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Abstract

The past few years have seen several works on learning economic solutions from
data; these include optimal auction design, function optimization, stable payoffs in
cooperative games and more. In this work, we provide a unified learning-theoretic
methodology for modeling such problems, and establish tools for determining
whether a given economic solution concept can be learned from data. Our learning
theoretic framework generalizes a notion of function space dimension — the graph
dimension — adapting it to the solution concept learning domain. We identify
sufficient conditions for the PAC learnability of solution concepts, and show that
results in existing works can be immediately derived using our methodology.
Finally, we apply our methods in other economic domains, yielding a novel notion
of PAC competitive equilibrium and PAC Condorcet winners.

1 Introduction

Recent years have seen widespread application of learning-theoretic notions in economic domains.
Rather than assuming full knowledge of the underlying domain (or a prior over the domain space),
one assumes access to a dataset of past instances, and employs learning-theoretic tools in order to
obtain approximate solutions. Consider the following simple example of learning a solution from
data: we wish to find the maximum of a function f : Rn → R; we do not have access to f , but
rather to a dataset of the form 〈~x1, f(~x1)〉, . . . , 〈~xm, f(~xm)〉. One way to find a likely candidate
point would be to use classic learning-theoretic tools [1], learn an approximation f∗ of f , and
compute the maximum of f∗; however, this goes above and beyond the problem requirement: the
approximability of f depends on its hypothesis class (whether f is a linear function, a two-layer
neural network etc.), and on the approximation robustness. A much simpler solution is available: if
the number of samples is sufficiently large, taking the empirical maximum of f over the dataset — i.e.
~x∗ ∈ argmaxj{f(~xj) : j ∈ [m]}— yields a point that is likely to be greater in value than any future
point sampled from the same distribution as the original dataset.

The same reasoning applies to other economic solutions: a naive approach to inferring solutions
from data would be to learn an approximate model (e.g. learn a function f∗ which approximates f
in the maximization example above), and then try generating solutions for the approximate model.
However, as has been shown in the literature, learning an approximate model may:

1. be insufficient for generating ‘good’ solutions (this is the case in [32])
2. require an exponential number of samples, whereas directly learning solutions is easy.

Indeed, finding a payoff in the core of TU games is easy [4, 11], while PAC learning
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cooperative games requires an exponential number of samples [7]; this is also the case for
finding an empirical maximum in the example above.

Recent works directly learn solutions to classic optimization problems, as well as solutions in game-
theoretic domains. These lines of work have progressed more or less independently, proving that
solutions in a specific problem domain can (or cannot) be efficiently inferred from data; however,
there has been no attempt to provide a unified theory of learning solution concepts from data. This is
where our work comes in.

1.1 Our Contributions

We begin by establishing a learning-theoretic framework for learning solution concepts from data.
Unlike classic learning problem spaces, solution concepts do not inhabit the same space as the
observed samples (e.g. when learning an approximate maximum, the function space is Rn → R,
whereas the solution space is Rn). In Section 2, we define the solution dimension: this quantity
depends on both the hypothesis class of the underlying game and the solution space. The solution
dimension generalizes the graph dimension [18] in PAC learning, and serves a similar purpose: if
the solution dimension is low, then a distribution-based solution can be efficiently learned from
samples. Drawing on notions of shattering from VC dimension, we introduce solution concept
shattering which is used to bound the solution dimension in various domains. We also show that
the existence of a consistent solution and a low graph dimension are sufficient conditions for PAC
learning solutions, simplifying technical learnability arguments in existing works, as well as paving
the way for a straightforward learnability approach of other solution concepts. In Section 3, we apply
our methodology to immediately derive sample complexity bounds on learning solutions for hedonic
games, as well as for two novel domains: market equilibria, and Condorcet winners in voting.

1.2 Related Work

Several recent works study learning solutions from data; these include solutions in cooperative games
[7, 11, 24, 32], combinatorial auctions [6, 8, 14, 16, 19, 25, 33], voting and judgment aggregation
[12, 35], envy-free allocation [5], and optimization [9, 10, 30]. Some of these works offer low-error
approximation guarantees with respect to an optimal solution, such as estimating the maximum
[9, 10], maximizing revenue in mechanism design [16], or finding an election winner [12]; our work
focuses on solutions that minimize expected loss with respect to sampled data, as is the case when
learning the core of a cooperative game [7, 24, 32], reserve prices in auctions [6, 26], or approximately
efficient allocations [14]. While some of the above works explicitly explore the dimension of the
solution space, they do not offer the full generality of our model.

Our analysis of the underlying solution space utilizes recent learning-theoretic tools [18], yielding an
extension of classical function dimension measures such as the VC dimension [1, 34], and the graph
dimension [18]. Our results generalize the General Learning problem discussed in [31], as learning
solution concepts can also involve some global properties playing a role in the loss function.

1.3 Classic PAC Learning

For the sake of completeness, we provide a brief overview of the PAC learning model. A learning
problem is defined over an instance space X and a set of functions (the hypothesis class) H ⊆ YX
(Y is the label space). Let D be a distribution over X × Y; we let the loss of h ∈ H given D be
LD(h) = Pr(x,y)∼D[h(x) 6= y]. Given a set of m i.i.d. samples T = 〈xj , yj〉j∈[m] from D, the
empirical loss of h ∈ H is L̂T (h) = 1

m

∑m
j=1 1(h(xj) = yj). We assume that D is a distribution

over X , where every x ∈ X is evaluated by some unknown c ∈ H; this is referred to as the realizable
case, in which there is some h ∈ H for which LD(h) = 0, and there is at least one hypothesis h ∈ H
for which L̂T (h) = 0 for any T ⊆ X . An algorithm A is a PAC learner for H if there is some m0

polynomial in 1
ε ,

1
δ and the natural problem parameters, such that for any distribution D and any set

of m ≥ m0 samples T sampled i.i.d. from D, A outputs a hypothesis h∗ ∈ H (which is a function of
T , but not of D) such that PrT∼Dm [LD(h∗) ≥ ε] < δ.

For binary hypothesis classes (where the label space is Y = {±1}), the VC dimension [34] character-
izes the sample complexity of H. The sample complexity required by any PAC learning algorithm
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for H is upper and lower-bounded by the VC dimension of H. This is achieved by an algorithm that
outputs a consistent hypothesis, i.e. one which minimizes the empirical loss L̂T (h) w.r.t. a sample T .
Definition 1.1. Given a hypothesis class H, a set C ⊆ X is said to be shattered if for any binary
labeling b : C → {0, 1} there exists some h ∈ H such that h(x) = b(x) for all x ∈ C. The VC
dimension of H, or V C(H), is the size of the largest set C ⊆ X that is shattered by H.

For example, if the hypothesis class is the set of all linear classifiers over Rn, its VC dimension is
O(n) [1]. Theorem 1.2 relates the VC dimension and the PAC learnability of H.
Theorem 1.2. There exists absolute constants α1 and α2, such that for a hypothesis class H, the
sample complexity of H with respect to ε and δ (denoted m(ε, δ)) is

α1

ε

(
VC (H) + log

(
1

δ

))
≤ m(ε, δ) ≤ α2

ε

(
log

(
1

ε

)
VC (H) + log

(
1

δ

))
Theorem 1.2 can be slightly generalized to the following claim: for any two functions f, g ∈ H,
the empirical loss on an i.i.d. sample of more than α2

ε

(
log
(

1
ε

)
VC (H) + log

(
1
δ

))
points, is close

within ε to the statistical loss (ie. Pr
x∼D

[f(x) 6= g(x)]).

The case where samples are labelled by some arbitrary function c (not necessarily in H) is also
known as the agnostic case; however, as a result of the uniform convergence results, if an algorithm
A outputs a hypothesis h∗ that minimizes empirical risk — ∀h ∈ H : L̂T (h∗) ≤ L̂T (h) — the
statistical error is ≤ ε: PrT∼Dm [LD(h∗) ≥ minh∈H LD(h) + ε] < δ. Therefore, as discussed in
[18], uniform convergence is a powerful tool for bounding statistical loss.

1.4 Game-Theoretic Solution Concepts

In what follows, we briefly introduce the solution concepts discussed in this work. In all scenarios
below, we have a set of players N = {1, . . . , n}, with preferences over outcomes induced in some
manner; our objective is to obtain a solution with some desirable properties.

1.4.1 Hedonic Games

In hedonic games [13, Chapter 15], each player i ∈ N has a complete, transitive preference order �i
over coalitions in N that contain it. Solutions are partitions (also referred to as coalition structures)
of N ; a coalition structure π is blocked by a coalition S ⊆ N if all members of S prefer S over the
coalition they are in (denoted π(i)), i.e. S �i π(i) for all i ∈ S. The core of a hedonic game is the
set of stable coalition structures: they cannot be blocked by any coalition S ⊆ N . It is often assumed
that players’ preferences over subsets are induced by a cardinal utility function vi : 2N → R+; in
this case, S �i T if and only if vi(S) > vi(T ).

1.4.2 Competitive Equilibria in Fisher Markets

We are given a set of k indivisible goods G = {g1, . . . , gk}. Each player i ∈ N values bundles of
goods in G according to vi : 2G → R+, where vi(∅) = 0 for all i ∈ N . A market outcome is a tuple
〈π, ~p〉, where π is a partition of G into n disjoint bundles (some of them may be empty), with π(i)
assigned to player i; ~p ∈ Rk is a price vector, denoting the price of each item in G. In these markets,
known as Fisher markets [15], we assume that each player i has a budget βi ∈ R+. Given a price
vector ~p ∈ Rk, the affordable set of player i is the set of all bundles whose total price is less than βi:

Ai(~p, βi) =

S ⊆ G :
∑
gj∈S

pj ≤ βi

 .

An outcome 〈π, ~p〉 is a competitive equilibrium if for all i ∈ N , π(i) ∈ Ai(~p, βi), and ∀S ∈ Ai(~p, βi),
vi(π(i)) ≥ vi(S).

1.4.3 Condorcet Winners

Consider a set of voters N = {1, . . . , n}, each with a preference order �i over some finite set of
candidates C. Given two candidates c, c′ ∈ C, we define B(�, c′, c) = 1 iff a majority of voters
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prefer c′ to c under �. A candidate c∗ is a Condorcet winner iff B(�, c∗, c) = 1 for every other
candidate c ∈ C.

2 A PAC Framework for Distribution-Based Solution Concepts

As described in Section 1.4, a solution concept or an equilibrium concept characterizes a subset of its
solution space satisfying some natural desiderata. Games are mappings from some domain X to a
label space Y . For example, in hedonic games, a game is a set of functions vi : 2N → R (for every
i ∈ N ), mapping from subsets of players to real values; thus, X = 2N and Y consists of vectors of
the form (vi(S))i∈S for every S ⊆ N . We assume no knowledge of the actual game g, except for the
hypothesis class it belongs to; we only observe samples of the game’s evaluation on points in X .

Constraints characterizing solution concepts are often universal quantifiers over a local loss function λ.
In hedonic games, we define λ : 2N×G×Π(N)→ {0, 1}, where λ(S,~v, π) = 0 iff vi(S) ≤ vi(π(i))
for all i ∈ N . Thus, π is in the core iff λ(S,~v, π) = 0 for all S ⊆ N . Similarly, the maxima of
a function satisfy x∗ ∈ argmax f(x) ⇐⇒ ∀x : f(x) ≤ f(x∗); in particular, λ(x, f, x∗) = 0 iff
f(x∗) ≥ f(x). Solution concepts that can be defined via a local loss function λ readily admit a
distributional variant: we require that the expected loss as measured by λ is low, with respect to a
distribution D over the domain X ; i.e. Pr

x∼D
[λ(x, g, s) = 0] ≥ 1− ε, for some ε ∈ (0, 1).

More formally, an instance of the STATISTICALSOLUTION problem is a tuple Ψ = (X ,Y,G,S, λ).
Here X is the instance space; Y is the codomain (or label) space; G ⊆ YX is the class of games; S is
the solution space; finally, λ : X ×G× S→ {0, 1} measures local loss. In standard PAC learning
(Section 1.3), G = S and λ(x, g0, g1) = 0 ⇐⇒ g0(x) = g1(x).

Given a game g ∈ G and m points T = 〈(xj , g(xj))〉mj=1, the empirical error (or empirical risk) of
s ∈ S is

L̂T (g, s) =
1

m

∑
(xj ,g(xj))∈T

λ(xj , g, s),

and the statistical error (or statistical risk) as LD(g, s) = E
T∼Dm

[λ(xj , g, s)]. A PAC solver for

a STATISTICALSOLUTION Ψ is an algorithm L whose input is a list T = 〈xj , g(xj)〉mj=1 of m
values xj ∈ X labelled by some unknown g ∈ G, and whose output is a solution s∗ ∈ S; its
sample complexity, denoted mL(ε, δ), is the minimal number of samples required such that for any
m ≥ mL(ε, δ), Pr

T∼Dm
[LD(g, s∗) > ε] < δ. We let mPAC

Ψ (ε, δ) be the minimal sample complexity

mL(ε, δ) required by any PAC solver L for Ψ.

2.1 Consistent Solvers and Barriers of Indistinguishability

In standard PAC learning, consistent or empirical risk minimizing (ERM) solvers play an important
role; these are algorithms that minimize empirical error (L̂T (h)) on the training sample. As discussed
in Section 1.3, for binary functions, consistent algorithms are PAC learners whose sample complexity
is bounded by the VC dimension. We first define a notion of consistency for solution concepts.

Definition 2.1. An algorithm Am : (X × Y)m → S is said to be a consistent solver for the STATIS-
TICALSOLUTION problem Ψ if for all g ∈ G, and for any set of m samples Tm = 〈xj , g(xj)〉mj=1,
Am takes as input Tm and outputs a solution s∗ = Am(Tm) ∈ S such that the empirical loss of the
solution s∗ over Tm is 0: L̂Tm(g, s∗) = 0. In other words, for any input batch Tm labelled by some
underlying function g ∈ G, the algorithm returns a solution that has zero loss w.r.t g on all points in
the input sample.

The definition of consistent solving presents a subtle yet crucial departure from the corresponding
result in standard PAC learning. In PAC learning, since λ(x, g, h) = 1[g(x) = h(x)], if there are
two functions g0, g1 ∈ G such that g0(x) = g1(x) for a point x ∈ X , then for any hypothesis h,
λ(x, g0, h) = λ(x, g1, h). Therefore, even if two functions g0, g1 ∈ G generate an equivalent sample
T = 〈xj , yj〉mj=1 = 〈xj , g0(xj)〉mj=1 = 〈xj , g1(xj)〉mj=1, if h is consistent with samples (xj , yj) in T ,
then it is consistent with both g0 and g1. In fact, this implies that, time complexity considerations
aside, a consistent solution always exists in standard learning, and can be found via exhaustive search.
This is not the case in solution concept learning; two functions g0, g1 ∈ G may generate an equivalent
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sample T = 〈xj , yj〉mj=1, yet disagree on a solution (this is noted in prior works [24, 32]). Intuitively,
this occurs since game-theoretic solutions treat unobserved regions of players’ preferences. For
example, in PAC market equilibria, one must inevitably set prices for unobserved goods, and assign
bundles to players without knowing what their value might be; in hedonic games, a partition of
players may contain subsets completely unobserved in the sample data. It is often useful to think of
domains where this issue does not occur, as captured in the following definition. Given a labelled
sample of m points T ∈ (X × Y)m, let G|T be the set of games in G which agree with T .
Definition 2.2. A STATISTICALSOLUTION Ψ is said to satisfy the consistent solvability criterion if
for all m and all T ⊆ (X × Y)m, there exists some s ∈ S such that for all g ∈ G|T , the empirical
loss L̂T (g, s) is 0.

2.2 A Dimension Theory for Game-Theoretic Solutions

We now present a novel definition of dimension for the PAC solution setting, and use it to bound the
sample complexity for finding solutions to problem domains.
Definition 2.3 (Solution-based Dimension). Given some C ⊆ X , we say the set C is S-shattered
in Ψ if there exists a game g ∈ G, such that for every binary labelling b : C → {0, 1} there exists a
solution s ∈ S (that may depend on b) such that for all x ∈ C, λ(x, g, s) = b(x).

The Solution-based dimension of Ψ, denoted Sd(Ψ), is the size of the largest set S-shattered in Ψ,
and (C, g) as the corresponding shattering witness.

Sd(Ψ) bounds the sample complexity of consistent solutions for Ψ (i.e. mPAC (ε, δ)); however,
we first prove a stronger claim, using the idea of uniform convergence discussed in Section 1.3. If
we define the sample complexity for uniform convergence mUC (ε, δ) as the number of samples
required such that the empirical loss of any solution is ε-close to its statistical loss, then mUC (ε, δ)
is polynomially dependent on the solution dimension of the problem.
Theorem 2.4. There are universal constants α1 and α2, such that if Sd(Ψ) = d, then for a sample
of m ≥ α1

d+log( 1
δ )

ε2 points T = 〈xj , yj〉mj=1,

Pr
T∼Dm

[∃g ∈ G|T , s ∈ S : |L̂T (g, s)− LD(g, s)| > ε] < δ.

Furthermore, if a solution s∗ is consistent, i.e. L̂T (g, s∗) = 0, then for any m greater than
α2

ε

(
log
(

1
ε

)
d+ log

(
1
δ

))
, we have that Pr

T∼Dm
[LD(g, s∗) > ε] < δ.

Note that in particular, mPAC (ε, δ) ≤ mUC (ε, δ), and both are polynomially dependent on Sd(Ψ), 1
ε

and log 1
δ .

As a useful sanity check, we observe that Sd collapses to the classic VC dimension when learning
classifiers: when S = G = H ⊆ 2X , then Sd(Ψ) = VC (H). Similarly, when S = G = H ⊆ YX
(i.e. for multiclass learning problems with a general domain Y), Sd collapses to the graph dimension
[18]. We now observe few immediate corollaries of the above uniform convergence result.
Corollary 2.5. Given a STATISTICALSOLUTION problem Ψ = 〈X ,Y,G,S〉:
Simultaneous Constraints: if multiple local loss functions λ1, . . . , λk need to be simultaneously
approximated within ε, i.e. ∀i ∈ [k] : |L̂i(g, s) − LiD(g, s)| < ε, then the sample complexity of
finding a solution satisfying all of them is in O(max

i∈[k]
{mUC

i (ε, δ)}).

Separable Conjunctions: if there are local constraints λ1 over S1, and λ2 over S2, where SΨ =
S1 × S2, such that we need to bound their conjunction within ε, i.e. Pr[λ1(x, g, s1) ∧ λ2(x, g, s2)],
then mUC (ε, δ) is in O( max

i∈{1,2}
{Sd(Ψi)}).

The proof of Corollary 2.5 is relegated to the appendix. The following claim (whose proof is also
relegated to the appendix) is also useful
Corollary 2.6 (Sd for Argmax). Let Ψmax be defined by G = {f : X → Y} and S = X , where Y
is endowed with a total order �, and λ(x, g, x∗) = 1[g(x) � g(x∗)]. Then, Sd(Ψmax) = 1.

To conclude, in order to establish an efficient PAC algorithm for a problem Ψ, it suffices to upper-
bound m(Ψ) by its solution dimension Sd(Ψ).
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2.3 Uniform Convergence Beyond Consistency

As discussed in Section 1.3, uniform convergence complexity bounds can bound the sample complex-
ity for Agnostic PAC learning via Empirical Risk Minimizers (ERM learners). However, agnostic
solution learning can be defined in many ways. We discuss two definitions, for which the correspond-
ing notion of ERM solving has a sample complexity that follows from uniform convergence.
Definition 2.7. For a given STATISTICALSOLUTION Ψ, A is a worst-case Agnostic PAC Solver if

Pr
T∼Dm

[LD(g,A(T )) ≤ min
s

max
g′∈G|T

LD(g′, s) + ε] ≥ 1− δ;

it is a Bayesian agnostic PAC Solver, for a prior over games D̃, if

Pr
T∼Dm

[ E
g′∼D̃

[LD(g′,A(T ))|g′ ∈ G|T ] ≤ min
s

E
g′∼D̃

[LD(g′, s)|g′ ∈ G|T ] + ε] ≥ 1− δ.

Corollary 2.8. Given some STATISTICALSOLUTION, the sample complexity for Worst-Case and
Bayesian agnostic PAC solving is in O(Sd(Ψ)), and is achievable by an empirical risk minimizer.

The proof of Corollary 2.8 is relegated to the appendix.

3 Learning Game-Theoretic Distribution-Based Solution Concepts

Let us now apply our theory for learning solution concepts in game-theoretic domains; all problems
described below follow a common theme: rather than learning preferences, we learn solutions using
the sampled dataset. While the focus of this paper is on game-theoretic solutions, our theory applies
for other types of solution concepts as long as one can define a local loss function λ that depends
only on a given point in x ∈ X , g ∈ G and the solution s ∈ S (see Section 2).

3.1 The PAC Core for Hedonic Games

Let us begin with hedonic games (Section 1.4.1); we analyze another type of cooperative game (TU
cooperative games) in the appendix. A partition π∗ of N PAC stabilizes a hedonic game w.r.t. a distri-
bution D ∈ ∆(2N ) (where i ∈ π∗(i) for every i ∈ N ), if PrS∼D [∀i ∈ S : vi(S) ≥ vi(π∗(i))] < ε.
The local loss function λ takes as input a coalition S ⊆ N , players’ valuations ~v = 〈v1 . . . , vn〉
and a partition π ∈ Π(N); λ(S,~v, π) = 1 iff S can block π under ~v. Our key result here is that the
sample complexity of PAC stabilzing hedonic games is linear in n, for any classH of games.
Lemma 3.1. For any class of Hedonic Games H over n players, the solution dimension of PAC
stabilizingH is ≤ n.

Proof. By definition, for a given hedonic game h ∈ H, a partition π, and a coalition S ⊆ N , the local
loss λ(S, h, π) = 0 if and only if there exists a player in S that does not prefer it over her assigned
coalition in π, i.e. vi(S) < vi(π(i)). If a set of m coalitions S = {S1, . . . , Sm} is S-shattered by a
witness h ∈ H, then for each Sj ∈ S , there exists a coalition structure πj such that λ(Sj , h, πj) = 0,
but λ(Sk, h, πj) = 1 for all k 6= j. In other words, under πj , there exists some i ∈ Sj such that
vi(Sj) < vi(πj(i)), and for all k 6= j and for all i ∈ Sk, vi(Sk) ≥ vi(πj(i)). We conclude that for
every Sj ∈ S , there exists a player i who strictly prefers all coalitions that she belongs to in S \ {Sj}
over Sj . More formally, we let T (i) be the set of coalitions which are least preferred by player i in
S; note that T (i) must be a singleton, or else we arrive at a contradiction (the least liked coalition
must be unique). Therefore, if S is S-shattered, the number of coalitions in S is bounded by n, and
we are done.

Applying Theorem 2.4 and leveraging Lemma 3.1 we obtain the following result:
Theorem 3.2. A class of Hedonic gamesH is efficiently PAC stabilizable iff there exists an algorithm
that outputs a partition consistent with samples evaluated by a game g ∈ H; the sample complexity
in this case is O(n).

In particular, Sliwinski and Zick [32] propose a consistent algorithm for top-responsive hedonic
games [13, Chapter 15]; Igarashi et al. [24] present a consistent algorithm for hedonic games whose
underlying interaction graph is a tree [23]. Indeed, given Theorem 3.2, it suffices to show that the
algorithms they propose are consistent; their correctness is immediately implied by our results.
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3.2 PAC Competitive Equilibria

Competitive equilibria (CE) readily admit a PAC variant: given an allocation π, let Pi(π) = {S ⊆
G : vi(S) > vi(π(i))} be the set of bundles that are strongly preferred by i to π(i). One can think of
a CE as an outcome that ensures that Pi(π) ∩ Ai(~p, βi) = ∅, i.e. i cannot afford any bundle that it
prefers to its assigned bundle. In the statistical variant, we wish to ensure that this intersection has
a low measure under a distribution D over 2G. We define a loss λi per player i as follows: given a
bundle of goods S ⊆ G, player valuations ~v and a market outcome 〈π, ~p〉, λi(S,~v, 〈π, ~p〉) = 1 iff S
is both affordable (in Ai(~p, βi)), and is preferred to π(i) (in Pi(π)). Our objective is to ensure that
the overall error of player loss functions λ1, . . . , λn are within an error of ε. Lemma 3.3 bounds the
sample complexity for PAC learning this problem, mPAC (ε, δ), by O(k). Therefore, by Theorem 2.4
and Corollary 2.5, any algorithm that generates an outcome consistent against m sampled bundles
would also be a PAC CE solver with a sample complexity in O(k). We refer to an instance of the CE
problem as ΨCE (N,G,~v, ~β).

Lemma 3.3. The solution dimension Sd(ΨCE (N,G,~v,~b)) is O(k), where k = |G|.

Proof. For every player i ∈ N , the local constraint λi can be seen as a conjunction of
λ1,i(S,~v, 〈π∗, ~p∗〉) = 1

[∑
gj∈S p

∗
j > βi

]
, and λ2,i(S,~v, 〈π∗, ~p∗〉) = 1[vi(S) > vi(π

∗(i))]. Since
λ1,i is defined by a linear constraint set by ~p∗ and βi, it can be S-shattered by O(k) samples (in a
manner similar to linear separators in standard PAC learning), which bounds its S-dimension. On
the other hand, every λ2,i is a simple argmax constraint, which by Corolllary 2.6, has a solution
dimension of 1. By applying Corollary 2.5, the dimension of λi = λ1,i ∧ λ2,i is O(k); since the
condition of λi must hold for each i ∈ N , the CE loss is given by λ =

∧
i λi, which is O(k) by

Corollary 2.5.

Lemma 3.3 bounds the dimension of ΨCE by O(k); however, the challenge is to design algorithms
that generate consistent market solutions: bundle assignments and prices that ensure that all observed
goods have been allocated, with no excess demand or assignment. We show the existence of
consistent solutions in two different settings; however, our solutions relax the market constraints.
For Fisher markets with budgets ~β, for any ζ > 0, there exists a perturbed budget vector ~β∗ with
‖~β∗ − ~β‖∞ ≤ ζ for which there exists a consistent solution 〈π∗, ~p∗〉 w.r.t. ~β∗; this result holds for
any class of valuation functions. Theorem 3.4 utilizes inefficient market outcomes, where a good
may be allocated to more than one person; it is easy to think of an allocation π as a list of vectors
in {0, 1}k, where πj(i) = 1 iff the j-th good is allocated to player i. If all goods are allocated, then∑
i∈N π(i) = ~1; if goods are over-allocated, then

∑
i∈N π(i) > ~1.

Theorem 3.4. We are given ΨCE (N,G,~v, ~β), and m sampled bundles S1, . . . , Sm ⊆ G evaluated
by ~v. For any ζ > 0, there exists a perturbation on ~β, ~β∗ such that ‖~β − ~β∗‖∞ < ζ, for which there
is an outcome 〈π∗, ~p∗〉 such that players with budget levels ~β∗ do not demand S1, . . . , Sm; moreover,
‖
∑
i∈N π

∗(i)−~1‖2 ≤ k
2 , where ~1 = (1, 1, . . . , 1) ∈ [0, 1]k.

Proof. We restrict ourselves to finding an assignment using only the sampled bundles and the empty
bundle, i.e. for all i ∈ N : π∗(i) ∈ {∅, S1, . . . , Sm}; thus, we avoid making any assumptions about
the structure of vi. Budish [15, Theorem 1] shows that given ~β such that maxi βi > mini βi, for
any ζ > 0 there exists a perturbed budget vector ~β∗ and an outcome 〈π∗, ~p∗〉 for which: π∗(i) ∈
argmaxS∈Ai(~p∗,βi) vi(S); ‖~β − ~β∗‖∞ < ζ and ‖

∑
i∈N π

∗(i)−~1‖2 ≤ k
2 . Assuming that for every

other S /∈ {∅, S1, . . . , Sm}, vi(S) ≤ 0 for all i ∈ N , and applying the result by Budish, there exists
a consistent outcome satisfying our requirements.

While it makes no assumptions on player valuations, Theorem 3.4 is not constructive: it relies on a
classic result from Budish [15], which utilizes a fixed-point theorem by Cromme and Diener [17]
for discontinuous maps to bound excess demand. We analyze exhange economies, a market variant
with divisible goods, in the appendix. In both cases, we are able to show that consistent market
solutions exist. However, our results show the existence of solutions which only partially satisfy the
equilibrium guarantees; moreover, both cases utilize non-constructive fixed-point theorems, rather
than provide an efficient algorithm. There is little reason to believe that consistent solutions can be
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easily computed in the general case; finding market solutions in settings similar to ours is PPAD
complete [29].

3.3 PAC Condorcet Winners

We conclude with a discussion of statistical solution concepts in voting (see Section 1.4.3 above). A
PAC Condorcet winner is a candidate c∗ such that Prc∼D[B(�, c, c∗)] < ε (recall that B(�, c, c∗) =
1 iff a majority of voters prefer c to c∗). We refer to the problem of finding a Condorcet winner as
ΨCond . We require that given a sample T ⊆ C of candidates, we can infer voters’ preferences w.r.t.
T . This can be encoded as a valuation function of i over the candidates (as is the case for hedonic
games, see Section 3.1), or the truncated ranking �i over the sampled candidates for every i ∈ N .
Given a class of preference profiles H, let ΨCond(H) be the problem of finding Condorcet winners
for profiles in H. We define the tournament graph: this is a directed graph where candidates are
nodes; given a preference profile �, there is an edge from a to b if a beats b in a pairwise election
under �.

Theorem 3.5. Given a class of preference profiles H over C such that |C| > 1, and a sample of
candidates T ⊆ C, the following are equivalent: (a) There exists a consistent solver for ΨCond(H)
that returns a PAC Condorcet winner c∗ ∈ T . (b) Sd(ΨCond) = 1. (c) for every preference profile
�∈ H, the tournament graph is transitive.

In particular, if H satisfies the above, there exists a PAC solver for ΨCond(H) whose sample
complexity is 1

ε log
1
δ .

Proof. If there is a preference profile h ∈ H for which the tournament graph contains a 3-cycle, then
there immediately exist two vertices of that cycle that can be S-shattered. This is true since for every
H with more than one candidate, every singleton is shattered. Therefore, Sd(ΨCond) = 1 if and
only if there are no preference profiles with Condorcet 3-cycles, which is equivalent to transitivity.
Similarly, the existence of Condorcet winner for every C ′ ∈ C is equivalent to absence of any cycles,
which is equivalent to transitivity of the tournament graph.

Two notable families of voter preferences exhibit transitive preferences: single peaked preferences
[13, Chapter 2] and single-crossing preferences [21] (see [20] for an overview); thus, if H is any of
the former, a Condorcet winner can be PAC learned using 1

ε log 1
δ samples. Whenever the Condorcet

winner is known to exist within a sample C ′ ∈ C, the problem is equivalent to the argmax problem
discussed in Corollary 2.6. However, as shown in Section 2.3, the graph dimension is still useful
as a means to estimate (within ±ε with high confidence) the behavior of a candidate in pairwise
elections using a small empirical sample, even when no Condorcet winner exists. Theorem 3.6
bounds Sd(ΨCond) in the case where Condorcet winners do not exist. The result bounds the solution
dimension in terms of the underlying structure of the tournament graph, and is based on Corollary 2.8;
the full proof is in the appendix.

Theorem 3.6. Let k be the largest number of candidates, such that for some tournament graph in H,
every pair among them is part of some 3-cycle. Then Sd(ΨCond(H)) ≤ log2(k + 2).

4 Conclusions and Future Work

We propose a formal, general framework for learning solution concepts from data, and apply it to
several problems in economic domains. While several solution concepts have a polynomial sample
complexity, efficiently computing a consistent solution remains a challenging open problem. In the
case of market equilibria, we believe that there exist consistent algorithms for specific valuation
classes, such as gross-substitutes [22] or submodular valuations. While we mostly focus on the
realizable case, solving the non-realizable case is an interesting open problem. Our model easily
accommodates approximate solutions (as we do for market equilibria) by assimilating the approxi-
mation guarantee into the loss function; this can be done generally by adopting the PMAC learning
framework [3]. Our work upper-bounds the solution dimension using a generalization of the graph
dimension; however, we offer no lower bounds. Daniely et al. [18] use the Natarajan dimension [27]
to establish lower bounds in multiclass learning; using the Natarajan dimension to lower-bound the
solution dimension is a promising direction for future work.
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Appendix
A Missing Proofs for Section 4.2

We now present the proof for the Theorem 2.4 that provides an upper bound to the sample complexity
for uniform convergence in terms of the solution dimension.
Definition 2.3 (Solution-based Dimension). Given some C ⊆ X , we say the set C is S-shattered
in Ψ if there exists a game g ∈ G, such that for every binary labelling b : C → {0, 1} there exists a
solution s ∈ S (that may depend on b) such that for all x ∈ C, λ(x, g, s) = b(x).

The Solution-based dimension of Ψ, denoted Sd(Ψ), is the size of the largest set S-shattered in Ψ,
and (C, g) as the corresponding shattering witness.
Theorem 2.4. There are universal constants α1 and α2, such that if Sd(Ψ) = d, then for a sample
of m ≥ α1

d+log( 1
δ )

ε2 points T = 〈xj , yj〉mj=1,

Pr
T∼Dm

[∃g ∈ G|T , s ∈ S : |L̂T (g, s)− LD(g, s)| > ε] < δ.

Furthermore, if a solution s∗ is consistent, i.e. L̂T (g, s∗) = 0, then for any m greater than
α2

ε

(
log
(

1
ε

)
d+ log

(
1
δ

))
, we have that Pr

T∼Dm
[LD(g, s∗) > ε] < δ.

Proof. For any g ∈ G, consider Φg = {φg,s : X → {0, 1}|s ∈ S, φg,s(x) = 1 − λ(x, g, s)}.
Observe that, Sd(Ψ) = max

g
VC (Φg); this implies that if Sd(Ψ) = d, then for every g ∈ G,

|Φg| ≤ |X |d.

From Theorem 1.2, we know that for any g ∈ G|T and f ∈ 2X , if T contains at least m ≥ αd+log( 1
δ )

ε2

samples (for the appropriate constant α, then (where LφT and LφD denote the corresponding loss
functions for binary functions):

Pr
T∼Dm

[∃φg,s ∈ Φg : |LφT (φg,s, f)− LφD(φg,s, f)| > ε] < δ (1)

Let 1 : X → {0, 1}, such that ∀x : 1(x) = 1. Then, it follows that λ(x, g, s) = I[φg,s(x) 6= 1(x)].
By substituting the loss functions in Eq (1), and taking f = 1, we get:

Pr
T∼Dm

[∃g ∈ G|T , s ∈ S : |L̂T (g, s)− LD(g, s)| > ε] < δ.

This proves that mUC (ε, δ), and mPAC (ε, δ) are both polynomially bounded by Sd(Ψ). If a solution
is consistent, then we also know that there exists some s∗ ∈ S such that for all g ∈ G|T , φg,s∗ = 1 ∈
Φg. The second part of the statement similarly follows from the upper bound of mPAC for binary
functions in Theorem 1.2.

Let us next prove Corollary 2.5.
Corollary 2.5. Given a STATISTICALSOLUTION problem Ψ = 〈X ,Y,G,S〉:
Simultaneous Constraints: if multiple local loss functions λ1, . . . , λk need to be simultaneously
approximated within ε, i.e. ∀i ∈ [k] : |L̂i(g, s) − LiD(g, s)| < ε, then the sample complexity of
finding a solution satisfying all of them is in O(max

i∈[k]
{mUC

i (ε, δ)}).

Separable Conjunctions: if there are local constraints λ1 over S1, and λ2 over S2, where SΨ =
S1 × S2, such that we need to bound their conjunction within ε, i.e. Pr[λ1(x, g, s1) ∧ λ2(x, g, s2)],
then mUC (ε, δ) is in O( max

i∈{1,2}
{Sd(Ψi)}).

Proof. Part 1 (Simultaneous Constraints) is a direct corollary of Theorem 2.4; if m ≥
max
i
{mPAC

i (ε, δ)}, then

∀i : Pr
T∼Dm

[ Pr
x∼D

[λi(x, g, s)] < ε] < δ.
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For part 2 (Separable Conjunctions), we are given a loss function λ : X ×G× (S1 × S2)→ {0, 1}
with λ(x, g, (s1, s2)) = λ1(x, g, s1) ∧ λ2(x, g, s2), such that for any g ∈ G, we wish to find
(s1, s2) ∈ S1 × S2 that bound the gap between the empirical and statistical loss.

For any s2 ∈ S2, let us define λ1|s2 : X ×G×S1 → {0, 1} with λ1|s2(x, g, s1) = λ(x, g, (s1, s2)) =
λ1(x, g, s1) ∧ λ2(x, g, s2). Observe that λ1|s2(x, g, s1) equals λ1(x, g, s1) whenever λ2(x, g, s2) =
1, and is otherwise 0 for every s1. We note that a set shattered under λ1|s2 cannot contain any point
x′ such that λ2(x′, g, s2) = 0 (points for which λ2(x′, g, s2) = 0 always evaluate to 0 under λ and
do not admit Boolean functions b for which λ(x′, g, (s1, s2)) = b(x′) = 1); thus, we know that a set
shattered in λ1|s2 is also shattered under λ1, therefore the solution dimension corresponding to λ1|s2
is bounded by the solution dimension corresponding to λ1. We also observe that the formulas for
empirical and statistical loss under λ1|s2 and λ are equivalent; therefore, by Theorem 2.4, we know
that if m ≥ mUC

1 (ε, δ)

∀g ∈ G, s1 ∈ S1, s2 ∈ S2 : Pr[|L̂1|s2T (g, s)− L1|s2D (g, s)| < ε] > 1− δ (2)

Therefore, mUC ∈ O(max{mUC
i }).

We note that the bound for conjuncts in Corollary 2.5 trivially generalizes to any number of conjunc-
tions, i.e. if λ = λ1 ∧ · · · ∧λq , the dimension of λ is upper-bounded by the dimension of the domains
corresponding to λ1, . . . , λq .
Corollary 2.6 (Sd for Argmax). Let Ψmax be defined by G = {f : X → Y} and S = X , where Y
is endowed with a total order �, and λ(x, g, x∗) = 1[g(x) � g(x∗)]. Then, Sd(Ψmax) = 1.

Proof. Let us assume that a setC = {x1, x2} is S-shattered with g ∈ G. This implies the existence of:
i) x′ such that λ(x1, g, x

′) = 0 =⇒ g(x′) � g(x1) and λ(x2, g, x
′) = 1 =⇒ g(x2) � g(x′). And,

ii) x′′ such that λ(x1, g, x
′′) = 1 =⇒ g(x1) � g(x′′) and λ(x2, g, x

′) = 0 =⇒ g(x′′) � g(x2).
However, since � is transitive, this leads to contradiction.

Finally, we present the full proof for ERM solvers for non-realizable agnostic solution learning.
Corollary 2.8. Given some STATISTICALSOLUTION, the sample complexity for Worst-Case and
Bayesian agnostic PAC solving is in O(Sd(Ψ)), and is achievable by an empirical risk minimizer.

Proof. We first prove the result for worst-case agnostic learning. Let Am : (X × Y)m → S be an
ERM Solver that for any sample of m ≥ mUC (ε, δ) points T = 〈(xi, yi)〉mi=1, outputs a solution
Am(T ) ∈ S that minimizes max

g∈G|T
L̂T (g,Am(T )).

Let s∗ ∈ S be a solution that minimizes the worst-case statistical loss for any game g consistent with
the sample, i.e.

s∗ ∈ argmins∈S max
g∈G|T

LD(g, s).

By definition of Am(T ), we know that

max
g∈G|T

L̂T (g,Am(T )) ≤ max
g∈G|T

L̂T (g, s∗).

For a sample of m ≥ mUC (ε/2, δ/2) points drawn i.i.d. from D, we know by Theorem 2.4, that for
any g0 ∈ G, with probability ≥ 1− δ/2 we have:

|LD(g0,Am(T ))− L̂T (g0,Am(T ))| < ε

2
,

and, with probability ≥ 1− δ/2, for any g′ ∈ G,

|L̂T (g0, s
∗)− LD(g′, s∗)| < ε

2
.

Putting it all together, we get that with probability ≥ δ,

LD(g0,Am(T )) ≤L̂T (g0,Am(T )) +
ε

2
≤ max
g∈G|T

L̂T (g,Am(T )) +
ε

2

≤max
g∈G|T

L̂T (g, s∗) +
ε

2
≤ max
g∈G|T

LD(g, s∗) +
ε

2
+
ε

2
= max
g∈G|T

LD(g, s∗) + ε.
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Therefore, if m ≥ mUC (ε/2, δ/2), then
Pr

T∼Dm
[LD(g,Am(T )) ≤ min

s∈S
max
g′∈G|T

LD(g′, s) + ε] ≥ 1− δ.

For Bayesian agnostic learning, we present the result for distributions with a finite support over G; the
case where the distribution has an infinite support over G is similar. Let D̃ be some prior distribution
with a finite support over G. Then, by definition

Eg′∼D̃[LD(g′,A(T ))|g′ ∈ G|T ] =
∑
g∈G|T

LD(g, s) Pr
D̃

(g).

When m ≥ mUC (ε, δ), by Theorem 2.4, for every g ∈ G|T and s ∈ S, Pr[|LD(g, s)− L̂T (g, s)| ≤
ε] > 1− δ. Combining these expressions, with probability mass D̃, we get

Pr[|Eg′∼D̃[LD(g′, s)|g′ ∈ G|T ]− Eg′∼D̃[L̂T (g′, s)|g′ ∈ G|T ]| ≤ ε] > 1− δ.

Therefore, an ERM solver that minimizes Eg′∼D̃[L̂T (g′, s)|g′ ∈ G|T ], also bounds the statistical loss
within ε.

B The PAC Core in TU Cooperative Games

B.1 Cooperative Games

In transferable utility (TU) cooperative games players’ preferences are induded by a function v :
2N → R+ mapping every subset S ⊆ N to a value v(S) ∈ R+. We are interested in finding
“good” payoff divisions for the game. These are simply vectors ~x = (x1, . . . , xn) ∈ Rn+ such that∑n

i=1 xi = v(N) (efficiency) and xi ≥ v({i}) for all i ∈ N (individual rationality). We say that a
coalition S ⊆ N blocks a payoff division ~x if

∑
i∈S xi < v(S); that is, the coalition S can guarantee

its members a strictly higher reward should they choose to break off from working with everyone
else. The core is the (possibly empty) set of payoff divisions from which no coalition can deviate; in
other words, core(N, v) = {~x ∈ Rn+ | ∀S ⊆ N :

∑
i∈S xi ≥ v(S);

∑n
i=1 xi = v(N)}.

B.2 The PAC Core for TU Cooperative Games

Balcan et al. [7] propose a learning-based approach to finding a PAC stable payoff division for TU
cooperative games (see definitions in Section B.1). Given a distribution D over 2N , a payoff division
~x∗ ε-PAC stabilizes the game 〈N, v〉 with respect to D if

Pr
S∼D

[
v(S) <

∑
i∈S

x∗i

]
< ε.

In what follows, we provide a proof for the PAC stabilizability of TU cooperative games in the
language of Theorem 2.4; direct proofs of this fact appear in [4, 11].
Theorem B.1. The solution dimension of TU cooperative games is O(n).

Proof. We show that any set of> n coalitions cannot be S-shattered as per Definition 2.3. Taking a set
of coalitions S = {S1, . . . , Sm}, it is S-shattered if there is some TU cooperative game v : S → R+

such that for all T ⊆ S , there exists some vector ~x∗ in Rn such that for all T ∈ T , v(T ) ≥ x(T ), and
for all S ∈ S \ T , v(S) < x∗(S). Let us bound the dimension m of S . The problem is equivalent to
shattering sets of vectors in the hypercube {0, 1}n with linear classifiers, which is well-known to be
impossible for sets of size > n [1]. We conclude that Sd for the PAC core of TU cooperative games
is ≤ n.

We note that the solution computed in Balcan et al. [4] is only efficient (i.e. with
∑n
i=1 xi = v(N))

if the core of the cooperative game v is not empty. In the case where the game v has an empty core,
the solution computed still satisfies the core constraints with high probability with respect to D, but
may not be efficient. However, the payoff outputted is using the minimal subsidy required in order
to stabilize the game. In other words, the total payoff is no more than the cost of stability of the
underlying game v [2]. Efficiency is an important requirement: without it, one can “cheat” and pay
each player some arbitrarily high amount, guaranteeing that the underlying game is stable.

13



C PAC Competitive Equilibria in Exchange Economies

In Section 1.4.2 we define Fisher markets; these are markets where goods are indivisible, and each
player i ∈ N has a budget βi. In what follows, we consider exchange economies [28, Chapters 6 and
9], which follow a somewhat different structure.

C.1 Exchange Economies

In exchange economies we have a set G = {g1, . . . , gk} of k divisible goods, and player valuations
are of the form vi : [0, 1]k → R+ for every i ∈ N ; bundle assignments are π : N → [0, 1]k

(assigning a quantity qj ≤ 1 of good gj to player i can be thought of as player i receiving qj percent
of good gj).

In exchange economies with divisible goods, we assume that each player has an initial endowment of
goods ~ei ∈ [0, 1]k, denoting the (divisible) amount of each good that she possesses. It is no loss of
generality to assume that

∑n
i=1 ~ei,j = 1 for every good gj ; in other words, the quantity ei,j is the

relative amount of good gj that player i possesses. Given item prices, players demand certain item
bundles. The affordable set is the set of all divisible goods whose total price is less than the worth of
player i’s endowment under ~p.

Ai(~p) =

~g ∈ [0, 1]k :

k∑
j=1

pjgj ≤
k∑
j=1

pjei,j

 .

An outcome 〈π, ~p〉 is a competitive equilibrium if π(i) ∈ Ai(~p), and ∀~g ∈ A(~p), vi(π(i)) ≥ vi(~g).

C.2 PAC Market Equilibria in Exchange Economies

We assume that player preferences are convex. We show that for any sample of fractional bundles
T = {~b1, . . . ,~bm}, there exists a solution 〈π∗, ~p∗〉 consistent with T with non-positive excess
assignment (but potentially leaving some goods unassigned). We assume that none of the goods are
undesirable, i.e. for every good there exists at least one player that assigns a positive value to some
quantity of that good.

Theorem C.1. Suppose we are given an exchange economy for divisible goods with convex pref-
erences and without undesirable goods. We observe m sampled bundles T = {~b1, . . . ,~bm} and
player valuations over the bundles, along with player endowments ~e1, . . . , ~en. There exists a solution
〈π∗, ~p∗〉 such that every player i is assigned a bundle they can afford given their endowment, which is
consistent (against any possible valuation functions that could have generated the observed values).

Proof. Without loss of generality, let us work with the reduced space of only observed goods. Let
U denote the underlying space of convex preferences from which we draw player preferences over
assignments. Let U|i,T denote the space of all valuation functions u that satisfy the observed values,
ie. u(~bj) = vi(~bj) for every j ∈ [m]. Since prices only need to satisfy the affordability criterion for
every player, i.e. ~p∗ · π(i) ≤ ~p∗ · ~ei, we can normalize and assume that prices belong to the simplex
∆n−1. Also, observe that the absence of undesirable goods implies that in any consistent solution the
price of any observed good cannot be 0.

Now let us define the demand set function as D : U ×∆n−1 × [0, 1]n → 2[0,1]n , such that

D(u, ~p,~ei) =
{
~b ∈ [0, 1]n : u(~b) ≥ u(~bj)∀bj ∈ T ; and ~p ·~b ≤ ~p · ~ei

}
.

We observe that under convex preferences (i.e. quasi-concave utility functions), for every u, ~p and ~e,
D(u, ~p,~e) is a convex and compact body; in addition, D is continuous in ~p. Define, for every player
i ∈ N , DT

i (~p) =
⋂
u∈U|i,T D(u, ~p,~e): DT

i (~p) is the set of all possible bundles that player i might
demand under the price vector ~p, under all possible utility functions that agree with the sample T .
The intersection DT

i is convex and compact, as well as continuous in ~p. Also observe that DT
i (~p)

is always non-empty, since there is at least one bundle among the observed samples and the empty
bundle which belongs to each of the D(u, ~p,~e).
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Let f : [0, 1]k×n → [0, n]k be the excess demand function: f(π) =
∑
i∈N π(i) − ~1 (where ~1 =

(1, 1, . . . , 1) ∈ [0, 1]n). Let z : ∆n−1 → 2[0,k]n , be the function z(~p) = {f(π) : π ∈
∏
i∈K D

T
i (~p)}.

The function f is linear, therefore z(~p) is convex and compact, and z is continuous. Using z, we
define a function g : ∆n−1 → 2∆n−1 such that r-th component is given by

g(~p) =

{
~g : where gr(~p) =

pr + max{0, zr}
1 +

∑n
s=1 max{0, zs}

, for some ~z ∈ z(~p)

}
By applying Kakutani’s fixed-point theorem over g, we get the existence of some ~p∗ such that
~p∗ ∈ g(~p∗). This implies the existence of some π ∈

∏
i∈K D

T
i (~p), such that f(π) ∈ z(~p∗) satisfies

p∗r =
p∗r + max(0, fr(~p

∗))

1 +
∑n
s=1 max(0, fs(~p∗))

Let r∗ some non-positive component of f(π), as argued above; then p∗r = p∗r(1 +∑n
s=1 max(0, fs(~p

∗))); this implies that for all r: max(0, fr(~p
∗)) = 0. Therefore, there exists

some allocation π∗ with non-positive excess demand at ~p∗, such that 〈π∗, ~p∗〉 is consistent with the
observed bundles against all possible u ∈ U|i,T for every player i.

D PAC Condorcet Winners

Recall that a Condorcet winner is a candidate c∗ that beats every other candidate c in a pairwise
election, i.e. for every other candidate c, a majority of voters prefer c∗ to c. We note that if there are
only two candidates, then a Condorcet winner trivially exists (barring the case when the votes are
tied); however, when there are three or more candidates, a Condorcet winner is not guaranteed to
exist. This case is known in the literature as Condorcet cycles (or Condorcet paradoxes). For the sake
of completeness, we provide a simple example of a voting profile where no candidate is a Condorcet
winner.
Example D.1. Consider a setting with three candidates a, b, c and three voters, 1, 2 and 3 whose
preferences over a, b, c are as follows:

1 :a �1 b �1 c

2 :b �2 c �2 a

3 :c �3 a �3 b

1 and 3 prefer a to b; 1 and 2 prefer b to c; 2 and 3 prefer c to a. Therefore, there are no Condorcet
winners.

Next, let us provide a complete proof of Theorem 3.6.
Theorem 3.6. Let k be the largest number of candidates, such that for some tournament graph in H,
every pair among them is part of some 3-cycle. Then Sd(ΨCond(H)) ≤ log2(k + 2).

Proof. Let us assume that there is a set of size d, C0 ⊆ C, that is shattered. Then by definition of
shattering, there exists 2d different candidates corresponding to every subset of C0, such that for
f ∈ 2C0 there exists a candidate cf ∈ C, such that c1 ∈ C0 beats cf in the tournament graph if and
only if f(c1) = 1.

Let us focus on 2d − 2 of these candidates, corresponding to all non-trivial functions f ∈ 2C0 (let us,
for now, ignore the functions that assign a constant value (of 0 or 1) to all candidates in C0). Then,
for every pair of these functions f1 and f2, there exists a candidate c1 ∈ C0 such that f1(c1) = 1 and
f2(c1) = 0, and a candidate c2 such that f1(c2) = 0 and f2(c2) = 1. This implies the existence of a
directed path of length at most 2 from cf1 to cf2 , and vice versa. Since, in a tournament graph, either
the edge cf1 → cf2 or cf2 → cf1 exists, we know that cf1 and cf2 are members of some 3-cycle.
Since this is true for all such cf ’s, we know that 2d − 2 is less than or equal to largest number of
candidates, such that for some tournament graph in H, every pair amongst them is part of some
3-cycle.
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