
Knowledge-Based Systems 61 (2014) 1–12
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
GeoTree: Using spatial information for georeferenced video search q
http://dx.doi.org/10.1016/j.knosys.2014.01.026
0950-7051/� 2014 Elsevier B.V. All rights reserved.

q This research was supported by Next-Generation Information Computing
Development Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (No.
2012M3C4A7033344). This work was also supported by IT Consilience Creative
Program of MKE and NIPA (C1515-1121-0003).
⇑ Corresponding author. Tel.: +82 1041187006.

E-mail addresses: ywkim10@postech.ac.kr (Y. Kim), goldbar@postech.ac.kr
(J. Kim), hwanjoyu@postech.ac.kr (H. Yu).

1 http://www.youtube.com.
2 http://video.search.yahoo.com.

3 http://www.you4wd.com.
4 http://geovid.org.
5 GeoSearch: http://dm.postech.ac.kr/geosearch.
Youngwoo Kim, Jinha Kim, Hwanjo Yu ⇑
Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 August 2013
Received in revised form 29 January 2014
Accepted 29 January 2014
Available online 17 February 2014

Keywords:
Georeferencing
Geotagging
Video search
Spatial indexing
R-tree
With the rapid popularization of video recording devices, more multimedia content is available to the
public. However, current video search engines rely on textual data such as video titles, annotations,
and text around the video. Video recording devices such as cameras, smartphones and car blackboxes
are nowadays equipped with GPS sensors and the ability to capture videos with spatiotemporal informa-
tion such as time, location, and camera direction. We call such videos georeferenced videos. This paper
proposes an efficient spatial indexing method, called GeoTree, which facilitates rapid searching of
georeferenced videos. In particular, we propose a new data structure, called MBTR (Minimum Bounding
Tilted Rectangle) to efficiently store the areas of moving scenes in the tree. We also propose algorithms for
building MBTRs from georeferenced videos and algorithms for efficiently processing point and range
queries on GeoTree. The results of experiments conducted on real georeferenced video data show that,
compared to previous indexing methods for georeferenced video search, GeoTree substantially reduces
index size and also improves search speed for georeferenced video data. An online demo of the system
is available at ‘‘http://dm.postech.ac.kr/geosearch’’.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid popularization of video recording devices, more
multimedia content is available to the public. Both media made by
professionals and those made by ordinary users called UCC (User-
Created Contents) comprise a large portion of the web. However,
unlike the search for textual data which is effectively executed
by existing search engines, there is yet no effective method of
searching for video. While search engines utilize document
contents to identify related documents, identifying related video
requires an understanding of video contents, which is a very
demanding and complex process. Thus, current video search
engines rely on textual data such as video titles, annotations, and
text around the video.1,2

Video capture devices such as cameras, smartphones, and car
blackboxes are nowadays equipped with GPS sensors and the abil-
ity to capture videos with spatiotemporal information such as
time, location, and camera direction. We call such videos georefer-
enced videos. For some applications, such spatiotemporal informa-
tion plays key roles in the querying of georeferenced videos. For
example, some people may want to find videos of a specific event
that occurred at a particular time and in a particular location, e.g.,
videos of a traffic accident captured by car blackboxes, videos of a
goal scene in a soccer game captured by users, or videos of a
concert with celebrities captured by users. Also, some compound
applications, such as path recommendation or tour guide program
annotated with videos, utilize spatial information to search for
relevant videos. Note that, although many devices can capture
the geo-data with videos, YouTube does not tag the geo-data on
videos, as it does not utilize it for search. The search system must
inherently support tagging and utilizing the geo-data. There are
several sites doing that3,4 including our own search system.5

This paper proposes an efficient spatial indexing method, called
GeoTree, which enables rapid searching of georeferenced videos. In
particular, we propose a new data structure, called MBTR (Mini-
mum Bounding Tilted Rectangle) to efficiently store the areas of
moving scenes in the tree. While traditional MBR (Minimum
Bounding Rectangle) is popularly used to describe an area in spa-
tial indexes such as R-Tree, MBR is not suitable for describing the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.01.026&domain=pdf
http://dm.postech.ac.kr/geosearch
http://dx.doi.org/10.1016/j.knosys.2014.01.026
mailto:ywkim10@postech.ac.kr
mailto:goldbar@postech.ac.kr
mailto:hwanjoyu@postech.ac.kr
http://www.youtube.com
http://video.search.yahoo.com
http://www.you4wd.com
http://geovid.org
http://dm.postech.ac.kr/geosearch
http://dx.doi.org/10.1016/j.knosys.2014.01.026
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

2 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
areas of moving scenes in which location and direction are contin-
uously changing. On the other hand, MBTR is designed to describe
an area (or scenes) of moving location and direction. GeoTree spe-
cifically adopts MBTR in the leaf nodes of R-Tree to efficiently store
meaningful parts of moving scenes, which leads to substantial
reductions in index size. MBTR also enables efficient pruning of
unpromising parts of videos and thus saves query processing time.

There have been several approaches to the problem of search in
georeferenced videos. SA Ay et al. [4] proposed a model to repre-
sent a camera viewable scene and basic search mechanisms for
it. They expressed the camera viewable scene using four parame-
ters – location, direction, viewable angle, and object distance. They
also proposed metrics for evaluating and ranking the relevance of
videos along with a search algorithm [2]. Our index adopts their
scene model but substantially improves the search efficiency.
Related works are further discussed in Section 2.

Our major contributions are summarized as follows.

� We propose a new data structure, MBTR, to efficiently store the
areas of moving scenes, and develop algorithms for building
MBTRs from georeferenced videos to construct a GeoTree, a kind
of R-Tree with MBTRs in the leaf nodes.
� We develop efficient algorithms for processing point and range

queries on GeoTree.
� We demonstrate the effectiveness of GeoTree by performing

experiments on real georeferenced video data. We compare
our search methods with the previous georeferenced video
search algorithm [2] and an R-Tree-based algorithm. GeoTree

substantially reduces index size and also improves search speed
for georeferenced video data. An online demo of the system is
available at ‘‘http://dm.postech.ac.kr/geosearch’’.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents our proposed indexing
methods for georeferenced video. Section 4 presents experimental
results. Section 5 concludes this paper.
2. Related work

This section discusses related work on georeferenced multime-
dia search (Section 2.1) and then reviews methods for spatial
indexing (Section 2.2).
2.1. Georeferenced multimedia search

There are several approaches to the use of location information
in image search. Toyama et al. [21] used metadata in image search
and developed a database for it. They enabled spatial image search
by recording images with longitudinal and latitudinal coordinates
and timestamps. Several commercial websites, such as Flickr6

and Woophy,7 also provide georeferenced image search. They focus
on showing static images of the locations in a map and support
simple query such as nearest neighbor query. Google Street View
[1] provides streams of street view images of their own. We can
reference these images by camera’s location and viewing direction.

Trajectory indexing methods were developed in order to
efficiently store and search moving objects [15,8]. Our indexing
method for supporting moving scenes can be considered an exten-
sion of trajectory indexing which takes into consideration camera
directions as well as the location of the cameras.

Research associated with ‘‘trajectory-based video indexing’’
[7,17] and ‘‘spatial indexing for video’’ [20] have been published
6 http://www.flickr.com.
7 http://www.woophy.com.
in the computer vision community. However, the problem they ad-
dress is different from ours; their goal is to index the relative loca-
tion of objects in the video, not the viewable scenes. They also use
video content retrieval methods such as object segmentation and
motion tracking to detect objects, while we use metadata to search
georeferenced videos.

A viewable scene model for enabling georeferenced video
search has been recently proposed by Ay et al. [2,4]. Based on
the viewable scene model, they developed methods for supporting
point and range queries using MBR-based filtering. (We compare
this method as a baseline method in our experiments in Section 4.)
Their scene model is explained in Section 3.1. Our method builds
an index GeoTree based on their viewable scene model.

They also developed a relevance video search method based on
the viewable scene model, and proposed metrics to measure the
relevance of video to the given range query [2]. The metrics com-
pute the relevance scores based on the size of the overlapping area.
Since computing the exact size of the overlapping area is computa-
tionally expensive, they approximate it using grids and histograms.
However, their approach requires vast storage to keep all the vid-
eos stored in grids, and also the accuracy is compromised due to
the running of the query on the gridded data instead of the original
data. Moreover, the overlapping area-based relevance may not
reflect the true relevance implied in the user’s query; user’s
relevance may be more related to parts that are overlapped and
the distance to the overlapping area. Inducing a good relevance
function is itself a nontrivial research problem.

Ay et al. also proposed a method for generating synthetic
metadata for georeferenced video search [3]. Since it is often difficult
to obtain a large set of georeferenced video data, this method can be
used for evaluating new methods for georeferenced video search.
2.2. Spatial indexing

There are numerous works on spatial indexing and query pro-
cessing in the database community. Many of the indexing struc-
tures are based on R-Tree [9,12,19]. Several works focus on
querying location trajectories of moving objects. A typical example
of an object trajectory query is ‘‘for a given set of trajectories of
moving objects, find trajectories that intersect with the given
query range.’’ The common approach to this problem is to divide
the trajectory into segments and insert them into an index struc-
ture such as an R-Tree or other R-Tree family [13,18]. To utilize
the continuity of object trajectory and enable temporal query, sev-
eral effective indexing structures such as STR-Tree and TB-tree
were proposed [14]. These works mostly focus on dealing with
temporal dimension and complex queries, rather than dealing with
complex spatial data such as viewable scenes.

Spatiotemporal trajectory compressions for saving data storage
and enabling fast query processing are also being researched
[11,8]. They preprocess trajectory data in order to efficiently store
and search trajectories. However, their methods only return
approximate results. Their methods also focus on the data of points
or location trajectories that are not directly applicable to viewable
scenes. There are also works that focus on indexing range data or
region data that consider static rectangular objects [6,10].

No effective indexing structure has yet been proposed that sup-
ports exact queries on camera viewable scenes of moving locations
and directions.
3. GeoTree: Spatial indexing for georeferenced video search

This section presents our proposed indexing method, GeoTree,
which enables an efficient search of georeferenced videos. We first
discuss some preliminaries (Section 3.1) and give an overview of

http://dm.postech.ac.kr/geosearch
http://www.flickr.com
http://www.woophy.com

Fig. 1. Examples of FOVscene in 2D and 3D spaces.

Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12 3
our indexing method (Section 3.3). We then present algorithms for
building the index (Section 3.4) and processing point and range
queries on the index (Section 3.5).

3.1. Preliminary: Viewable scene model

The viewable scene changes, as the camera moves or rotates.
The area captured by the camera is referred to as the Field-Of-View
scene (FOVscene) [4]. As illustrated in Fig. 1(a), in a 2D space, four
parameters are required to express a single FOVscene: (1) location
of the camera P, (2) direction of the camera~d, (3) viewable angle of
the camera h, and (4) visible distance R.

FOVsceneðP;~d; h;RÞ ð1Þ

Camera location P is represented as a (latitude, longitude) pair
that can be obtained using a GPS sensor. Camera direction ~d can
be obtained using a compass sensor. Camera viewable angle h
and visible distance R can be obtained from the camera lens’ prop-
erty and zoom level. As assumed in [4,2], we also fixed h and R by
assuming the use of static camera lens. (Some video recording
devices such as smartphones and car blackboxes use static camera
lenses.)

The camera view or the viewable scene information at a partic-
ular moment is entirely expressed by an FOVscene. An FOVscene

corresponds to a frame in the video. A georeferenced video can
be represented by a sequence of FOVscenes. We use the term
FOVstream to denote a sequence of FOVscenes. As done in [4,2],
we restrict FOVscene to a 2D space, however it can be extended
to a 3D space in a straightforward manner. Altitude and pitch
should be considered in the 3D model (Fig. 1(b)). but they do not
alter the nature of the FOVscene model.

3.2. Limitation of MBR

The MBR (Minimum Bounding Rectangle) structure, which has
been traditionally used for spatial indexing in R-tree, is mainly
used for indexing point objects. However, since MBR indexes areas
based on rectangles, it is inefficient to index the areas of moving
scenes which are shaped like trajectories. Fig. 2 illustrates such a
problem of MBR in indexing moving scenes. Fig. 2(a) used two
MBRs to cover the area of moving scenes: the query point (a red
circle) is evaluated as positive (false positive) since it is inside
Fig. 2. Examples of MBR (Minimum Bounding Rectangle) and MBTR (Minimum Boundin
scene. (For interpretation of the references to colour in this figure legend, the reader is
the MBRs although it is not really covered by the moving scenes.
To reduce the false positive, Fig. 2(b) used 13 MBRs, one for each
scene, to cover the area of moving scenes. However, in this case,
we have to evaluate many MBRs to identify the final scenes, which
will require more memory space to maintain the structure and
takes more time to reach the leaf nodes of the R-tree. The MBTR
structure is more appropriate for indexing moving scenes, as its
shape is more flexible and not having to be parallel to axis. As
Fig. 2(c) shows, two MBTR sufficiently cover the area of moving
scene without generating false positive on the query point (a red
circle).
3.3. GeoTree: Overview

To enable an efficient indexing of georeferenced video search,
videos must be recorded with the metadata of ðP;~d; h;RÞ for each
FOVscene. Video recording devices such as car blackboxes and
smartphones are nowadays equipped with sensors that have the
ability to record metadata with videos. An index, GeoTree, is con-
structed on the videos with the metadata. When a point or range
query is submitted by users, it is processed on the GeoTree by
finding the FOVstreams that overlap the query area. The processes
of index construction and query processing are summarized below.
We detail technical challenges and propose algorithms for each
process in Sections 3.4 and 3.5 respectively.

� Index construction: GeoTree uses Minimum Bounding Tilted
Rectangle (MBTR) instead of MBR (Minimum Bounding Rectan-
gle) to represent an area of moving scenes in the index. Building
MBTRs requires modeling moving scenes piece-wise linearly
such that each MBTR covers as large an area as possible while
producing as small a number of false positive areas as possible.
Thus, our index construction in Section 3.4 discusses (1)
algorithms for identifying markup FOVscenes that disconnect
moving scenes into linear pieces of FOVstreams and (2)
algorithms to construct an MBTR from each FOVstream. GeoTree

is a kind of R-Tree that uses the MBTR s in the leaf nodes.
� Query processing: A point or range query is processed in a sim-

ilar fashion to R-Tree in the nonleaf nodes, as the nonleaf nodes
of GeoTree are also described by MBRs. Once the query reaches a
leaf node of GeoTree, the query area is checked to see if it over-
laps the MBTR; if it does, the corresponding FOVscenes are
retrieved from the MBTR. Thus, our query processing method
in Section 3.5 discusses checking and retrieving algorithms on
the MBTR.

3.4. GeoTree: Index construction

To build a GeoTree, moving scenes must be represented as linear
pieces of an FOVstream, and an MBTR is built for each linear piece of
FOVstream. Note that, unlike indexing trajectories, an MBTR must
take camera direction ~d as well as location P into consideration
g Tilted Rectangle). Red circle is the querying area. Blue circular sector is a viewable
referred to the web version of this article.)

Fig. 3. Finding Markup FOVscenes. The circles are FOVscenes, and Fs and Fe are the
starting and ending FOVscenes, respectively. In (a), F 0i is the estimated Fi according
to the regression line. In (b), Fi becomes a new markup FOVscene.

4 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
in order to minimally cover the area of the moving scenes. There-
fore, we first identify markup FOVscenes from moving scenes, while
considering the changing patterns of P and ~d. Markup FOVscenes
are those at the edge of an MBTR, such that the FOVscenes between
markup FOVscenes are moving linearly in terms of P and constant
in terms of ~d, and thus they can be estimated from the markup
FOVscenes. Since P is moving linearly and ~d is constant within an
MBTR, we can check if a query area is located within the MBTR
by simply retrieving the markup FOVscenes. (Algorithms for check-
ing and retrieving FOVscene within an MBTR are discussed in
Section 3.5.)

3.4.1. Identifying markup FOVscenes
The key idea underlying the finding of markup FOVscenes is to

find the point at which scenes (i.e., P and ~d) are sharply changing.
We extend the idea of the trajectory compression algorithm [11] to
moving scenes. Given an FOVstream, we assume that the scenes are
moving perfectly linearly from the start to the end in terms of P. In
such a case, when we draw a linear regression between the start
and end points, the regression line will perfectly fit to the
FOVstream. If not, the actual scene in the middle will depart from
the regression line. (Fig. 3(a) shows an example.)

Algorithm 1. FindingMarkupFOVSceneðF; �P; �~dÞ

1 F: an FOVstream

2 �P; �~d: threshold for errors of P and ~d
3 S1 ¼ MarkupFOVScene_PðF; s; e; �PÞ
4 S2 ¼ MarkupFOVScene_dðF; s; e; �~dÞ
5 return S1 [S2
Algorithm 2. MarkupFOVScene_PðF; s; e; �PÞ

1 F: an FOVstream

2 s: starting index of F
3 e: ending index of F
4 �P: threshold
5 for i s to e do
6 P0i ¼ Regression ðFs; Fe; FiÞ
7 dist ¼ distance P0i; Pi

� �
8 if dist >dist_max then
9 dist max dist

10 peak i
11 end
12 end
13 if dist_max > �P then
14 list1 ¼ MarkupFOVScene_PðF; s; peak; �PÞ
15 list2 ¼ MarkupFOVScene_PðF; peak; e; �PÞ
16 return list1þ list2
17 else
18 return [Fs; Fe]
19 end
Algorithm 3. RegressionðFs; Fe; FiÞ
1 F: an FOVstream

2 ts and Ps: timestamp and location of Fs

3 te and Pe: timestamp and location of Fe

4 ti: timestamp of Fi

5 De ¼ te � ts

6 Di ¼ ti � ts

7 P0i ¼ Ps þ Di
De ðPe � PsÞ

8 return P0i
Algorithm 4. MarkupFOVScene_dðF; s; e; �~dÞ

1 F: an FOVstream

2 s: starting index of F
3 e: ending index of F
4 �~d: threshold
5 for i s to e do

6 // Get the mean ~d of two extremes in the interval

7 ~d0i ¼ MiddleValueðF; s; iÞ

8 dist ¼ distance ~di
0
; ~di

� �
9 if dist > �~d then

10 list1 ¼ ½Fs; Fi�
11 list2 ¼ MarkupFOVScene_dðF; i; e; �~dÞ
12 return list1þ list2
13 end
14 end
15 return [Fs; Fe]

From this idea, we draw a regression line from the start to the
end point of FOVstream. For each scene Fi between Fs (starting
scene) and Fe (ending scene), we find the corresponding scene F 0i
on the regression line as illustrated in Fig. 3(a). (F 0i has the same
timestamp as Fi.) We then compute the distance between Fi and
F 0i. If the distance is greater than a threshold �, we divide the
FOVstream based on Fi such that Fi will be the ending scene of
the first division and also the starting scene of the second division,
as illustrated in Fig. 3(b). Fi then becomes the markup FOVscene.
We repeat this process recursively until the maximum distance
between actual scenes and their linearly approximated scenes is
lower than �.

Given a real scene Fi, a linearly approximated scene F0i is found
using the timestamps of scenes as follows.

De ¼ te � tsDi ¼ ti � tsP
0
i ¼ Ps þ

Di
De
ðPe � PsÞ ð2Þ

where ts and te are the timestamps of the starting and ending
scenes, respectively, ti is the timestamp of FOVscene Fi that we want
to estimate, and P0i is the estimated location of Fi.

Next, we find markup FOVscenes in terms of ~d. Since ~d is as-
sumed to be constant within an MBTR, we check to see if ~d has
moved more than a threshold �~d from the starting FOVscene. If it
has, we create a markup FOVscene. Once markup FOVscenes are
collected for ~d, the markup FOVscenes are unioned with those
collected for P.

Algorithm 1 describes the procedure for detecting markup
FOVscenes. It calls the functions MarkupFOVScene_P (Algorithm
2) and MarkupFOVScene_d (Algorithm 4) and returns the set union
of their results. The user-defined thresholds for P and ~d are �P and
�~d respectively. Algorithm 2 finds markup FOVscenes for P using a

Fig. 4. MBTR construction.

Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12 5
linear regression; line 6 finds the location P0i of scene F0i, corre-
sponding to Fi in terms of the timestamp (Algorithm 3). If its
distance from Pi is greater than �P (lines 7 and 13), the FOVstream

is divided based on Pi and calls itself with divided FOVstreams
(lines 14 and 15).

Algorithm 4 finds markup FOVscenes for~d; it first computes the
middle~d value of the interval, which is the mean of the maximum
and minimum~d in the interval between the starting FOVscene and
the current FOVscene (line 6). If the distance from the current~d and
the middle ~d is greater than the threshold (lines 7 and 8),
FOVstream is divided by the current FOVscene, and the current
FOVscene becomes a new markup FOVscene (line 9) and also the
starting FOVscene of the remaining FOVstream (line 10).
3.4.2. Constructing MBTR from FOVstream

Once a set of markup FOVscenes are found, we construct MBTRs
from pairs of adjacent markup FOVscenes. An MBTR must cover all
FOVscenes between a pair of adjacent markup FOVscenes. We draw
a tilted rectangular boundary for the FOVscenes, and expand this
boundary by �P because �P was the error threshold for P such that
the locations of FOVscenes within an MBTR can deviate from the
regression line by as large a value as �P .

Fig. 4 illustrates the MBTR construction process. Each FOVscene

has the shape of a circular sector. If we shift all the FOVscenes in the
interval to the same location, they accumulate to form a larger cir-
cular sector. Fig. 4(b) gives an example of an accumulated circular
sector. Note that the angle of the larger circular sector will not be
larger than a predetermined maximum, hþ 2� �~d, because �~d was
the error threshold for ~d within an MBTR. We then construct a
bounding rectangle for the circular sector and expand the bound-
ing rectangle by �P in each direction. The expanded bounding rect-
angle is called the E-MBR (Expected-MBR). Unlike MBR, which is
parallel to the coordinate axis, E-MBR must be parallel to the mov-
ing direction. While traditional MBR requires height and width as
well as location, E-MBR requires four widths and location. These
four widths correspond to the four directions from the location
of FOVscene. They are denoted as rforward; rbackward; rleft; rright

respectively.
A single E-MBR covers a single FOVscene. However, all the E-

MBRs within an MBTR have the same width and their location
changes linearly. As a result, we only need to store the parameters
of one E-MBR for one MBTR. As shown in Fig. 4(d), MBTR is simply a
long tilted rectangle represented by a trajectory segment and four
widths. MBTR parameters are summarized in Table 1. Ps and Pe are
the locations of the first and last FOVscenes of an MBTR,
respectively.

3.5. GeoTree: Query processing

This section explains query processing algorithms for point and
range queries on GeoTree. A query is processed in a similar fashion
to R-Tree in nonleaf nodes, as nonleaf nodes of GeoTree are also
built using MBRs just as in R-Tree. Once a query reaches a leaf node
in the GeoTree, it is processed in two steps – (1) MBTR filtering and
(2) MBTR lookup. MBTR filtering ascertains if the query can overlap
the MBTR. If MBTR filtering returns false, this means that there is no
FOVscene in the MBTR that overlaps the query. However, if MBTR
filtering returns true, MBTR lookup is called to compute and return
an expected subsequence of FOVscenes that overlap the query. We
will discuss the processing algorithms for point queries in
Section 3.5.1, then discuss those for range queries in Section 3.5.3.
3.5.1. Point query processing

Algorithm 5. PointQueryInMBTR (q,MBTR)

1 Ps: Starting point of location trajectory
2 Pe: Ending point of location trajectory
3 q: Query Point
4 n: Number of FOVs in MBTR.
5 L: List of matching FOVs.
6 l: Distance between Ps; Pe

7 rleft ; rright; rforward; rback: MBTR parameters
8 B: Boundary for MBTR
9 {B is tilted rectangle given four r values}

10 if pointPolygonIntersect(q,B) then
11 D ¼ projectedDistanceðPs; Pe; qÞ
12 i ¼ ðD� rforwardÞ � n�1

l

� �
13 j ¼ ðDþ rbackÞ � n�1

l

� 	
14 for k i to j do
15 if pointFOVIntersectðq; FkÞ then
16 addListðL; FkÞ
17 end
18 end
19 end
20 return L

Table 1
MBTR parameters.

Ps Starting point of location trajectory
Pe Ending point of location trajectory
rleft Maximum distance to left sides of moving direction
rright Maximum distance to right sides of moving direction
rforward Maximum distance to forward of moving direction
rback Maximum distance to backward of moving direction

Table 2
Subroutines.

pointPolygonIntersectðq; PÞ Returns true if point q overlaps with polygon P
pointFOVIntersectðq; FÞ Returns true if point q overlaps with FOVScene F
polygonFOVIntersectðP; FÞ Returns true if polygon P overlaps with

FOVScene F
getIntersectionsðP1; P2Þ Returns all intersection points between polygon

P1 and P2

addListðL; FkÞ Add frame id of F into L
projectedDistanceðPs; Pe; qÞ Distance of q0 from Ps , where q0 is projection of q

onto PsPe
��!

. It is given by Psq
�!

�PsPe
��!

jPsPe
��!

j

Fig. 5. MBTR location index.

Table 3
Change of search space during query processing.

Step Candidate area (m)

Before test After test

(1) Validity testing 1�1 10,000 � 10,000
(2) R-Tree pruning 10,000 � 10,000 100 � 100
(3) MBTR-filtering 100 � 100 20 � 120
(4) MBTR-lookup 20 � 120 20 � 40
(5) FOV to point comparison 20 � 40 Result

6 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
When a query arrives at a leaf node of GeoTree that contains an
MBTR, MBTR filtering is called. MBTR filtering for a point query is
straightforward: The query point is checked to determine if it is
located inside the boundary of MBTR, which are described by the
parameters in Table 1, using the algorithm for checking the overlap
between a point and a polygon. Line 10 of Algorithm 5 corresponds
to MBTR filtering.

Once MBTR filtering returns true, MBTR lookup returns a subse-
quence of FOVscenes that is expected to overlap with the query.
Since an MBTR typically contains numerous FOVscenes, it would
be inefficient to scan all the FOVscenes in the MBTR to find the
overlapping FOVscenes. We directly compute, using the MBTR
structure, a sequence of FOVscenes that is expected to contain
the query point. Fig. 5(a) depicts an example: A query point, repre-
sented by a triangle, is inside the MBTR, but neither the first FOV-

scene nor the last FOVscene contains the query point. Fig. 5(b)
shows the boundary of promising FOVscenes that could contain
the query point.

Since MBTR is a sequence of E-MBRs, and each E-MBR fully cov-
ers an individual FOVscene, we calculate the first and the last E-
MBRs that overlap with the query point. The first index i and the
last index j of the overlapping E-MBRs are computed using Eqs.
(3) and (4).

i ¼ ðD� rforwardÞ �
n� 1

l

 �
ð3Þ

j ¼ ðDþ rbackÞ �
n� 1

l

�
ð4Þ

where k is the frame number of FOVscene counted from Ps, l is the
length of PsPe, and n is the number of FOVscenes in the MBTR. D is
the distance from Ps to the point of query q projected onto the line
PsPe. D can be negative if q is projected onto the line outside PsPe.
Once i and j are computed, we only need to scan the FOVscenes from
Fi to Fj to retrieve the FOVscenes containing the query point within
the MBTR.

We will now justify Eqs. (3) and (4). Fig. 5(c) shows an example
of E-MBR. There exists one E-MBR for each FOVscene, and each
E-MBR bounds its corresponding FOVscene’s range. Let Pk be the
exact location of the kth FOVscene Fk and P0k be the location of
the corresponding E-MBR. Note that P0k is located on PsPe and
moves from Ps to Pe at a constant speed. The kth E-MBR, which
bounds Fk, is given by a rectangle located at P0k. This E-MBR has
widths rleft; rforward; rright; rback from P0k. If a query point turns out to
be located inside the MBTR according to MBTR filtering, the query
point exists within the width of rleft or rright from PsPe. Thus we only
need to consider rforward and rback. For a query point to be located in-
side the kth E-MBR, it has to be located between the backward
boundary and the forward boundary of E-MBR. The distance from
Ps to P0k is k� l

n�1. The backward boundary of the kth E-MBR is
rback from P0k and the forward boundary is rforward. Thus, a query
point is located inside the kth E-MBR only if it satisfies Eq. (5).

k� l
n� 1

� rback 6 D 6 k� l
n� 1

� rforward ð5Þ

The first index i and the last index j of overlapping E-MBRs in
Eqs. (3) and (4) are the lowest and highest index k, respectively,
that satisfy Eq. (5).

3.5.2. Summary of query processing
In this section, we illustrate a simple running example of a point

query processing in GeoTree A point query is processed in the fol-
lowing five steps summarized in Table 3.

1. The query point is tested whether it exists inside or outside of
our data space.

2. The point is processed through the nonleaf nodes of R-Tree.
After this, the candidate space is limited to an MBR which
may contain several MBTRs Fig. 6(a).

3. The point is tested by the MBTR -Filtering, which corresponds to
line 10 of Algorithm 5. After this, the corresponding MBTR is
found 6(b).

4. The MBTR -Lookup is processed, which corresponds to lines 11–
13 of Algorithm 5. Now the candidate space is shortened to a
small slanted box 6(c).

Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12 7
5. The FOVscenes in the slanted box are evaluated to return the
query result, i.e., the final scenes that contain the query point.
(line 15 of Algorithm 5).

3.5.3. Range query processing
Algorithm 6. RangeQueryInMBTR (q,MBTR)
1
 Ps: Starting point of location trajectory

2
 Pe: Ending point of location trajectory

3
 Q: Query Range {Q is given by convex polygon}

4
 n: Number of FOVs in MBTR.

5
 L: List of matching FOVs.

6
 l: Distance between Ps; Pe
7
 B: Boundary for MBTR

8
 {B is tilted rectangle given four r values}

9
 C: Set of critical points to check
10
 /⁄ Collecting critical point ⁄/

11
 C ¼ getIntersectionsðB;QÞ

12
 for 8vQ 2 Q do

13
 if pointPolygonIntersectðvQ ;BÞ then

14
 C ¼ C [vQ
15
 end

16
 end

17
 for 8vB 2 B do

18
 if pointPolygonIntersectðvB;QÞ then

19
 C ¼ C [vB
20
 end

21
 end

22
 /⁄ MBTR lookup ⁄/

23
 if C – / then

24
 Dmin ¼minv2CprojectedDistanceðPs; Pe;v)

25
 Dmax ¼maxv2CprojectedDistanceðPs; Pe;v)� �

26
 i ¼ ðDmin � rforwardÞ � n�1

l� 	

27
 j ¼ ðDmax þ rbackÞ � n�1

l

28
 for k i to j do

29
 if polygonFOVIntersectðQ ; FkÞ then

30
 addListðL; FkÞ

31
 end

32
 end

33
 end

34
 return L
We use a convex polygon to represent a range query, as other
types of range queries can be represented as the sum of convex poly-
gon queries. Like point query processing, range query is processed in
the same way as R-Tree in the nonleaf nodes. Once the query reaches
a leaf node, we perform MBTR filtering and MBTR lookup. Query pro-
cessing inside the MBTR is summarized in Algorithm 6. Subroutines
used in the algorithm are summarized in Table 2.

For MBTR filtering and MBTR lookup for range queries, we use
CriticalPoints, which is a set of vertices that bounds the overlapping
region between MBTR boundary and query polygon boundary Q.
CriticalPoints are composed of three categories of points – (1) the
set of points that the MBTR boundary and polygon Q’s edges
intersect, (2) polygon Q’s vertices that are located inside the MBTR,
and (3) MBTR vertices that are located inside polygon Q.

MBTR filtering corresponds to checking for the existence of
CriticalPoints. If no CriticalPoints exists, it implies that there is no
matching FOVscene in MBTR. If CriticalPoints do exist, they repre-
sent the boundary of the query range that we need to search inside
the MBTR. The process of acquiring critical points corresponds to
lines 11 through 21 of Algorithm 6.
MBTR lookup for range queries is similar to that for point que-
ries except that the first index i and the last index j of the overlap-
ping E-MBRs must be computed for CriticalPoints. Among
CriticalPoints, we first find two end points, Dmin and Dmax, where
Dmin is the closest and Dmax is the farthest point from Ps on the line
PsPe. Indices i and j are computed using equations that are similar
to Eqs. (3) and (4) but D is replaced with Dmin and Dmax accordingly
as follows.

i ¼ ðDmin � rforwardÞ �
n� 1

l

 �
ð6Þ

j ¼ ðDmax þ rbackÞ �
n� 1

l

�
ð7Þ

Accordingly, the process of MBTR lookup for range queries is de-
scribed in lines 24 through 27 of Algorithm 6. After the interval of
overlapping E-MBRs is determined, an exact FOVscene comparison
is performed on this sequence of FOVscenes.

3.6. Noise filtering

In practice of video and meta-data recording, due to the prag-
matic errors of magnetic sensors, the direction data often contains
noise. Such noise could obstruct a smooth construction of MBTR in
GeoTree. This section discusses the type of direction noise, its im-
pacts in GeoTree construction, and how to remove such noise.
The type of noise is following.

� Latency noise: When the camera drastically changes its
direction, the sensor responds with latency producing inac-
curate values.

� Vibration noise: Magnetic sensors sometimes produce
small vibrations around true values. (Fig. 7(a) shows an
example.)

� Tremble noise: Sensors sometimes produce sudden short
trembles of the directions which are very different from
real directions. For example, when the camera is fixed on
a tripod and someone taps the tripod with his finger, mag-
netic sensors sometimes produce a big direction change (over
90 degree) even when the actual direction slightly changes
(less than 10 degree). (Fig. 7(b) shows an example.)

Many effective noise filtering techniques were proposed [16].
We revised the a-trimmed mean filter method [5] to effectively re-
move both vibration noise and tremble noise. The original a-
trimmed mean filter shows the characteristics of mean filter and
median filter. Mean filter is effective for vibration noise and
median filter is effective for tremble noise.

The original a-trimmed mean filter is used for data of scalar val-
ues and removes a portion of data from both high and low ends. In
our application, the data is direction value represented by angles
where 0� ¼ 360�, and there is no concept of high or low in direc-
tion. Thus we convert them to unit vectors in cartesian coordinate
and remove a � 2 portion of data which are farthest from normal-
ized mean value. Vector v for direction ~d is given as follows.

v ¼ ðcosh; sinhÞ ð8Þ

where h is angle between ~d and east direction.
Using the vector arithmetics, we compute the normalized mean

vector.

C ¼
XN

cosh

S ¼
XN

sinh

mean vector ¼ C

C2 þ S2 ;
S

C2 þ S2

� �
ð9Þ

Fig. 6. Point query processing. Gray area depicts the pruned area after each step.

 0

 90

 180

 270

 360

 0 100 200 300 400 500 600 700 800

D
ire

ct
io

n
(d

eg
re

e)

Frames

noisy data
ground truth

 0

 90

 180

 270

 360

 0 100 200 300 400 500 600 700 800

D
ire

ct
io

n
(d

eg
re

e)

Frames

noisy data
ground truth

Fig. 7. Examples of noise.

 0

 90

 180

 270

 360

 0 50 100 150 200 250 300 350

D
ire

ct
io

n
(d

eg
re

e)

Frames

noisy data

 0

 90

 180

 270

 360

 0 50 100 150 200 250 300 350

D
ire

ct
io

n
(d

eg
re

e)

Frames

noisy data

Fig. 8. Direction data and query response. Regions colored with gray represents the response to a query. Before filtering, the response interval appear in three fragments. After
filtering, the response interval appear in a single fragment.

8 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
Then, we find m farthest vectors, i.e., outliers, from the normal-
ized mean vector based on Euclidean distance in the cartesian
coordinate space. The remaining N �m vectors excluding the
outliers are converted into angles.

In our experiments, we used filter of mask size N ¼ 49 and
a ¼ 0:1, which means we averaged 48 adjacent frame directions
(24 before and 24 after) as well as its own frame directions to
get the mean value. Then, we exclude m frames which are farthest
from the mean value, where m is given by N � 2a. In our case,
N ¼ 49; a ¼ 0:1, so m ¼ 9.

Fig. 8 shows the effect of the filter. This graph shows the direc-
tion data and the query response in that interval. Before filtering,
query response is affected by noise and the response interval ap-
pear in three fragments due to the extreme change of direction
by tremble noise. After filtering, effect of tremble noise is mini-
mized and the response came in a single fragment.

Table 4
Comparison of query processing time: mean (and standard deviation).

MBR-filtering R-Tree GeoTree

Range query (ms) 307,461 (6272.1) 5668.7
(154.622)

4466.2 (104.322)

Point query (ms) 66,454 (1629.5) 1288.6 (32.368) 1210.5 (29.08)
Memory use (MB) 16.7 27.3 2.83

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

M
em

or
y

U
se

(M
B)

Data Size(MB)

MBR-Filter
R-Tree

GeoTree

 200

 400

 600

 800

 1000

 1200

 1400

 5 10 15 20 25 30

Pr
oc

es
si

ng
 T

im
e(

m
s)

Data Size(MB)

R-Tree
GeoTree

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25 30

Pr
oc

es
si

ng
 T

im
e(

m
s)

Data Size(MB)

R-Tree
GeoTree

Fig. 9. Result of varying data sizes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9 10

M
em

or
y

U
se

(M
B)

εP(m)

εθ = 10
εθ = 30
εθ = 50

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 0 1 2 3 4

Pr
oc

es
si

ng
 T

im
e(

m
s)

ε

εθ = 10
εθ = 30
εθ = 50

Fig. 10. Result of varyin

Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12 9
4. Experiments

In this section, we evaluate the performance of GeoTree and
compare it to R-Tree and MBR-Filter, i.e., the MBR-based filtering
proposed in [2]. We evaluate the performance of processing point
queries and range queries in terms of query processing time and
also memory usage. All of the methods find exact results, and thus,
 1100

 1300

 1500

 1700

 1900

 2100

 0 1 2 3 4 5 6 7 8 9 10

Pr
oc

es
si

ng
 T

im
e(

m
s)

εP(m)

εθ = 10
εθ = 30
εθ = 50

 5 6 7 8 9 10
P(m)

g parameter values.

Fig. 11. Demonstration site.

10 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
the query results are identical. Therefour, we restrict our discus-
sion to processing time and memory usage. Our experiments were
done using a machine with the following specifications: dualcore
CPU (2.4 GHz) and 4 GB of Memory.
4.1. DataSet

Experiments were performed on real FOVstream data sets. We
captured real scenes using an Android mobile phone equipped

8 http://www.postech.ac.kr.
9 www.tubechop.com: a site that shows a segment of YouTube videos.

Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12 11
with a GPS receiver and a 3D compass. Since actual videos are rep-
resented as sequences of FOVscene metadata according to our
scene model, we only collected metadata from the mobile phone.
We ignored altitude and pitch angles from the 3D compass, as
we are only interested in 2D. Thirty FOVscenes were captured every
second. Latitudinal and longitudinal data were converted into me-
ter metrics in the 2D plane. No zoom level change was simulated,
thus viewable angle h and visible distance R were kept constant
and thus fixed to h ¼ 55 � and R ¼ 50 m.

FOVscenes ranged in the area of 3.3 km long in the north–south
and 3.8 km long in east–west. Test data corresponded to 11
streams with a total duration of 180 min. The number of FOVscenes
was 325,313 in total. This number of streams corresponded to
approximately 4.4 GB of typical video data. The sum of all trajecto-
ries’ length was approximately 68 km.

For the leaf nodes of GeoTree with less than 5 FOVscenes, we
simply used simple one-by-one search and did not perform MBTR
filtering and lookup, because, when an MBTR contains just a few
FOVscenes, scanning FOVscenes one-by-one runs faster due to some
overhead of MBTR filtering and lookup.

4.2. Result summary

Table 4 summarizes the results of the query processing time for
each method. For the range query test, we randomly generated
10,000 queries and measured the accumulated processing time
for the queries. For the point query test, we randomly generated
100,000 queries and also measured the accumulated processing
time for the queries. The processing times are averaged by 30 runs.
Standard deviations are also shown – all of them show very small
deviations.

For GeoTree, we first tuned the error threshold parameters on
the dataset, and fixed the parameter values for all runs, these were.
�P ¼ 1 m and �h ¼ 10�.

MBR-Filter was one hundred times slower than the other tree-
based searches. We omitted the naive sequential search results be-
cause it was even much slower than MBR-Filter. GeoTree gave a
consistently faster query processing time than R-Tree. Although
the query processing times of R-Tree and GeoTree were not sub-
stantially different, their memory usages were an order of magni-
tude different. As Fig. 9(a) shows, the performance difference
became more significant, as data size increased.

It is because R-Tree does not utilize the continuity of the adja-
cent frames. In order to enable random access in R-Tree, it is nec-
essary to put every single frame into a leaf node. Otherwise, it will
result in significant increase in processing time. In contrast, leaf
node of GeoTree covers some number of frames and MBTR structure
enables the random access in the leaf node.

4.3. Result of varying data sizes

We compared the performance of indexing methods on various
data sizes. In order to make datasets of varying sizes, we started
from one FOVstream and added streams one-by-one. Fig. 9 shows
the results. Both memory usage and query processing time in-
creased, as data size increased. GeoTree outperformed R-Tree in
every case. The processing time for MBR-Filter is not present, be-
cause it is too high to present in the same graphs.

4.4. Results of varying other parameters

The performance of GeoTree varies with the threshold parame-
ter values. We investigated the performance change in GeoTree

with respect to parameters �P and �h. The results are illustrated
in Fig. 10. There is a tradeoff relationship between memory usage
and processing time. As the threshold parameter values increased,
memory usage decreased while processing time increased. Larger
threshold values created a smaller number of MBTRs, each with a
larger number of FOVscenes. Memory usage primarily depends on
the number of leaf nodes. We can save memory by setting large
threshold values and creating a small number of MBTR s. Due to
the MBTR lookup algorithm, a decrease in the number of MBTRs
does not lead to a rapid increase in the processing time. Even in
the MBTR with a large number of FOVscenes, MBTR lookup effec-
tively filters out irrelevant FOVscenes during query processing.
The query processing was still fast even with a small number of
MBTRs.

4.5. Demonstration

We have built a demo system on a real map of the campus of
POSTECH.8 We captured various places of the campus and uploaded
the videos to YouTube. We then built an online website, ‘‘http://
dm.postech.ac.kr/geosearch’’, which can search corresponding video
frames using point or range queries. In our online search website, a
user submits a point or range query by mouse clicks on the map, and
our system returns corresponding video frames using Tubechop.9

Fig. 11(a) illustrates an example of a range query in our website.
Fig. 11(b) shows the result in text and links to video views. Once
the user clicks a link, our system plays corresponding video frames
as shown in Fig. 11(c).
5. Conclusions

This paper proposed a new efficient indexing method, called
GeoTree, which enables an efficient search of georeferenced video
data. GeoTree adopts a new data structure, MBTR (Minimum
Bounding Tilted Rectangle), in the leaf nodes of R-Tree, in order
to efficiently store sequences of moving scenes and efficiently
prune out unpromising parts of videos in query processing. Our
experiments show that, compared to recent methods based on
MBR pruning and R-Tree, GeoTree significantly reduces the index
size and also the query processing time. Future work will include
the generalizing of GeoTree to support searching for videos with
adjustable viewable angles and distances.

References

[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent,
J. Weaver, Google street view: capturing the world at street level, Computer 43
(2010) 32–38.

[2] S. Arslan Ay, R. Zimmermann, S. Kim, Relevance ranking in georeferenced video
search, Multimedia Syst. 16 (2010) 105–125. 10.1007/s00530-009-0177-x.

[3] S.A. Ay, S.H. Kim, R. Zimmermann, Generating synthetic meta-data for
georeferenced video management, in: Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS
’10, ACM, New York, NY, USA, 2010, pp. 280–289.

[4] S.A. Ay, R. Zimmermann, S.H. Kim, Viewable scene modeling for geospatial
video search, in: Proceedings of the 16th ACM International Conference on
Multimedia, MM ’08, ACM, New York, NY, USA, 2008, pp. 309–318.

[5] J. Bednar, T. Watt, Alpha-trimmed means and their relationship to median
filters, IEEE Trans. Acoust. Speech Signal Process. 32 (1) (1984) 145–153.

[6] M. Chaabouni, S.M. Chung, The point-range tree: a data structure for indexing
intervals, in: Proceedings of the 1993 ACM Conference on Computer Science,
CSC ’93, New York, NY, USA, ACM, 1993, pp. 453–460.

[7] S. Dagtas, W. Al-Khatib, A. Ghafoor, R. Kashyap, Models for motion-based video
indexing and retrieval, IEEE Trans. Image Process. 9 (1) (2000) 88–101.

[8] E. Frentzos, Y. Theodoridis, On the effect of trajectory compression in
spatiotemporal querying, in: Proc. of East European Conf. Advances in
Databases and Information Systems, Springer, Berlin/Heidelberg, 2007.

[9] A. Guttman, R-trees: a dynamic index structure for spatial searching, in:
International Conference on Management of Data, ACM, 1984, pp. 47–57.

[10] H.-P. Kriegel, M. Ptke, T. Seidl, Interval sequences: an object-relational
approach to manage spatial data, in: C. Jensen, M. Schneider, B. Seeger, V.

http://dm.postech.ac.kr/geosearch
http://dm.postech.ac.kr/geosearch
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0030
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0030
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0030
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0035
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0035
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0040
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0040
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0040
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0040
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0040
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0045
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0045
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0045
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0045
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0050
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0050
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0055
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0055
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0055
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0055
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0060
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0060
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0065
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0065
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0065
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0065
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0070
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0070
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0070
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://www.postech.ac.kr
http://www.tubechop.com

12 Y. Kim et al. / Knowledge-Based Systems 61 (2014) 1–12
Tsotras (Eds.), Advances in Spatial and Temporal Databases, Lecture Notes in
Computer Science, vol. 2121, Springer, Berlin/Heidelberg, pp. 481–501.

[11] N. Meratnia, R. de By, Spatiotemporal compression techniques for moving
point objects, in: Proc. of Int. Conf. on Extending Database Technology (EDBT
2004), 2004.

[12] M.F. Mokbel, T.M. Ghanem, W.G. Aref, Spatio-temporal access methods, IEEE
Data Eng. Bull. 26 (2003) 40–49.

[13] D. Pfoser, Indexing the trajectories of moving objects, IEEE Data Eng. Bull. 25
(2002) 3–9.

[14] D. Pfoser, C.S. Jensen, Y. Theodoridis, Novel approaches to the indexing of
moving object trajectories, 2000, pp. 395–406.

[15] M. Potamias, K. Patroumpas, T. Sellis, Sampling trajectory streams with
spatiotemporal criteria, in: 18th International Conference on Scientific and
Statistical Database Management, 2006, pp. 275–284.
[16] A. Sabatini, Quaternion-based extended Kalman filter for determining
orientation by inertial and magnetic sensing, IEEE Trans. Biomed. Eng. 53 (7)
(2006) 1346–1356.

[17] E. Sahouria, A. Zakhor, A trajectory based video indexing system for street
surveillance, in: IEEE Int. Conf. on Image Processing, 1999, pp. 24–28.

[18] S. Saltenis, C.S. Jensen, S.T. Leutenegger, M.A. Lopez, Indexing the positions of
continuously moving objects, 2000.

[19] H. Samet, Spatial Data Structures, Addison-Wesley, 1995.
[20] K. Shearer, S. Venkatesh, D. Kieronska, Spatial indexing for video databases, J.

Visual Commun. Image Represent. 7 (4) (1996) 325–335.
[21] K. Toyama, R. Logan, A. Roseway, Geographic location tags on digital images,

in: Proceedings of the Eleventh ACM International Conference on Multimedia,
MULTIMEDIA ’03, ACM, New York, NY, USA, 2003, pp. 156–166.

http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0075
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0080
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0080
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0085
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0085
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0090
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0090
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0090
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0095
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0095
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0100
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0100
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0105
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0105
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0105
http://refhub.elsevier.com/S0950-7051(14)00054-9/h0105

	GeoTree: Using spatial information for georeferenced video search
	1 Introduction
	2 Related work
	2.1 Georeferenced multimedia search
	2.2 Spatial indexing

	3 GeoTree: Spatial indexing for georeferenced video search
	3.1 Preliminary: Viewable scene model
	3.2 Limitation of MBR
	3.3 GeoTree: Overview
	3.4 GeoTree: Index construction
	3.4.1 Identifying markup FOVscenes
	3.4.2 Constructing MBTR from FOVstream

	3.5 GeoTree: Query processing
	3.5.1 Point query processing
	3.5.2 Summary of query processing
	3.5.3 Range query processing

	3.6 Noise filtering

	4 Experiments
	4.1 DataSet
	4.2 Result summary
	4.3 Result of varying data sizes
	4.4 Results of varying other parameters
	4.5 Demonstration

	5 Conclusions
	References

