on the locations
of magnet schools in Chicago; we focus on these schools because they use a lottery mechanism
to select students. We also collected the total number of students enrolled in these schools in

25http://cps.edu/Pages/home.aspx.
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Fig. 9. Map of Chicago showing the tier statuses of census tracts (http://cpstiers.opencityapps.org/) and

locations of magnet schools (orange dots) based on http://cps.edu/ScriptLibrary/Map-SchoolLocator/index.

html.

2018 and divided this number by 9 to obtain the approximate number of students that can be
accepted to the first grade (there are nine grades in total). This leads us to instances with l = 37
blocks (schools) and m = 2,261 items in total (available spots). In this school admission problem,
students are partitioned into k = 4 types, viz. Tiers 1, 2, 3, and 4, depending on their residence
(see Figure 9). In our experiments, we consider a pool of n ∈ {2,261, 5,000} students whose type
composition follows the real-world proportion: We have |N1 | = 613 (≈27.1%: Tier 1), |N2 | = 622
(≈27.5%: Tier 2), |N3 | = 533 (≈23.6%: Tier 3), and |N4 | = 493 (≈21.8%: Tier 4) for n = 2261 and we
have |N1 | = 1,355, |N2 | = 1,375, |N3 | = 1,180 and |N4 | = 1,090 forn = 5,000. We use equal fractional
quotas across schools and tiers, i.e., our type-block capacities are λpq = 0.25|Mq | ∀(p,q) ∈ [k] × [l].
Recall also that we have one-shot lotteries (Section 5.1) in our simulations.

Utility model. Since we do not have access to students’ utilities for schools, we simulate them
as follows. We use the distance-based utility model Dist (σ 2) introduced in Section 5.2 with the
following important modifications:

• We choose the preferred location of a student uniformly at random from the collection of
census tracts (polygons) belonging to her tier (see Figure 9); the position of every polygon
is approximated by taking the average of the coordinates of its extreme points.

• We reset each student’s utility to 0 for any school ranked 21st or lower in the preference
ordering induced by her utilities computed as in the distance-based model of Section 5.2,
and then renormalize the utilities; this is because students are allowed to apply to at most
20 schools.

Evaluation. In our experiments, we vary both σ 2 in {0, 10, 50} and n in {2, 261, 5, 000}, and
for each setting, we compute the following quantities: the price of diversity PoD(u) as per
Definition 4.1 (hatched bar); the theoretical upper bound on PoD(u) as per Theorem 4.6 (dark gray
bar); and the price of the diverse lottery PoDL(u, ·) as per Definition 5.1, averaged over 100 agent
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Fig. 10. Averaged welfare ratios obtained for Dist (σ 2) with n =m = 2,261 (left) and n = 5,000,m = 2,261

(right) in our simulated instances of the Chicago public school admission problem. Horizontal axis shows

values of utility model parameter σ 2 (variance); vertical axis shows ratio (or upper bound on ratio) of optimal

unconstrained welfare to welfare induced by some constrained mechanism—hatched bar: PoD(u) as per

Definition 4.1, light gray bar: upper bound from Theorem 4.6, dark gray bar: PoDL(u, ·) as per Definition 5.1,

averaged over 100 agent permutations.

permutations (light gray bar). Results obtained by averaging over 100 runs are given in Figure 10.
First, we observe that both the price of diversity and the loss of the lottery mechanism decrease
as σ 2 increases; this is unsurprising, since utilities are less type dependent as σ 2 grows. However,
we observe that the loss of the lottery mechanism is quite high in all instances. Moreover, just
as in the Singapore public housing allocation problem, the outcome of the lottery mechanism is
negatively impacted by the number of students; therefore, we can conclude that this mechanism
seems to be better suited to problems with an equal number of agents and items.

6 DISCUSSION AND FUTURE WORK

Our work constitutes a first step toward a better understanding of the effect of hard diversity con-
straints on social welfare. We can summarize our results as follows. One of our main contributions
is to offer computational insights into the AssignTC problem: a general hardness result, sufficient
conditions for tractability, and a 1

2 -approximation algorithm. We derive two upper bounds on the
price of diversity defined as the ratio of the optimal welfare achievable with and without type-block
constraints: the first is in terms of block quotas only, independent of the utility model, hence, un-
der the planner’s control; the second is parametrized in terms of inter-type disparity, which shows
that when the disparity is low, the welfare loss is much closer to its ideal value of 1 than the first
bound would suggest. We analyze our model’s behavior in simulations based on two real-world
datasets.

We will conclude with further remarks on the above results, a few straightforward implications,
and directions for further research.

6.1 Further Questions on Complexity and Approximation

Some questions that remain open are as follows:

• Is a better approximation to AssignTC possible?
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• Does there exist a more natural/elegant polynomial-time approximation algorithm for As-
signTC that does not involve reduction to BCMatching?

• Are there any other non-trivial special cases of AssignTC that admit polynomial-time so-
lutions?

However, since we have shown that AssignTC is a special (still NP-complete) case of the BC-
Matching problem, some easy generalizations of our results follow from the literature on BC-
Matching. For example, there is a polynomial-time approximation scheme (PTAS) for BCMatch-
ing if one allows (1 + ε )-violations of the color constraints [Grandoni et al. 2009]; this immediately
implies a PTAS for AssignTC where one allows (1 + ε )-violations of the type-block constraints.
Intuitively, this means that we can efficiently achieve near-optimal constrained optimal welfare if
we are willing to soften our hard constraints within well-defined limits.

6.2 Soft Diversity Concepts

There are alternative approaches toward diversity promotion in various branches of research that
do not rely on hard bounds (fixed quotas):

• maximization of a carefully constructed monotone, submodular function that itself trades
diversity off against “solution quality” (similar in spirit to the welfare concept we have used)
in a matching/allocation/subset selection setting [Ahmed et al. 2017; Dickerson et al. 2019;
Schumann et al. 2019];

• soft diversity constraints in a matching setting (e.g., school seat allocation) with ordinal
preferences [Ehlers et al. 2014; Kurata et al. 2017, and references therein]: Quotas are used
as “flexible limits that regulate . . . priorities” when assigning scarce items [Ehlers et al. 2014].

• sampling datasets to ensure an adequate representation of labeled categories (combinatorial

diversity or diversity indices) and/or a broad coverage of the feature space (geometric diversity

via determinantal point processes) for machine learning applications [Celis et al. 2016, and
references therein].

An important future research direction would be to compare and contrast diversity quotas with
these different approaches toward diverse solutions in terms of their impact on welfare, both the-
oretically and experimentally.

6.3 Types Based on “Overlapping” Attributes

The types considered in our article essentially constitute a partition over the agents with respect to
one attribute: ethnicity in Singapore public housing and SES-based tiers in Chicago Public Schools.
But in many situations, quotas/bounds are specified for multiple attributes. Consider for example,
a hypothetical public housing allocation problem in a city that has the same three ethnic groups
(and the respective quotas) as in Singapore; but the population is also divided into high-income
and low-income groups, and the city additionally requires that no block of flats should have more
than 55% of its occupants from either of these two groups. Flats, in addition to be being grouped
into blocks, could also be partitioned based on categories (see Section 5.2) and any number of
capacity constraints could be specified combinatorially.

It is easy to see that AssignTC is a special case of this class of problems. So, the NP-hardness of
AssignTC (Theorem 3.4) readily implies that of this more general class. However, it is not obvious
whether this general version reduces to BCMatching, hence, approximability results of AssignTC
may not generalize. It is also unclear how to extend the PoD analysis of Section 4—if it can be done
at all—to the situation with multiple partitions each with its own set of arbitrary percentage caps.
This is a challenge we wish to tackle in the future. For existing work on diversity requirements
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based on multiple overlapping attributes in a subset selection setting (not matching), please refer
to Bredereck et al. [2018] and Lang and Skowron [2016].

6.4 Utility Models and Experiments

Simulating agent utilities is still a major challenge: Ideally, one would elicit applicants’ utilities
directly via large-scale national surveys. The aim of our experiments was to see how much worse
the diversity-constrained optimal allocation performs than our theoretical bounds (and, to some
extent, how much better it is compared to its lottery version) depending on the utility model, and
not to compare utility models based on the PoD as a performance measure. Hence, we formulated
clean utility models that focus on individual factors that, we believe, bear on individuals’ pref-
erences in the problem domains considered. For example, our simulations with the Dist (σ 2) and
Type(σ 2) models in Section 5.2 tested two “extreme” cases: one where there is no correlation be-
tween ethnicity and utility and one where utility is artificially correlated to ethnicity. The truth
is likely somewhere in between. Ethnic groups in Singapore most likely do have some correlation
between their utility models; this can be due to socioeconomic factors (there is some correlation
between ethnicity and socioeconomic status), the location of cultural or religious centers, or other
unknown factors. Developing and investigating refined utility models is an interesting direction
for future work.

6.5 Lottery Mechanisms with Diversity Quotas

Allocation based on constrained optimization under known utilities can serve as a benchmark for
any mechanism respecting the same set of diversity constraints, including the lottery mechanism
in Algorithm 1. Obviously, the relative loss of the lottery mechanism cannot be smaller than the
PoD for the same problem instance; but, in our experiments, the diverse lottery performs surpris-
ingly well for several utility models (e.g., Figures 6 and 7), although it appears to be more sensitive
to the utility model and its parameters than the constrained optimization benchmark (e.g., Figures 8
and 10). As yet, we do not have satisfactory explanations for many of our observations. Offering
theoretical guarantees on the performance of the lottery mechanism with diversity constraints
(and in some sense, complementing the analysis by Immorlica et al. [2017]) would provide bet-
ter insights on our experimental results. In particular, we could look at the ratio of the expected
utilitarian social welfare induced by a lottery without diversity constraints to that under diversity
constraints for the same utilities.26

Moreover, recall that the lottery mechanism operates on the basis of partial information on
the cardinal utilities to which the benchmark has access: specifically, for each agent in the random
sequence, the algorithm only elicits the agent’s top choice among the items in blocks for which the
corresponding capacity constraint has not been satisfied, which also depends on the predecessors
of the agent in the random sequence. This is even more restricted information than some recent
work on matching/assignment [Anshelevich and Sekar 2016] and subset selection [Anshelevich
et al. 2018, and references therein] has considered: These approaches assume access to ordinal
information (each agent’s ranking over alternatives), but the performance is measured in terms of
the hidden cardinal utilities that generate these rankings—the concept of distortion [Procaccia and
Rosenschein 2006] is often used in this line of work as a measure of fractional loss in (cardinal)

26This ratio can never exceed the expected price of the diverse lottery as defined in Section 5.1 (see Definition 5.1 and the

following paragraph) but is not guaranateed to be larger than the PoD for the same problem instance. A detailed analysis,

both theoretical and experimental, of this concept is an important research topic in its own right; hence, we have not

reported the ratio of the expected welfare of the lottery mechanism without constraints to that with type-block constraints

for our experiments in Section 5.
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solution quality due to ordinal information. It will be interesting to study (optimal) algorithms
working with ranking data under diversity constraints, and the resulting combination of distortion
and price of diversity—intuitively, the welfare loss with full rankings cannot be worse than that of
our lottery (with significantly less information), which already performs close to the constrained
optimum (with the true cardinal inputs) in many of our experiments.27

A relevant practical question that also needs attention is why the constrained optimization ap-
proach is not used in our motivating real-world problems instead of allocations based on lotteries.
There could be several problem-specific reasons for this. We offer AssignTC as a benchmark for
the utilitarian objective under one particular diversity-promoting policy (hard capacity bounds);
but a central planner/allocator might have several objectives in mind at the same time. In a mech-
anism that relies on agents’ subjective valuations of items (that need to be elicited in some form),
one might also care about individual fairness and discouraging strategic behavior. In the absence of
diversity constraints, a (uniform) lottery is identical to random serial dictatorship, which satisfies
many such desiderata [Abdulkadiroğlu and Sönmez 1998; Bogomolnaia and Moulin 2001]. As such,
an extensive investigation of diversity constraints with properties other than the utilitarian social
welfare is also imperative.

6.6 Closing Remarks

Our results describe an inevitable tradeoff between diversity and social welfare; however, we em-
phasize that this does not constitute a moral judgment on the authors’ part. Economic consider-
ations are certainly important, but they are by no means an exclusive or even a first-order con-
sideration. That said, understanding the impact of diversity constraints on social welfare is key if
one is to justify their implementation.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and attendees of both AAMAS 2018 and COMSOC
2018, where part of this work was presented, and the anonymous reviewers of TEAC, whose in-
sightful comments on previous drafts greatly improved the article. Thanks are also due to members
of the Research and Planning Group, Housing and Development Board of Singapore, who met with
the authors and gave valuable feedback on an early version of the article.

REFERENCES
Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. 2009. Strategy-proofness versus efficiency in matching with

indifferences: Redesigning the NYC high school match. Am. Econ. Rev. 99, 5 (2009), 1954–1978.

Atila Abdulkadiroğlu and Tayfun Sönmez. 1998. Random serial dictatorship and the core from random endowments in

house allocation problems. Econometrica 66, 3 (1998), 689–701.

Atila Abdulkadiroğlu and Tayfun Sönmez. 2003. School choice: A mechanism design approach. Am. Econ. Rev. 93, 3 (2003),

729–747.

Faez Ahmed, John P. Dickerson, and Mark Fuge. 2017. Diverse weighted bipartite b-matching. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence (IJCAI’17). 35–41.

Kook Jin Ahn and Sudipto Guha. 2014. Near linear time schemes for uncapacitated and capacitated b-matching problems

in nonbipartite graphs. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14).

239–258.

Elliot Anshelevich, Onkar Bhardwaj, Edith Elkind, John Postl, and Piotr Skowron. 2018. Approximating optimal social

choice under metric preferences. Artif. Intell. 264 (November 2018), 27–51.

Elliot Anshelevich, Sanmay Das, and Yonatan Naamad. 2013. Anarchy, stability, and utopia: Creating better matchings.

Auton. Agents Multi-Agent Syst. 26, 1 (2013), 120–140.

Elliot Anshelevich and Shreyas Sekar. 2016. Blind, greedy, and random: Algorithms for matching and clustering using only

ordinal information. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16). 383–389.

27We thank an anonymous reviewer for pointing out this possible connection to the literature on distortion.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 14. Publication date: September 2020.



The Price of Quota-based Diversity in Assignment Problems 14:31

Sophie Bade. 2016. Random Serial Dictatorship: The One and Only. Working Paper. Royal Holloway College, University of

London.

Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Finding fair and efficient allocations. In Proceed-

ings of the 19th ACM Conference on Economics and Computation (EC’18). 557–574.

Siddharth Barman and Sanath Kumar Krishna Murthy. 2017. Approximation algorithms for maximin fair division. In Pro-

ceedings of the 18th ACM Conference on Economics and Computation (EC’17). 647–664.

Ulrich Bauer. 2004. Assignment Problem with Constraints. Master’s thesis. ETH Zürich Department of Computer Science.

Anand Bhalgat, Deeparnab Chakrabarty, and Sanjeev Khanna. 2011. Social welfare in one-sided matching markets without

money. In Proceedings of the 14th International Workshop and 15th International Conference on Approximation, Random-

ization, and Combinatorial Optimization: Algorithms and Techniques (APPROX/RANDOM’11). 87–98.

Anna Bogomolnaia and Hervé Moulin. 2001. A new solution to the random assignment problem. J. Econ. Theory 100, 2

(2001), 295–328.

Anna Bogomolnaia and Hervé Moulin. 2004. Random matching under dichotomous preferences. Econometrica 72, 1 (2004),

257–279.

Robert Bredereck, Piotr Faliszewski, Ayumi Igarashi, Martin Lackner, and Piotr Skowron. 2018. Multiwinner elections with

diversity constraints. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18). 933–940.

Eric Budish and Estelle Cantillon. 2012. The multi-unit assignment problem: Theory and evidence from course allocation

at Harvard. Am. Econ. Rev. 102, 5 (2012), 2237–2271.

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. 2016. The unrea-

sonable fairness of maximum Nash welfare. In Proceedings of the 17th ACM Conference on Economics and Computation

(EC’16). 305–322.

L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. 2016. How to be fair and diverse? In Proceedings

of the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning (FATML’16).

Chicago Public Schools. 2017. Chicago Public Schools Policy Manual: Admissions Policy for Magnet, Selective Enrollment

and Other Options For Knowledge Schools and Programs. Section 202.2. Board Report 17-0426-PO2. Retrieved from

http://policy.cps.edu/Policies.aspx.

Beng-Huat Chua. 1991. Race relations and public housing policy in Singapore. J. Arch. Plan. Res. 8, 4 (1991), 343–354.

R. S. Clymo. 2019. How many of the digits in a mean of 12.3456789012 are worth reporting?BMC Res. Not. 12, 1 (2019), 148.

Pierluigi Crescenzi. 1997. A short guide to approximation preserving reductions. In Proceedings of the 12th IEEE Conference

on Computational Complexity (CCC’97). 262–273.

Pierluigi Crescenzi, C. Fiorini, and Riccardo Silvestri. 1991. A note on the approximation of the MAX CLIQUE problem.

Inform. Process. Lett. 40, 1 (1991), 1–5.

Yongheng Deng, Tien Foo Sing, and Chaoqun Ren. 2013. The story of Singapore’s public housing: From a nation of home-

seekers to a nation of homeowners. In The Future of Public Housing: Ongoing Trends in the East and the West, Jie Chen,

Mark Stephens, and Yanyun Man (Eds.). Springer, Chapter 7, 103–121.

Department of Statistics, Singapore. 2010. Singapore 2010 Census: Key Indicators of the Resident Population.

Department of Statistics, Singapore. 2017. Singapore in Figures.

John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. 2019. Balancing relevance and diversity

in online bipartite matching via submodularity. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence

(AAAI’19). 1877–1884.

Lars Ehlers, Isa E. Hafalir, M. Bumin Yenmez, and Muhammed A. Yildirim. 2014. School choice with controlled choice

constraints: Hard bounds versus soft bounds. J. Econ. Theory 152, C (2014), 648–683.

Clayton R. Featherstone. 2015. Rank Efficiency: Investigating a Widespread Ordinal Welfare Criterion. Working Paper. The

Wharton School, University of Pennsylvania.

Daniel Fragiadakis and Peter Troyan. 2017. Improving matching under hard distributional constraints. Theor. Econ. 12, 2

(2017), 863–908.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman & Co.

Fabrizio Grandoni, R. Ravi, and Mohit Singh. 2009. Iterative rounding for multi-objective optimization problems. In Pro-

ceedings of the 17th Annual European Symposium on Algorithms (ESA’09). 95–106.

Housing and Development Board, Singapore. 2010. Policy Changes to Support an Inclusive and Cohesive Home.

Press release. Retrieved from http://www.nas.gov.sg/archivesonline/speeches/record-details/809e76bf-115d-11e3-

83d5-0050568939ad.

Housing and Development Board, Singapore. 2015. Costs and Fees. Retrieved from http://www.hdb.gov.sg/cs/infoweb/

residential/buying-a-flat/new/finance/costs-and-fees.

Housing and Development Board, Singapore. 2017. Annual Report 2016/2017: Key Statistics. Retrieved from http://www10.

hdb.gov.sg/ebook/AR2017/key-statistics.html.

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 14. Publication date: September 2020.

http://policy.cps.edu/Policies.aspx
http://www.nas.gov.sg/archivesonline/speeches/record-details/809e76bf-115d-11e3-83d5-0050568939ad
http://www.nas.gov.sg/archivesonline/speeches/record-details/809e76bf-115d-11e3-83d5-0050568939ad
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/finance/costs-and-fees
http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/finance/costs-and-fees
http://www10.hdb.gov.sg/ebook/AR2017/key-statistics.html
http://www10.hdb.gov.sg/ebook/AR2017/key-statistics.html


14:32 N. Benabbou et al.

Aanund Hylland and Richard Zeckhauser. 1979. The efficient allocation of individuals to positions. J. Pol. Econ. 87, 2 (1979),

293–314.

Nicole Immorlica, Brendan Lucier, Joshua Mollner, and E. Glen Weyl. 2017. Raffles. Retrieved from https://ssrn.com/

abstract=2916337 or http://dx.doi.org/10.2139/ssrn.2916337.

Richard D. Kahlenberg. 2016. School Integration in Practice: Lessons from Nine Districts. The Century Foundation. Re-

trieved from https://tcf.org/content/report/school-integration-practice-lessons-nine-districts.

Yuichiro Kamada and Fuhito Kojima. 2015. Efficient matching under distributional constraints: Theory and applications.

Am. Econ. Rev. 105, 1 (2015), 67–99.

Harold W. Kuhn. 1955. The Hungarian method for the assignment problem. Nav. Res. Log. 2, 1–2 (1955), 83–97.

Ryoji Kurata, Naoto Hamada, Atsushi Iwasaki, and Makoto Yokoo. 2017. Controlled school choice with soft bounds and

overlapping types. J. Artif. Intell. Res. 58 (2017), 153–184.

David Kurokawa, Ariel D. Procaccia, and Junxing Wang. 2016. When can the maximin share guarantee be guaranteed? In

Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16), Vol. 16. 523–529.

Jérôme Lang and Piotr Krzysztof Skowron. 2016. Multi-attribute proportional representation. In Proceedings of the 30th

AAAI Conference on Artificial Intelligence (AAAI’16). 530–536.

Jing Wu Lian, Nicholas Mattei, Renee Noble, and Toby Walsh. 2018. The conference paper assignment problem: Using

order weighted averages to assign indivisible goods. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence

(AAAI’18).

László Lovász and Michael D. Plummer. 2009. Matching Theory. Vol. 367. American Mathematical Society.

James Munkres. 1957. Algorithms for the assignment and transportation problems. J. Soc. Indust. Appl. Math. 5, 1 (1957),

32–38.

Pekka Orponen and Heikki Mannila. 1987. On Approximation Preserving Reductions: Complete Problems and Robust Measures.

Technical Report C-1987-28. Department of Computer Science, University of Helsinki.

Parliament of Singapore. Parliament Debates: Official Report.1989. Better racial mix in HDB housing estates. Vol. 52, cols.

650–668.

Parag A. Pathak and Tayfun Sönmez. 2013. School admissions reform in Chicago and England: Comparing mechanisms by

their vulnerability to manipulation. Am. Econ. Rev. 103, 1 (2013), 80–106.

Sock Yong Phang and Kyunghwan Kim. 2013. Singapore’s housing policies: 1960–2013. In Frontiers in Development Policy:

Innovative Development Case Studies (2013), 123–153.

Ariel D. Procaccia and Jeffrey S. Rosenschein. 2006. The distortion of cardinal preferences in voting. In Proceedings of the

International Workshop on Cooperative Information Agents. Springer, 317–331.

Ariel D. Procaccia and Junxing Wang. 2014. Fair enough: Guaranteeing approximate maximin shares. In Proceedings of the

15th ACM Conference on Economics and Computation (EC’14). 675–692.

Kimberly Quick. 2016. Chicago Public Schools: Ensuring Diversity in Selective Enrollment and Magnet Schools. The Cen-

tury Foundation. Retrieved from https://tcf.org/content/report/chicago-public-schools.

Alvin E. Roth. 1984. The evolution of the labor market for medical interns and residents: A case study in game theory. J.

Pol. Econ. 92, 6 (1984), 991–1016.

Thomas C. Schelling. 1971. Dynamic models of segregation. J. Math. Sociol. 1, 2 (1971), 143–186.

Candice Schumann, Samsara N. Counts, Jeffrey S. Foster, and John P. Dickerson. 2019. The diverse cohort selection prob-

lem. In Proceedings of the 18th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’19).

International Foundation for Autonomous Agents and Multiagent Systems, 601–609.

Loo Lee Sim, Shi Ming Yu, and Sun Sheng Han. 2003. Public housing and ethnic integration in Singapore. Habitat Int. 27, 2

(2003), 293–307.

Georgios Stamoulis. 2014. Approximation algorithms for bounded color matchings via convex decompositions. In Proceed-

ings of the 39th International Symposium on Mathematical Foundations of Computer Science (MFCS’14). 625–636.

U.S. Department of Education, Office of Elementary and Secondary Education. 2017. Improving Outcomes for All Students:

Strategies and Considerations to Increase Student Diversity. Washington, D.C. Retrieved from https://www.ed.gov/

diversity-opportunity.

Maisy Wong. 2014. Estimating the distortionary effects of ethnic quotas in Singapore using housing transactions. J. Publ.

Econ. 115 (2014), 131–145.

Lin Zhou. 1990. On a conjecture by Gale about one-sided matching problems. J. Econ. Theory 52, 1 (1990), 123–135.

Received January 2019; revised June 2020; accepted June 2020

ACM Transactions on Economics and Computation, Vol. 8, No. 3, Article 14. Publication date: September 2020.

https://ssrn.com/abstract=2916337
https://ssrn.com/abstract=2916337
http://dx.doi.org/10.2139/ssrn.2916337
https://tcf.org/content/report/school-integration-practice-lessons-nine-districts
https://tcf.org/content/report/chicago-public-schools
https://www.ed.gov/diversity-opportunity
https://www.ed.gov/diversity-opportunity

