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ABSTRACT
Can we trust black-box machine learning with its decisions? Can
we trust algorithms to train machine learning models on sensitive
data? Transparency and privacy are two fundamental elements of
trust for adopting machine learning. In this paper, we investigate
the relation between interpretability and privacy. In particular we
analyze if an adversary can exploit transparent machine learning
to infer sensitive information about its training set. To this end, we
perform membership inference as well as reconstruction attacks on
two popular classes of algorithms for explaining machine learning
models: feature-based and record-based influence measures. We em-
pirically show that an attacker, that only observes the feature-based
explanations, has the same power as the state of the art member-
ship inference attacks on model predictions. We also demonstrate
that record-based explanations can be effectively exploited to re-
construct significant parts of the training set. Finally, our results
indicate that minorities and special cases are more vulnerable to
these type of attacks than majority groups.

1 INTRODUCTION
Machine learning models are making increasingly high-stakes de-
cisions in a variety of application domains, such as healthcare,
finance and law [11, 14, 18]; driven by the need for higher predic-
tion accuracy, decision-making models are becoming increasingly
more complex, and as a result, much less understandable to various
stakeholders. Applying black-box AI decision makers in high-stakes
domains is problematic: model designers face issues understanding
and debugging their code, and adapting it to new application do-
mains [17]; companies employing black-box models may expose
themselves to various risks (e.g. systematically mis-classifying some
subgroup of their client base, or facing the negative consequences
of an automated decision without having the capacity to explain
it) [21]; finally, clients (i.e. those on whom decisions are made) are
at risk of being misclassified, facing unwarranted automatic bias,
or simply frustrated at their lack of agency in the decision-making
process [21]. This lack of transparency has resulted in mounting
pressure from the general public, the media, and government agen-
cies; several recent proposals advocate for the use of (automated)
transparency reports [12]. The machine learning (and greater CS)
community has taken up the call, offering several novel explanation
methods in the past few years (see Section 7). Transparency reports
offer users a means of understanding the underlying model and its
decsion making processes1. By and large, they do so by offering
users additional insights, or information about the model, with re-
spect to the particular decisions it made about them (or, in some
cases, about users like them).

1See https://distill.pub/2018/building-blocks/ for a particularly intuitive and interactive
explanation method for neural network architectures.

Releasing additional information is a risky prospect from a pri-
vacy perspective; however, despite the widespread work on trans-
parency measures, there has been little effort to address any privacy
concerns that arise due to the release of transparency reports. This
is where our work comes in.

Our Contributions. We start our investigation by asking the
following simple question.

Can an adversary leverage transparency reports in
order to infer private information?

We focus on inferring the presence of individual data points in
training set of the model, using membership inference attacks [27]
and reconstruction attacks. We analyze feature-based explanation
algorithms, with the emphasis on gradient-based methods, and
record-based algorithms, with the emphasis on methods that report
influential data points.

We show that gradient-based numerical influence measures, in-
cluding saliency maps [30], Integrated Gradients [34] and DeepLIFT
[28], can be used to accurately predict training set membership. We
accomplish this by observing the difference in the 1-norm of the
explanations for members and non-members. Our gradient-based
attack model achieves similar performance to the original attack
model proposed by Shokri et al. [27], while utilizing a much sim-
pler label space: rather than observing the model’s underlying label
distribution (which contains a significant amount of information
not normally observed), our attacker only observes the label, and
its gradient-based transparency report. We achieve this by carefully
adapting the original membership inference attack model to the
transparency domain, and show how the information we employ
is intrinsically related to key local parameters of the underlying
model.

In the case of record-based explanation methods, the attack
model is particularly appealing for our purposes because some
transparency reports reveal the identity of prominent training set
members as a mode of explanation [16]. We show that an attacker
can exploit record-based explanations to do much more than infer
the identity of a single point: it can infer a significant proportion
of the training data, by carefully using the explanation method as
an oracle to explore the training set.

For both explanation types, our exploration indicates that mi-
norities and outliers in the training data are particularly vulnerable
to being revealed; this raises significant concerns for the actual
deployment of the explanation methods in high-stakes domains.

2 PRELIMINARIES
We use the following basic notation: vectors are written as ®x ; given
an integerm, we write [m] = {1, . . . ,m}. We are given a dataset
X ⊆ Rn , which we wish to label by a model c , mapping each
datapoint ®x ∈ X to a distribution over k labels; when k = 2 we
often refer to the labels as ±1, and to c as a binary classifier. The n
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coordinates of the data are referred to as features. While the model
c outputs a distribution over labels — indicating its belief that a
given label fits the datapoint ®x — it often reveals a single label to
a user; this is simply the label deemed most likely to fit ®x . In this
work, we often distinguish between the labels assigned by a trained
model c , and the true data labels, given by ℓ : X → [k].

Families of models are often parameterized, with each possible
model defined by a set of parameters θ taken from a parameter space
Θ; for example, the family of linear models is parameterized by the
weight wi coefficient for each feature, thus Θ = Rn . We denote
the model as a function of its parameters as cθ . When picking a
good model for our data, it is often useful to think in terms of loss
functions; a loss function L : X × Θ → R takes as input the model
parameters θ and a point ®x , and outputs a real value L(®x ,θ ) ∈ R.
Simple loss functions would include the square loss for binary
classification — (cθ (®x) − ℓ(®x))2 where ℓ(®x) is the true data label —
or include additional regularization parameters over θ (see [26] for
an overview).

The objective of a machine-learning algorithm is to identify an
empirical loss minimizer over the parameter space Θ:

θ̂ ∈ argminθ ∈Θ
1
|X|

∑
®x ∈X

L(®x ,θ ) (1)

3 EXPLAINING MACHINE LEARNING
In this section, we briefly overview some of the algorithms for
explaining the machine learning models, notably the ones that we
evaluate in this work.

Generally speaking, transparency reports explain model deci-
sions on a given point of interest (POI) ®x0 ∈ X. An explanation ϕ
takes as input the dataset X, labels over X — given by either the
true labels ℓ : X → [k] or by a trained model c — and a point
of interest ®x0 ∈ X. In addition, explanation methods sometimes
assume access to additional information, such as active access to
model queries (e.g. [1, 10, 24]), a prior over the data distribution
[5], or knowledge of the model class (e.g. that the model is a neural
network [3, 28, 34], or that we know the source code [9]). The out-
put of an explanation function ϕ(X, c, ®x0, ·) can be quite diverse; in
this work we focus on two explanation paradigms: record-based ex-
planations [16]2, and numerical influence measures. More formally,
record-based explanations output a set of points ϕ(X, c, ®x0, ·) ⊆ X,
whereas feature-based numerical influence measures output a vec-
tor in Rn , where ϕi (X, c, ®x0, ·) corresponds to the importance of the
i-th feature in determining the label of ®x0. In particular, we focus
on gradient-based methods [30]. In what follows we often refer to
the explanation of the POI ®x0 as ϕ(®x0), omitting its other inputs
when they are clear from context.

3.1 Feature-based Model Explanations
Numerical explanations assign a values to individual features. In
this case, the explanation ϕ(®x0) is a vector in Rn , where ϕi (®x0) is
the degree to which the i-th feature influences the label assigned
to ®x0. Generally speaking, high values of ϕi (®x0) imply a greater
degree of effect, negative values imply an effect for other labels,

2Koh and Liang [16] refer to their explanations as influence measures, which the current
authors found to be too generic.

and if ϕi (®x0) is close to 0, this normally implies that feature i was
largely irrelevant in producing the label of ®x0.

Gradient-Based Explanations. Simonyan et al. [30] introduced
gradient-based explanations to visualize image classification mod-
els; the authors utilize the absolute value of the gradient rather
than the gradient itself; however, outside image classification, it is
reasonable to consider negative values, as we do in this work. We
denote gradient-based explanations as ϕGRAD . Shrikumar et al. [29]
propose ®x ◦ ϕGRAD(®x) as a method to enhance numerical explana-
tions (here, ®x ◦ ®y denotes the Hadamard product, which results in a
vector whose i-th coordinate is xi ×yi ). Note that since an adversary
would have access to ®x , releasing ®x ◦ ϕGRAD(®x) and ϕGRAD(®x) are
equivalent.

Integrated Gradients. Sundararajan et al. [34] argue that instead
of focusing on the gradient it is better to compute the average
gradient on a linear path to a baseline ®xBL (often ®xBL = ®0). This
approach satisfies three desirable axioms: sensitivity, implementa-
tion invariance and a form of completeness. Sensitivity means that
given a point ®x ∈ X such that xi , xBL,i and c(®x) , c(®xBL), then
ϕi (®x) , 0; completeness means that

∑n
i=1 ϕi (®x) = c(®x) − c(®xBL).

Mathematically the explanation can be formulated as

ϕINTGRAD(®x)i ≜ (xi − ®xBL,i ) ·
∫ 1

α=0

∂c(®xα )
∂®xαi

�����®xα=®x+α ( ®x−®xBL)
.

Layer-wise Relevance Propagation (LRP). Klauschen et al. [15] use
backpropagation to map relevance back from the output layer to
the input features. Let l be a layer in the network and the number
of layers be denoted by L. Then the relevance r (l )i of the i-th neuron
in the l-th layer can be computed as:

r
(L)
i (®x) ≜ ci (®x)

r
(l )
i (®x) ≜

∑
j

zji∑
i′(zji′ + bj ) + ϵ · sign(

∑
i′(zji′ + bj ))

r
(l+1)
j

Here zji is the weighted activation of neuron i to neuron j in the
next layer and bj is the bias added to neuron j. The summations
are over all neurons in the respective layers. Finally, the ϵ is added
to avoid numerical instabilities. In words, LRP defines the relvance
in the last layer as the output itself and in each previous layer the
relevance is redistributed according to the weighted contribution of
the neurons in the previous layer to the neurons in the current layer.
The final attributions for the input ®x are defined as the attributions
of the input layer: ϕLRP (®x)i ≜ r

(1)
i (®x).

DeepLift. The method proposed by Shrikumar et al. [29] com-
bines the two main ideas in previous methods. Like LRP, it propa-
gates attribution backwards through the network; like integrated
gradients, it uses a baseline reference point ®xBL. Analogous to the
weighted activations zji for the point ®x during a forward pass the
weighted activations z̄ji for the reference point ®xBL are calculated.
The attribution of neuron i in layer l is recursively defined as

r̄
(L)
i (®x) ≜ ci (®x) − ci (®xBL)

r̄
(l )
i (®x) ≜

∑
j

zji − z̄ji∑
i′ zji′ −

∑
i′ z̄ji′

r̄
(l+1)
j

2



The measure is defined as the attribution on the input layer

ϕDEEPLIFT (®x)i ≜ r̄
(1)
i (®x).

DeepLift with the recursion as defined above satisfies completenss
by design; the recursion is referred to as the “Rescale Rule”. A
different version called “Reveal-Cancel” [29] is not considered in
this swork.

The techniques above are implemented in the innvestigate
library3 [2] which we use in our experiments . A discussion of
these measures and the relations between them can also be found
in [4].

3.2 Record-Based Model Explanations
The approach proposed by Koh and Liang [16] aims at identifying
influential datapoints; that is, given a point of interest ®x0, find a
subset of points from the training data ϕ(®x0) ⊆ X that explains the
label cθ̂ (®x0), where θ̂ is a parameterization choice minimizing total
loss as per Equation (1). Koh and Liang propose selecting a training
point ®ztrain by measuring the importance of ®ztrain for determining
the prediction for ®x0.

In order to estimate the effect of ®ztrain on ®x0, Koh and Liang
measure the difference in the loss function over ®x0 when the model
is trained with and without ®ztrain. More formally, Koh and Liang
define

θ̃train ≜ argminθ ∈Θ
1

|X| − 1
∑

®x ∈X\{®ztrain }
L(®x ,θ ) (2)

In other words, θ̃train minimizes empirical loss over the dataset
excluding ®ztrain. The influence of ®ztrain on ®x0 is then

I ®x0 (®ztrain) ≜ L(®x0, θ̃train) − L(®x0, θ̂ ). (3)
In robust statistics, this technique is known as influence functions
(hence its name in Koh and Liang [16]). If the value I ®x0 (®ztrain) is
positive, this means that ®ztrain plays a significant role in determin-
ing the outcome of ®x0. Therefore, points for which (3) is high are
presented to the user in order to explain the label of ®x0. The key
challenge here is that retraining a model on X \ {®ztrain} for every
point ®ztrain ∈ X is prohibitively expensive, rendering this approach
inapplicable; Koh and Liang suggest approximating (3) using a re-
sult about influence functions by Cook and Weisberg [7], as we do
in our analysis.

Koh and Liang use a quadratic approximation of the empirical
loss around the original parameters θ of the model, followed by a
Newton step in the direction of removing a data point (Technically
the weight of the loss at this point for the overall loss is decreased.).
One can then apply the chain rule to compute how the change in
the loss affects the function c at the POI.

I ®x0 (®ztrain) ≈
L(®x0, θ̃train,ϵ )

dϵ

�����
ϵ=0

= ∇θL(®x0, θ̃train)T
θ̃train,ϵ
dϵ

�����
ϵ=0

= ∇θL(®x0, θ̃train)TH−1
θ̃

∇θL(®ztrain, θ̃train),
3https://github.com/albermax/innvestigate

where θ̃train,ϵ ≜ argminθ ∈Θ 1
|X |

∑
®z∈X L(®z,θ ) + ϵL(®ztrain,θ ). The

step from the second to the third line follows from a classic result
by Cook and Weisberg [7] and Hθ̃ ≜ 1

|X |
∑

®z∈X ∇2
θL(®z, θ̃ ) is the

Hessian which is, by assumption, positive definite. A record-based
explanation releases the k most influential points according to the
above definition, as well as the influence of these k points (the
values of I ®x0 (®z) as per Equation 3).

4 INFORMATION LEAKAGE THROUGH
GRADIENT-BASED EXPLANATIONS

An adversary obtained access to a dataset X′ ⊆ X, and some addi-
tional information about X′; can it use X′ in order to infer infor-
mation about the remaining points in the training set? The attack
model proposed by Shokri et al. [27] assumes that the adversary has
access to the probabilistic labels assigned to X′ by some model c .
We assume that the attacker only has access to transparency queries:
for every point ®x ∈ X′ the adversary observes the transparency
report ϕ(X, c, ®x); however, rather than observing label distributions
as per Shokri et al., we assume that the adversary only observes
the assigned label of ®x . We focus on two types of inference attacks.
The first is membership inference attacks: given a point of interest
®x0 < X′, can we determine w.h.p. whether ®x0 ∈ X? We also con-
sider dataset reconstruction attacks, whose objective is to recover as
many points from X as possible.

Let us first analyze membership inference attack models based
on gradient-based explanations. While it would appear intuitively
clear that knowing the gradient of the model at some points should
help, it is not immediately clear how and to what extent. We present
a simple example illustrating how one might use the information in
the model gradient to successfully deploy a membership inference
attack . We consider a dataset X = {−1,+1} with two points, such
that l(1) = 1, l(−1) = 0. We fit a single layer neural network
with sigmoid activation to X (other activation functions such as
tanh and softmax yield similar results); thus, our parameter class
is θ ∈ Θ = R and fθ (x) = 1

1+e−θx . We use absolute loss to find the
best-fitting fθ ; some simple calculations show that the gradient (i.e.
the parameter update) on both points is the same and given as

∂ |c(x) − fθ (x)|
∂θ

= − e−θ

(1 + e−θ )2
Note that the update is always positive: θ is increasing in the

number of epochs k . Further, for positive θ the update decreases
exponentially.

Table 1 lists how θ evolves over training epochs assuming θ0 = 0
(a randomized choice for θ0 yields similar behavior, given the posi-
tive update rule and the exponential decay in update). Table 1 also
shows the gradient value with respect to the training point 1 and
a non-training point 1

2 . While the two gradients start out quite
similarly the gradient of 1 drops several orders of magnitude before
the gradient of 1

2 . Figure 1 illustrates why this happens; the shape
of the sigmoid function is such that the gradient decreases in the
vicinity of training points, and grows dramatically at points close
to the decision boundary. Sharp swings in decision boundary are
arguably desirable from a training perspective: they imply that the
classifier is relatively certain about the class of large portions of the
data region. Note that the points outside the training set and close
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Figure 1: Gradient changes as the number of training epochs (k) grows; the gradient decreases for training points after a while
(here 1 and -1), but the gradient for non-training points remains high for much longer (here illustrated at the non-training
point − 1

2 ).

k θ − ∂ |1−fθ (1) |
∂θ (θ ) fθ (1) ∂fθ

∂x (1) ∂fθ
∂x ( 1

2 )
0 0.0000 0.2500 0.5000 0.0000 0.0000
1 0.2500 0.2461 0.5622 0.0615 0.0623
10 1.9069 0.1126 0.8707 0.2147 0.3829
100 4.5277 0.0106 0.9893 0.0479 0.3862
1000 6.8967 0.0010 0.9990 0.0070 0.2060

Table 1: The change of the single parameter θ during train-
ing for 1000 epochs of the toy example of Section 4. The gra-
dient for the training point x1 decreasesmany epochs before
the gradient of x3 a point outside the training set.

to the decision boundary may end up having a gradient with high
absolute values. In other words, high absolute gradient values at a
point ®x serve as a signal that ®x is not part of the training data, indi-
cating the classifier’s uncertainty about the label of ®x , and paving
the way towards a potential attack; indeed, Shokri et al. [27] show
how classifier uncertainty can be exploited for membership attacks,
further reinforcing this intuition. Let us next study this phenome-
non on complex datasets, and the extent to which an adversary can
exploit model gradient information in order to conduct member-
ship inference attacks. We use artificially generated datasets; this
offers us control over the problem complexity, and helps identify
important facets of information leaks.

To generate datasets, we use the make_classification func-
tion of the Sklearn python library.4 For ninf informative features,
the function creates a ninf -dimensional hypercube. For each class
the function picks nclus vertices from the hyper-cube as centers
of clusters, and samples points normally distributed around the
centers. We fix the number of classes to 2 (see Figure 2 for details).
The remaining features are filled with random noise; The overall
number of features stays fixed at 200. We increase the number
of informative features ninf ∈ [1, 5, 50, 10, 199]; we also vary the
number of clusters per class nclus ∈ [1, 2, 5, 10]. Increasing the num-
ber of informative features does not increase the complexity of
the learning problem as long as nclus = 1: an optimal separating
hyper-plane offers a good solution to this problem. However, the

4https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_
classification.html

−4 −2
0

2
4−4

−2

0
2

4

−4

−2

0

2

4

x1

x2

x
3

Figure 2: An illustration of the dataset generation process
with ninf = 3 and nclus = 1; the features containing only noise
are not shown.

dimensionality of the hyper-plane increases, making its description
more complex. Furthermore, for a fixed sample size, the dataset
becomes increasingly sparser, potentially increasing the number
of points close to a decision boundary. Increasing the number of
clusters increases the complexity of the learning problem (e.g., as
measured in VC-dimension).

For each experiment we sample 500 points per class and split
them evenly into training and test set. We train a fully connected
neural network with two hidden layers wit fifty nodes each and the
tanh activation function between the layers, and sigmoid as the final
activation. The network is trained using Adagrad with learning rate
of 0.01 and learning rate decay of 1e−7 for 100 epochs. The network
consistently achieved perfect accuracy on the training set while the
accuracy on the test set decreases for increasing nclus from 0.88 for
nclus = 1 to 0.56 for nclus = 10. We cannot detect a major influence
of ninf on the performance. We repeat each experiment 30 times
with different random seeds.

Next, we computeϕGRAD on both training and test points; if train-
ing point gradients significantly differ from those of test points, this

4
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Figure 3: The results for increasing the number of informa-
tive features ninf and clusters nclus in artificially generated
datasets. The information leakage about membership mea-
sured according tom1 as defined in Equation 4 increases for
larger ninf .

would indicate a potential for an attack. To measure this, we define
m1: the ratio between the median 1-norm of ϕGRAD in training and
test points.

m1 =
median{| |ϕGRAD(®x)| |1 | ®x ∈ Xtest}
median{| |ϕGRAD(®x)| |1 | ®x ∈ Xtrain}

. (4)

Figure 3 illustrates howm1 develops for increasing ninf and nclus .
m1 grows as with ninf increases; this means that member and non-
member distributions drift apart, resulting in differentiation in
gradients. The effect of larger nclus varies: for low ninf , nclus is
negatively correlated withm1; for large ninf nclus is positively cor-
related withm1.

| |ϕGRAD(®x)| |1 is decreasing in ninf for both members and non-
members. However the decrease is faster for members, resulting in
an overall increase inm1. For small ninf , the datapoints have 200 −
ninf noise features, resulting in a highly noisy dataset; increasing
ninf leads to a decrease in noise, thereby making it more prone to
overfitting; this leads to | |ϕGRAD(®x)| |1 decreasing faster for training
set members. For large values of ninf , nclus behaves according to our
intuition: increasing nclus increases function complexity, leading to
greater overfitting and subsequently increasingm1. For low ninf ,
a higher nclus also leads to more severe overfitting; however, this
does not increasem1. The valuem1 indicates the differentiation in
label distributions for members and nonmembers; ifm1 is close to
1 the distributions are close. Thus, a small value ofm1 is beneficial
for the attacker as well.

The second metric we use to capture information leakage is the
number of non-members that would be considered outliers, accord-
ing to the distribution of | |ϕGRAD(®x)| |1 for points in the training set.
Following a common rule we consider points outliers that are above
the threshold αoutlier of least 1.5 interquartile ranges iqr above the

1 5 50 100 199

0

100

200

300

ninfo

m
2

ncluster

1
2
5
10

Figure 4: The number of points ®x in the test set which
| |ϕGRAD(®x)| |1 would be considered an outlier with respect to
the training set. The number of such outliers in the the train-
ing set (black) is marginal.

upper quartile uq [13]. Formally,

αoutlier = uq(| |ϕGRAD(Xtrain)| |1) +
3
2 iqr(| |ϕGRAD(Xtrain)| |1

. Given that the number of such outliers in the training set itself
is small (only for nclus = 1 does it go beyond 3),m2 indicates how
many test points are close to a decision boundary.

m2 = |{| |ϕGRAD(®x)| |1 ≥ αoutlier | ®x ∈ Xtest}|.
Figure 4 shows the valuesm2 as well as the number of outliers in

the training set. Likem1,m2 increases as ninf increases. However,
m2 shows practical consequences for ninf : about the | |ϕGRAD(®x)| |1
value of half of the 500 points in the test set would be considered
outliers with respect to the training set and so easily identifiable
by an attacker.

Figure 5 illustrates on two examples how the distributions of
| |ϕGRAD(®x)| |1 for members and non-members drift apart for in-
creasing ninf and nclus . For ninf = 1,nclus = 1 the distributions are
relatively close. Yet, for ninf = 199,nclus = 5 the boxplots barely
overlap. To conclude, the information classifier gradients can be
used to deduce the difference in label distributions between test
points and training points, making it potentially useful for the pur-
pose of membership inference. In what follows, we demonstrate
the effectiveness of gradient information in devising effective mem-
bership inference attacks on real data.

5 EXPERIMENTS FOR ATTACKS USING
FEATURE-BASED EXPLANATIONS

Our discussion in Section 4 indicates that gradient-based expla-
nations could potentially be used to devise effective membership
inference attacks; armed with this intuition, let examine the efficacy
of these attacks on actual data. We compare our explanation-based
attack model to the state-of-the-art in two ways. First, we compare
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Figure 5: The boxplots illustrate how the distributions of
| |ϕGRAD(®x)| |1 drift apart for points ®x in the training set Xtrain
and test set Xtest. For ninf = nclus = 1, the two boxplots are in-
distinguishable. However, for ninf = 200,nclus = 5 they barely
overlap. Here X = Xtrain ∪ Xtrain.

our explanation-based approach to attacks using only the predic-
tion vector and the predicted label as used by Shokri et al. [27] and
Nasr et al. [20]. Next, we compare our approach to a simple attack
model with limited access to the gradient (based on a one-level
decision tree trained on the 1-norm of the explanation) to an attack
model relying on a neural network. The latter is an adapted version
of the attack model also used by [27]. For ease of comparison we
focus our attention on the datasets used in [27].

5.1 Datasets and Target Models
5.1.1 Purchase dataset. The dataset originated from the “Ac-

quire Valued Shoppers Challenge” on Kaggle5. The goal of the
challenge was to use customer shopping history to predict shopper
responses to offers and discounts. For the original membership
inference attack Shokri et al. [27] create a simplified and processed
dataset, which we use as well. Each of the 197 324 records corre-
sponds to a customer. The dataset has 600 binary features represent-
ing customer shopping behavior. The prediction task is to assign
customers to one of 100 given groups (i.e. labels). This learning
task is rather challenging, as it is a multi-class learning problem
with a large number of labels; moreover, due to the relatively high
dimension of the label space, allowing an attacker access to the
prediction vector (as was the case in [27]) represents a significant
amount of information.

5.1.2 Classification Models. As a target model, we use a fully
connected four-layer (with a [1024, 512, 256, 100] nodes configu-
ration) neural network. We use the tanh activation function for
hidden layers, and softmax in the output layer. We randomly ini-
tialize node weights with a 0-mean normal distribution and a 0.01
standard deviation; we train each model on 10 000 datapoints for
100 epochs using the Adagrad optimizer with a learning rate of
0.01 and a learning rate decay of 1e − 7.

The original models exhibit significant overfitting; however, this
is not a major issue as our primary goal is comparing information
leaked by explanations versus the prediction itself, rather than
study attacks on perfectly generalized models. Nevertheless, to see
how overfitting affects attack effectiveness we introduce a dropout
5https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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Figure 6: Target model accuracy for the training set (blue)
and validation set (red) on the purchase dataset under in-
creasing levels of dropout. High dropout levels reduce over-
fitting, but decrease accuracy.

behind each exiting layer. We increase dropout in 0.1 increments
from 0 to 0.9. Figure 6 shows how different dropout values affect
accuracy on the training and validation set. High levels of dropout
reduce overfitting, but result in a performance tradeoff.

5.2 Membership Inference Attack Models
We create two different attack models based on the explanations
introduced in Section 3.1. The first is a simple one-level decision
tree; the second is based on training a neural network, inspired by
the attack model used for membership inference attacks in Nasr
et al. [20]. As input for the tree model we use the 1-norm of the
respective explanation. Each neural network model has access to
the predicted label argmax c(®x) as well as the numerical explanation
vector ϕ(®x).

As shown in Figure 7, the network consists of three sub-networks.
The first sub-network uses the one-hot encoded predicted label as
an input and has fully connected layers with sizes [100, 256, 64].
The second network uses the explanation ϕ as input; its layer sizes
are [dim(ϕ), 1024, 512, 64], where dim(ϕ) is the explanation dimen-
sion. The final part of the network combines the first two and has
layers of sizes [256, 64, 1]. We use a ReLu activation between layers
and initializing the weights the same way as the target models.
Further, we train a neural network for attackers with access to the
prediction vector c(®x) and to the actual label l(®x), which makes
it more powerful than attackers using only the explanations and
predicted label. Finally, we create two more one-level decision tree
models as comparisons to the explanation-based decision tree at-
tack models. The first uses the correctness of the target as input (i.e.
argmax c(®x) == l(®x)); here information leakage intuitively arises
from the fact that target accuracy is higher on the training set. The
second tree uses prediction variance as input; as described in [20],
lower variance corresponds to prediction uncertainty, indicative of
non-membership. Note the difference between 1-norm and variance.
While for the explanations high absolute values are indications of
being close to a decision boundary, the 1-norm of each prediction
is the same.

We train our attack models for 50 epochs using the Adagrad
optimizer with the learning rate of 10−3 and a learning rate decay

6



argmax c(®x)ϕ

h

⊕

ReLu

ReLu

ReLu

ReLu

ReLu

ReLu

ReLu

ReLu

dim(ϕ)

10241024

512

100

512

256

64

1

128

6464

Figure 7: The design of the neural network attack model. It
processes the predicted label argmax c(®x) and the explanation
ϕ(®x) in two sub-networks before combining them in a final,
third sub-network.

of 1e − 6. The training data for the attack models consists of 14 000
labels and predictions/explanations, half of which is known belong
to points in the training set, and the other half is known not to
belong to the training set. The attack models are then are evaluated
on the remaining 6 000 points; we repeat each experiment 30 times.

5.3 Empirical Results
The main results of our experiments are illustrated in Figure 8. At-
tacks with access to the prediction vector and the actual label were
the most successful, followed by gradient-based attacks. Simpler
tree-based models fared only slightly worse the neural network
based attack models; this is despite the fact that the tree-based
attackers had only access to the 1-norm of the gradient vectors.
This supports the conjecture that the main source of gradient ex-
ploitability is its 1-norm. Results for ϕLRP and ϕDEEPLIFT are less
conclusive: both explanation methods leak less information than
gradient-based explanations; however, they do offer some advan-
tage to an attacker. As is to be expected, increasing dropout during
training decreases attack accuracy; indeed, for a dropout rate of
0.9 all attack models are only marginally better than a random
guess. As seen in Figure 6, attack accuracy starts to decrease before
there is a significant drop in model accuracy; the only exception to
this is for attacks based on the predicted label argmax(c(®x))): this
attack exploits the model prediction of the target model and so is
only affected once model predictions become highly inaccurate. We
only included the results for argmax(c(®x)) of the simple models,
given that the only information the attacker can use is weather
the prediction is correct, given this information a simple model is

as good as an advanced. Further note that in some instances the
neural network failed to train (i.e. training accuracy remained close
to 50%) we excluded these attacks.

5.4 Class size and distance to the data
The number of training points per class influences how much infor-
mation is leaked. For classes with only a small number of points the
model tends to overfit more, allowing for more accurate attacks in
these data regions. This has an unfortunate implication: members
of minority classes (e.g. patients who underwent rare procedures)
face a higher risk of their membership being exposed. The purchase
data set contains groups of varying sizes; we used the output of
the neural network/gradient-based explanation attack model to
quantify the effect of class size on attacker accuracy.

While class size and attack accuracy are not strongly correlated
(Pearson’s r ≡ −0.23), Figure 9 shows that the maximal accuracy
obtained for small classes is signifciantly higher than for larger
classes; in other words, the attacker makes more certain predictions
on smaller classes. To conclude, smaller classes are subject to a
greater risk of membership inference attacks. We use the purchase
data to investigate whether data outliers are at a particular risk. We
measure the average Hamming distance of a point to the training
set and grouped the points by their average Hamming distance.
As illustrated in Figure 10 the accuracy of the model drops for
increasing distance. In fact the 1-norm of the outliers is generally
small and the attackmodels classify them asmembers of the training
set.

6 ATTACKS ON RECORD-BASED
EXPLANATIONS

As we have seen in Section 5, gradient-based explanations can be
effectively used to conduct membership inference attacks. Let us
next turn to record-based explanations.

6.1 Datasets and Target models
We focus on two datasets and three model types where record-based
explanations had been demonstratably successful [16].

6.1.1 Fish vs. Dog. This dataset contains 2400 299 × 299-pixel
dog and fish images, extracted from ImageNet [25]. We split it into
a training set of 1800 points and a test set of 600 points.

InceptionV3. The inception network architectures are convolu-
tional neural networks that where designed to overcome large
variations in the size of salient parts in an image (i.e. the parts of
the image containing relevant information). The networks contain
convolutional filters of varying sizes on the same level working in
parallel [35]. Pre-trained instances of the inception architecture are
available in Keras.6 We use a pre-trained network and retrained
the last layer for the specific task of the classifying fish/dogs; our
model obtained a 99% test accuracy.

RBF SVM. Support vector machines with radial base function
kernels (RBF SVM) are a popular classification method. We use
SmoothHinge [16] to overcome the non-differentiable loss function;
the SVM model obtains a test accuracy of ∼ 80%.
6https://keras.io/applications/#inceptionv3
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Figure 8: The accuracy of the attacks on the purchase dataset. The simple attack models which a based on the 1-norm of the
explanation (left) do as good (or better) as the attack relying on the complete explanation and a neural network (right).
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Figure 9: The accuracy of the membership inference attack
against purchase classification models using the gradient
as explanation. Each dot is the size of a class during train-
ing and the accuracy of the corresponding attack model. We
only display a subset (300 of 2000) for clarity, the trend is
computed on all points. No points below 0.5 are displayed
there are 8, mostly for small class sizes.

6.1.2 Diabetic Hospital. The dataset contains data on diabetic
patients from 130 US hospitals and integrated delivery networks
[33]. We use the modified version described in Koh and Liang [16]
where each patient has 127 features which are demographic (e.g.
gender, race, age), administrative (e.g., length of stay) and medical
(e.g., test results); the prediction task is readmission within 30 days.
The dataset contains 101 766 records from which we sub-sample
balanced datasets (i.e. with equal numbers of patients from each
class) with 2 000 records from each of the two classes.

Linear Regression. A simple linear regression model obtains a
test accuracy of ∼ 65%. Each experiment was repeated 20 times
with randomly sampled datasets of 2 000 records; we report the
average results.
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Figure 10: Attack accuracy on the purchase data set, as a
function of themeanHamming distanced of the point to the
training set. Accuracy declines with increasing distance; in
fact, the attacker classifies most outliers as training points,
as seen in the change in true positive/negative rates.

6.2 Direct Membership Inference
While feature-based explanations indirectly leak membership infor-
mation, record-based explanations do so in a muchmore straightfor-
ward manner; as described in Section 3.2, record-based explanations
release the k most influential training points given a query. If a
query is in fact part of training data, it is likely to be part of its own
explanation. Our experiments confirm this intuition (Figure 11). For
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Figure 11: % of training points revealed as their own explanation, when k ∈ {1, 5, 10} most influential points are revealed.
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argmax®z∈X(Ix0 (®z))) are highlighted in red.

all models we consider, at least 25% of the training points are the
most influential points for their own prediction. For RBF SVM this
figure spikes to 90%. When the top 5 (10) most influential points
are released an attacker would be able to confirm 36% (39%) of the
training set members for the inception model and 64% (79%) for the
regression model.

The susceptibility to disclosure strongly depends on the target
model, rather than the underlying dataset (e.g. SVM is especially
vulnerable). A closer analysis shows that for a large majority (80%)
of training points that are not revealed, the Koh and Liang method
outputs no datapoints; the remaining unrevealed training points
exhibited very low influences on the revealed points, suggesting
approximation errors due to smooth hinge approximation or the
numerical Hessian inversion. In other words, most training points
that were not exposed by the Koh and Liang method were not
offered an explanation to begin with!

The influence of the most influential points is similarly dis-
tributed between training and test points (assuming a normal distri-
bution, the KL-divergence between the two distributions is 0.0007);
however, the distribution is vastly different once we ignore the
revealed training points. Figure 12 illustrates this for the Dog vs.
Fish dataset with the inception model, but similar results hold for
the hospital dataset. An attacker can exploit these differences, using

Table 2: Minority populations are more vulnerable to being
revealed by the Koh and Liang method.

#points k = 1 k = 5 k = 10
Whole data set 2400 26% 36% 39%
Clownfish 26 27% 37% 43%
Lion fish 29 9% 42% 51%
Birds 15 64% 85% 90%

(a) Disclosure likelihood by type in the dog/fish dataset.

% of data k = 1 k = 5 k = 10
Whole data set 100% 34% 64% 77%
Age 0 -10 <0.1% 67% 100% 100%
Age 0 -20 <1% 20% 58% 92%
Caucasian 74% 34% 64% 77%
African American 19% 38% 68% 81%
Hispanics 2% 39% 64% 76%
Unknown race 1% 35% 60% 77%
Asian American <1% 25% 64% 89%

(b) Disclosure likelihood by age and race in the hospital dataset.

techniques similar to those discussed in Section 5; we focus on other
attack models in following sections.

Minority and Outlier Vulnerability to Inference Attacks. Before
turning our attention to dataset reconstruction attacks, we high-
light an interesting finding. Visual inspection of images for which
membership attacks were successful indicates that outliers and
minorities are more susceptible of being part of the explanation.
Images of animals (a bear, a bird, a beaver) eating fish (and labeled
as such) were consistently revealed (as well as a picture containing
a fish as well as a (more prominent) dog that was labeled as fish).
We label three “minorities” in the dataset to test the hypothesis that
pictures of minorities are likelier to be revealed (Table 2a).

With the exception of lion fish with k = 1, minorities are like-
lier to be revealed. While clownfish (which are fairly “standard”
fish apart from their distinct coloration) exhibit minor differences
from the general dataset, birds are more than twice as likely to be
revealed. The hospital dataset exhibits similar trends (Table 2b).
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Young children, which are a small minority in the dataset, are re-
vealed to a greater degree; ethnic minorities also exhibit slightly
higher rates than Caucasians.

While our findings are preliminary, they are quite troubling in
the authors’ opinion: transparency reports aim, in part, to protect
minorities from algorithmic bias; however, data minorities are ex-
posed to privacy risks through their implementation. Our findings
can be explained by earlier observations that training set outliers
are likelier to be “memorized” and thus less generalized [6]; how-
ever, such memorization leaves minority populations vulnerable to
privacy risks.

6.3 Naive Dataset Reconstruction Attacks
Record-based explanations can be exploited to conduct membership
inference attacks with relative ease; let us set our sights on a more
ambitious attack model, dataset reconstruction attacks: rather than
recovering single training datapoints, an attacker tries to recover
entire portions of the training data. A naive attack model generates
a static batch of transparency queries, i.e. new queries are not
based on the attacker’s past queries. An attacker who has some
prior knowledge on the dataset structure can successfully recover
significant chunks of the training data; in what follows, we consider
three different scenarios.

Uniform samples. With no prior knowledge on data distributions,
an attacker samples points uniformly at random from the input
space; this attack model is not particularly effective (Figure 13a):
even after observing 1 000 queries with ten training points revealed
per transparency query, less than 2% of the dog/fish dataset and
∼ 3% of the hospital dataset are recovered. Moreover, the recovered
images are unrepresentative of the data: since randomly sampled
images tend to be white noise, the explanation images offered for
them are those most resembling noise.

Marginal distributions. In a more powerful attack scenario, the
attacker knows features’ marginal distributions, but not the data
distribution. Note that in the case of images, the marginal distribu-
tions of individual pixels are rather uninformative; in fact, sampling
images based on individual pixel marginals results in essentially
random images. That said, under the inception model, an attacker
can sample points according to the marginal distribution of the
latent space features: the weights for all nodes (except the last layer)
are public knowledge, an attacker could reconstruct images using
latent space sampling. Figure 13b shows results for the hospital
dataset, and the dog/fish dataset under the inception model. This at-
tack yields far better results than uniform sampling; however, after
a small number of queries, the same points tended to be presented
as explanations, essentially exhausting the attacker’s capacity to
reveal information.

Actual distribution. This attack model offers access to the actual
dataset distribution (we randomly sample points from the dataset
that were not used in model training). This reflects scenarios where
models make predictions on publicly data. Using the actual data
distribution, we can recover significant portions of the training data
(Figure 13c). We again observe a saturation effect, where additional
queries would not improve the results significantly.
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(a) Uniform datapoint sampling.
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(b) Marginal feature distribution sampling (for the inceptionmodel
points are sampled in the latent space).
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(c) True point distribution sampling.

Figure 13: % of training data revealed by an attacker using
different sampling techniques, with k ∈ {1, 5, 10} explana-
tion points revealed per query.

6.4 Influence Graphs
Before considering more sophisticated dataset reconstruction at-
tacks, we discuss a structure that naturally arises when studying
influence in the training set, which we refer to as the influence graph.
Every training datapoint is a node v in a graph G, with k outgoing
edges towards the k nodes outputted by the Koh and Liang measure.
The influence graph structure indicates how easy it is to adaptively
recover the training set. For example, if the graph contains only
one strongly connected component, an attacker would be able to
traverse (and thus recover) the entire training set from a single
starting point. The following metrics are especially interesting:
Number of strongly connected components (SCCs): a high
number of SCCs implies that the training set is harder to recover:
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Diabetic Hospital
Regression

Dog vs. Fish
InceptionV3

Dog vs. Fish
RBF SVM

#SCC 1426 1473 1090
#SCC of size 1 1295 1459 1042
Largest SCC size 173 300 646
Sum largest SCC 262 320 664
Max in-degree 258 407 125
#node degree=0 711 1154 145

Table 3: Some key characteristics of the influence graphs in-
duced by the record-based explanations (for k = 5).

an adaptive algorithm can only extract one SCC at a time. It also
implies that the underlying prediction task is fragmented: the labels
in one part of the dataset are independent from the rest.
Size of the SCCs: a small number of large SCCs help the attacker:
they are more likely to be discovered, and recovering just some
of them already results in recovery of significant portions of the
training data.
Distribution of in-degrees: the greater a node’s in-degree is, the
likelier its recovery will be; for example, nodes with zero in-degree
may be impossible for an attacker to recover. Generally speaking,
a uniform distribution of in-degrees makes the graph easier to
traverse.

The influence graphs induced by record-based explanations tend
to have many small SCCs (see Table 3); however, each graph has
one large SCC containing a considerable fraction (10% - 30%) of the
training data. Furthermor, most nodes in the graph have outgoing
edges to the large SCC, thus an attacker will almost surely discover
the large SCC, and subsequently recover all points contained in it.
However, a significant amount of the nodes has an in-degree of 0;
these nodes are not influential for any point and will likely never
be revealed to an attacker.

6.5 Advanced Dataset Reconstruction Attacks
We consider two advanced attack models for dataset recovery.
First,we consider how an attacker can use recovered points to
extract additional points from the training set, using a minimal
number of queries (multiple model queries may be costly, or raise
suspicions). Next, we study how knowledge about the target model
can be exploited to improve attack accuracy.

Adaptive attacks. Using points in the input space allows the
attacker to recover a relatively small part of the training set (Sec-
tion 6.3); the attacker can use previously recovered training points
as queries to effectively recover additional points (as discussed in
Section 6.4, the attacker is simply traversing the influence graph).
Attackers using recovered training points as queries can effectively
recover the largest strongly connected component (SCC). In order
to benchmark the performance of our attacker, who has no knowl-
edge of the influence graph structure, we would like to compare it
to an omniscient attacker who knows the graph structure and is
able to optimally recover the SCC; however, this problem is known
to be NP-complete (the best known approximation factor is 92) [32].
We thus compare our approach to a greedy omniscient attacker,
which selects the node that is connected to the most unknown
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Figure 14: Recovering the largest SCC of the influence graph
via an adaptive attack.

0 200 4000%

10%

20%

30%

40% Shadow model

Sampling

# queries

Figure 15: A shadow model-based dataset recovery attack,
compared to randomly sampling points.

points. Our attacker explores the influence graph by DFS search.
Figure 14 shows the gap (for a typical example) between the greedy
algorithm and DFS; other traversal techniques (BFS, random walk,
heursitics based on influence or the features of recovered points),
have similar performance. A greedy omniscient attacker requires
less than half the number of queries our current attack model does,
leaving room for future improvement.

Shadow Models. An attacker with access to points from the same
distribution as the training set might also have knowledge of the
target model. This knowledge can be used to train a shadow model
[27]: the shadow model has the same architecture as the target
model, and is trained on similar data. After training a shadow
model the attacker can construct a shadow influence graph i.e. the
influence graph of the shadow model, and base its query strat-
egy on it. Shadow models offer a marginally better attack model
than randomly sampling points used to train the shadow model
(Figure 15).

7 RELATEDWORK
Our work studies the vulnerability of transparency reports to mem-
bership inference attacks. We primarily focus on two types of trans-
parency reports: datapoint-based influence measures using influ-
ence functions, proposed by Koh and Liang [16], and numerical
influence measures [5, 8, 10, 24, 31]. Datta et al. [10] show that their
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proposed measure, QII, is differentially private; however, similar
guarantees have not been established for any of the other measures
proposed in the literature. Indeed, in a recent paper, Milli et al. [19]
show that gradient-based model explanations can be used to recon-
struct the underlying model with high accuracy; their work serves
as additional evidence that transparency reports are vulnerable to
inference attacks.

Ancona et al. [4] provide a recent overview of numerical in-
fluence measures (also called attribution methods). Generally this
approach can be divided into perturbation-based methods which
generate the influence of each feature by altering (also removing
or masking) the original input and comparing the difference in the
output and backpropagation-based methods which rely on a single
(or very small number of) back-propagations through the network.

The intuition behind backpropagation-based methods is to map
influence back from the output to the input. The most canonical
example is the gradient, however several variations have been
proposed. While these methods are generally fast, they tend to be
more noisy and often harder to interpret.

In the category of perturbation-based methods fall occlusion
based methods [37], but also LIME [24] which trains a simpler
model with high local fidelity and QII [10] which computes the
Shapley value of each feature. The reliance of these methods on
sampling makes them comparatively slow and also prone to query
counterfactuals (i.e. data points that could never actually occur). Yet,
they tend to give more stable and less noisy explanations. Further,
the sampling can be seen as a natural defense against privacy loss.
Our analysis will focus on the former group leaving the latter for
future study.

The attack scenario we adopt has been recently proposed by
Shokri et al. [27]. Shokri et al. [27] use model predictions for data
with known membership to train classifiers that predict training set
membership with high accuracy. However, Shokri et al. [27] assume
access to the full probabilistic prediction of the model over the
datapoints, rather than the deterministic assigned label; we assume
a more realistic scenario, where one has access to the datapoint
labels, and a given transparency report. Further, our attack doesn’t
require the training of a neural network and requires only the
1-norm of the explanation as input.

Our analysis indicates that outliers are more vulnerable to mem-
bership inference attacks than other datapoints: the attacker is
likelier to identify them as part of the training set due to their dis-
tinctive characteristics. This is in line with exisitng results showing
that overfitting may cause information leaks [36].

There exists some work on the defense against privacy leakage.
Nasr et al. [20] use adversarial regularization, while Papernot et al.
[22] and [23] create a framework for differentially private training
of machine learning models. However, these techniques are not yet
widely adapted and it is especially unknown how they affect the
transparency of the trained models.

8 CONCLUSIONS AND FUTUREWORK
In this work we study membership inference attacks of transparent
machine learning models based on two major types of model expla-
nations. We show that both record and feature-based explanations
can be successfully exploited by an attacker to infer membership

of the training set. For record-based explanations we were able to
extract major parts of the training set via adaptive data queries.

Our work is one of the first to show that releasing transparency
reports can result in significant privacy risks; what’s worse, mi-
nority populations face a far greater risk of being exposed by
transparency-based membership inference. While we are support-
ive of the call to algorithmic transparency, we believe that it is
the duty of the computer science community at large to ensure
that policy makers and advocacy groups are aware of the risks and
tradeoffs involved in offering greater model transparency.

Our results are just a first step towards a better understanding
of transparency-based privacy attacks; several interesting open
problems remain. First, it is not clear what are sufficient conditions
for dataset safety: small SCCs in the influence graph seem to be
relatively safe, but it is not entirely clear whether this is a sufficient
condition for safety from membership inference. It is possible to
train ‘safe’ models with small SCCs in the influence graph; however,
this will result in a drop in model accuracy that needs to be analyzed.

Finally, designing safe transparency reports is an important re-
search direction: in more detail, one needs to release explanations
that are both safe, and useful (in some formal sense). For example,
releasing no explanation (or random noise) is guaranteed to be safe,
but is clearly not useful; record-based explanations are useful, but
are not safe. Quantifying the tradeoff between explanation quality
and its privacy guarantees will help us understand the capacity
to which we can explain model decisions, while maintaining data
integrity.
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A IMAGES RECONSTRUCTED BY UNIFORM SAMPLING

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: (a) A uniform random input (b) The most influential point on any (uniform) input for RBF (c)-(h) Points that are at
least once the most influential point for the Inception for uniform random inputs.

B INFLUENCE GRAPHS
In what follows we show two pictures of influence graphs. Blue edges are between pictures labeled as fish, red between dog pictures and
purple in between classes. The size of a picture corresponds to the relative number of in-going edges. Nodes without in-going edges are not
displayed. Due to file size limits smaller images are displayed as circles.
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Figure 17: The influence graph for the RBF SVM for k = 5. The two classes strongly intertwined. The prominent color of each
picture impacts the location in the graph from dark pictures on the top to white pictures on the bottom.
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Figure 18: The influence graph for the inception-v3 model for k = 5. The two classes are clearly separated.
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