
Easy Language Extension with Meta-AspectJ

Shan Shan Huang, Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{ssh,yannis}@cc.gatech.edu

ABSTRACT
Domain-specific languages hold the potential of automating
the software development process. Nevertheless, the adop-
tion of a domain-specific language is hindered by the diffi-
culty of transitioning to different language syntax and em-
ploying a separate translator in the software build process.
We present a methodology that simplifies the development
and deployment of small language extensions, in the con-
text of Java. The main language design principle is that of
language extension through unobtrusive annotations. The
main language implementation idea is to express the lan-
guage as a generator of customized AspectJ aspects, using
our Meta-AspectJ tool. The advantages of the approach are
twofold. First, the tool integrates into an existing software
application much as a regular API or library, instead of as
a language extension. This means that the programmer can
remove the language extension at any point and choose to
implement the required functionality by hand without need-
ing to rewrite the client code. Second, a mature language
implementation is easy to achieve with little effort since As-
pectJ takes care of the low-level issues of interfacing with
the base Java language.

1. INTRODUCTION AND MOTIVATION
The idea of extensible languages has fascinated program-

mers for many decades, as evident by the extensibility fea-
tures in languages as old as Lisp. From early on in the
history of software development, programmers dreamed of
expressing complex software modules as reusable language
extensions instead of as plain libraries. From a Software En-
gineering standpoint, the main advantages of expressing a
concept as a language feature, as opposed to a library API,
are in terms of conciseness, safety, and performance. A lan-
guage feature can allow expressing the programmer’s intent
much more concisely—in contrast, libraries are limited to
a function- or method-call syntax. A language feature can
also enable better static error checking—a library can only
check the static types of arguments of a function call against

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the declared types of the formals. Finally, a language fea-
ture can take advantage of context information and employ
an optimized implementation, while a library routine cannot
be customized according to its uses.

Despite these advantages, there are excellent reasons why
full language extensibility is undesirable. Changing the syn-
tax and semantics of a programming language is confusing
and can lead to incomprehensible code. Furthermore, pro-
gramming languages are complex entities, designed to pro-
vide a small number of features but allow them to be com-
bined as generally as possible. A new feature can either
increase the complexity of the language implementation sig-
nificantly (because of interactions with all existing features),
or will need to be limited in its interactions, which is a bad
language design principle that leads to single-use features
and design bloat.

In past work [3], we have advocated expressing small
language extensions purely through unobtrusive annota-
tions. Indeed, the introduction of user-defined annotations
in mainstream programming languages, such as C# and
Java, has allowed specialized language extensions (e.g., for
distributed computing, persistence, or real-time program-
ming) to be added without changing the base syntax.

We believe that the approach of limited language exten-
sion through annotations meshes very well with an imple-
mentation technique that uses our Meta-AspectJ (MAJ)
tool [4] to express the semantics of the language extension.
Specifically, MAJ is a language that allows writing programs
that generate aspects in the AspectJ language [1]. In this
way, the programmer can easily express an extension to the
Java language as a program that: a) reads annotations and
type information from an existing program using Java re-
flection; b) outputs a customized AspectJ aspect that is re-
sponsible for transforming the original program according to
the information in the annotation; c) executes the generated
aspect by using the standard AspectJ compiler.

In other words, our approach uses the AspectJ language
as a compiler back-end. AspectJ code is not written by the
application programmer but gets generated by the language
extension, for the sole purpose of expressing program trans-
formations easily and generally. This is appropriate, as As-
pectJ embodies the Aspect-Oriented Programming [2] phi-
losophy of expressing program enhancements orthogonally
and independently of the original source code.

Our approach has the advantage of simplifying the imple-
mentation of the language extension significantly, yet with-
out encouraging undisciplined language extension (since the
only extensions allowed are through annotations). Specifi-

cally, the approach leverages the engineering sophistication
of the AspectJ compiler implementation and its provisions
for dealing correctly with different Java language features. If
a programmer were to replicate the same effort by hand, she
would be likely to need to reproduce much of the AspectJ
compiler complexity.

The purpose of this paper is to support the idea of im-
plementing small language extensions as programs that pro-
duce aspects. We have recently implemented a number of
such small extensions to Java and they all exhibit a striking
simplicity. Specifically, we did not have to implement (or
extend) a Java parser, we did not need to deal with syntax
tree pattern matching and transformation, and we did not
need to provide special handling for many Java complexities.
The combined annotations-MAJ approach ensured that our
small language extensions were implementable in a few hun-
dreds of lines of code, without sacrificing generality in their
conditions of use. We discuss two such extensions in detail,
after first introducing the MAJ language.

2. BACKGROUND: MAJ SYNTAX
MAJ is an extension of Java that allows writing pro-

grams that generate AspectJ source code. MAJ offers
two operators for creating AspectJ code fragments: ‘[...]

(“quote”) and #[...] (“unquote”). The quote operator
creates representations of AspectJ code fragments. Parts
of these representations can be variable and are desig-
nated by the unquote operator (instances of unquote can
only occur inside a quoted code fragment). For exam-
ple, the value of the MAJ expression ‘[call(* *(..))] is
a data structure that represents the abstract syntax tree
for the fragment of AspectJ code call(* *(..)). Sim-
ilarly, the MAJ expression ‘[!within(#className)] is a
quoted pattern with an unquoted part. Its value depends
on the value of the variable className. If, for instance,
className holds the identifier “SomeClass”, the value of
‘[!within(#className)] is the abstract syntax tree for the
expression !within(SomeClass).

MAJ also introduces a new keyword infer that can be
used in place of a type name when a new variable is being
declared and initialized to a quoted expression. For example,
we can write:

infer pct1 = ‘[call(* *(..))];

This declares a variable pct1 that can be used just like any
other program variable. For instance, we can unquote it:

infer adv1 = ‘[void around() : #pct1 { }];

This creates the abstract syntax tree for a piece of AspectJ
code defining (empty) advice for a pointcut. Of course, since
AspectJ is an extension of Java, any regular Java program
fragment can be generated using MAJ.

We can now see a full MAJ method that generates a trivial
but complete AspectJ file:

void generateTrivialLogging(String classNm) {

infer aspectCode =

‘[package MyPackage;

aspect #[classNm + "Aspect"] {

before : call(* #classNm.*(..))

{ System.out.println("Method called"); }

}

];

System.out.println(aspectCode.unparse());

}

The generated aspect causes a message to be printed before
every call of a method in a class. The name of the affected
class is a parameter passed to the MAJ routine. This code
also shows the unparse method that MAJ supports for cre-
ating a text representation of their code.

3. EXAMPLE 1: FILLING
INTERFACE METHODS

Our first language extension is simple but represents a
good exposition example to our approach, since it can be
defined very quickly and it is hard to implement with alter-
nate means.

The Java language ensures that a class cannot declare
to “implement” an interface unless it provides implementa-
tions for all of its methods. Nevertheless, this often results
in very tedious code. For instance, it is very common in
code dealing with the Swing graphics library to implement
an event-listener interface with many methods, yet provide
empty implementations for most of them because the appli-
cation does not care about the corresponding events. The
example code below is representative:

private class SomeListener

implements MouseListener, MouseMotionListener

{

public void mousePressed (MouseEvent event) {

... // do something

}

public void mouseDragged (MouseEvent event) {

... // do something

}

// the rest are not needed. Provide empty bodies.

public void mouseClicked (MouseEvent event) {}

public void mouseReleased (MouseEvent event) {}

public void mouseEntered (MouseEvent event) {}

public void mouseExited (MouseEvent event) {}

public void mouseMoved (MouseEvent event) {}

}

Of course, the programmer could avoid providing the
empty method bodies on a per-interface basis, by associating
each interface with a class that by default provides empty
implementations of all interface methods. Then a client class
can inherit the empty implementations and only provide im-
plementations for the methods it needs. This pattern is in-
deed supported in Swing code (through library classes called
adapters), but it is usually not possible to employ since the
listener class may already have another superclass. Instead,
it would be nice to provide a simple Java language exten-
sion implemented as an annotation. The implementation of
the extension would be responsible for finding the unimple-
mented methods and supplying empty implementations by
default (or implementations that just return a default prim-
itive or null value, in the case of methods that have a return
type). In this case, the above class could be written more
simply as:

@Implements ({"MouseListener","MouseMotionListener"})

public class SomeListener {

public void mousePressed (MouseEvent event) {

... // do something

}

public void mouseDragged (MouseEvent event) {

... // do something

}

}

Of course, this extension should be used carefully since
it weakens the tests of interface conformance performed by
the Java compiler.

We implemented the above Java extension using MAJ.
The code for the implementation was less than 200 lines
long, with most of the complexity in the traversal of Java
classes, interfaces, and their methods using reflection. The
code processes a set of given Java classes and retrieves the
ones with an Implements annotation. It then finds all meth-
ods that are in any of the interfaces passed as arguments to
the Implements annotation and are not implemented by the
current class. For each such method, code is generated in an
AspectJ aspect to add an appropriate method implementa-
tion to the class. For instance, the code to add the method
to the class in the case of a void return type is:

infer newMethod =

‘[public void #methodName (#formals) {}];

aspectMembers.add(newMethod);

Finally, the class needs to be declared to implement the
interfaces specified by the annotation. This is easily done
by emitting the appropriate AspectJ code:

infer dec = ‘[declare parents:

#[c.getName()] implements #[iface.getName()];];

The final aspect (slightly simplified for formatting rea-
sons) generated for our earlier listener class example is:

public aspect SomeListenerImplementsAspect1 {

void SomeListener.mouseClicked(MouseEvent e) {}

void SomeListener.mouseEntered(MouseEvent e) {}

void SomeListener.mouseExited(MouseEvent e) {}

void SomeListener.mouseMoved(MouseEvent e) {}

void SomeListener.mouseReleased(MouseEvent e) {}

declare parents:

SomeListener implements MouseListener;

declare parents:

SomeListener implements MouseMotionListener;

}

This aspect performs exactly the modifications required
to the original class so that it correctly implements the
MouseListener and MouseMotionListener interfaces.

We invite the reader to consider how else this language
extension might be implemented. Our approach of using
annotations in combination with MAJ yielded a very simple
implementation by letting AspectJ deal with most of the
complexities of Java. Specifically, we did not have to deal
with the low-level complexities of either Java source syntax
or Java bytecode. For instance, we did not have to do any
code parsing to find the class body or declaration that needs
to be modified. Dealing with Java syntactic sugar, such
as inner classes, was automatic. We did not need to do a

program transformation to add the implements clauses or
the extra methods to the class. Similarly, we did not need
to worry about the valid syntax for adding an implemented
interface if the class already implements another.

4. EXAMPLE 2: LANGUAGE SUPPORT
FOR OBJECT POOLING

Our second example language extension addresses a com-
mon programming need, especially in server-side program-
ming. Software applications often find the need for pooling
frequently-used objects with high instantiation costs. We
use the following database connection class as a running ex-
ample:

public class DBConnection {

public DBConnection(String dbURI,

String userName,

String password) { ... }

public void open() { ... }

public void close() { ... }

}

The cost of an open() call is very high for a database connec-
tion. In applications concerned with performance, such as
high-volume websites with lots of database requests, one of-
ten finds the need to pool database connections and keep
them open, instead of repeatedly creating new ones and
opening them.

Making a class such as DBConnection into a “pooled”
class involves at the very least creating a pooling manager
class that knows how to manage instances of the class be-
ing pooled. A different pooling manager class needs to be
developed for each class being pooled, since the manager
needs to have class-specific information such as how to in-
stantiate a new instance of the class when the pool is running
low (e.g., DBConnection objects are created by a constructor
call, followed by an open() call), and how to uniquely iden-
tify objects of the same class that belong to different pools
(e.g., DBConnection objects of different dbURI, userName,
and password combinations need to be in different pools,
and the pooling manager needs to understand which pool to
fetch objects from when a request arrives).

We expressed the pooling concept as a language feature
that can used transparently with any Java class, as long
as some broad properties hold regarding its construction
and instantiation interface. The rest of the application will
be completely oblivious to the change. This facilitates the
application of pooling after a large code base which uses
the class in its non-pooled form has been developed. Using
our extension, converting a class to a pooled class involves
only 4 annotations: @pooled, @constructor, @request, and
@release. For example, to convert the DBConnection class
into a “pooled” class, and to adapt an existing code base to
using the pooled functionality, the user only has the add the
following annotations to the code:

@pooled(mgr=pooled.PoolTypes.BASIC, max=10, min=2)

public class DBConnection {

@constructor

public DBConnection(String dbURI,String userName,

String password) { ... }

@request

public void open() { ... }

@release

public void close() { ... }

}

The @pooled annotation indicates that the class
DBConnection should be pooled. It accepts parameters that
can be used to customize the pooling policy. @constructor
annotates the constructor call whose parameters serve as
unique identifiers for different kinds of DBConnection ob-
jects. In this example, DBConnection objects with differ-
ent dbURI, userName, and password combinations should be
maintained separately. @request annotates the method that
signals for the request of a pooled object, and @release an-
notates the method call that signals for the return of the
pooled object back to the pooling manager.

The implementation of this language extension using MAJ
is less than 400 lines of code. The MAJ program searches
for classes annotated with @pooled, and generates two Java
classes and one aspect to facilitate converting this class to be
pooled. We next describe the generated code in more detail.
The reader may want to consider in parallel how the same
task could be accomplished through other means. Neither
conventional Java facilities (i.e., classes and generics) nor
AspectJ alone would be sufficient for expressing the func-
tionality we describe below in a general way, so that it can
be applied with little effort to arbitrary unomdified classes.
For instance, none of these facilities can be used to create a
proxy class with methods with identical signatures as those
of an arbitrary Java class.

First, a pooling manager class, PoolMgrForDBConnection,
is generated for DBConnection. The pooling manager
class contains methods for requesting and releasing pooled
DBConnection objects, as well as code to manage the expan-
sion of the pool based on the min and max parameters.

In order to retrofit an existing code base to use
DBConnection as a pooled class, we need to introduce proxy
objects that will be used wherever an object of the original
class would exist in the application code. This is necessary
as different objects from the perspective of the client code
will correspond to the same pooled object. We generate a
proxy class as a subclass of the pooled class. In our ex-
ample: DBConnection_Proxy extends DBConnection. All
instances of the proxy class share a static reference to
an instance of PoolMgrForDBConnection. Each proxy in-
stance holds (non-static) references to the parameters to
the @constructor constructor call, and the DBConnection

object obtained from the pooling manager. The proxy class
rewrites the @request and @release methods: the @request
method is rewritten to obtain an object of DBConnection

type from the pooling manager, using the unique identifiers
kept from the constructor call, and the @release method
returns the DBConnection method back to the pool, while
setting the reference to this object to null. The MAJ code in
the proxy takes care to exactly replicate the signature of the
original methods, including modifiers and throws clauses.
For instance, the @release method in the proxy is gener-
ated as:

infer meth =

‘[#mods #ret #[m.getName()] (#formals) #throwStmt

{

m_poolMgr.release(m_uniqueId, m_proxiedObj);

m_proxiedObj = null;

}];

All other methods simply delegate to the same method in
the superclass.

The idea is to have variables declared to hold a
DBConnection object, now hold a DBConnection_Proxy ob-
ject. Therefore, to complete the “proxy” pattern, we
need to change all the calls of new DBConnection(...) to
new DBConnection_Proxy(...). This is the role of our gen-
erated aspect: tedious recoding effort is easily replaced by
an aspect: the aspect intercepts all the constructor calls of
DBConnection, and returns an object instantiated by calling
new DBConnection_Proxy(...).

In summary, a user can easily turn a class into a pooled
class, and retrofit any existing code base to use this class in
its new, pooled form. The client code does not need to be
hand-edited at all, other than with the introduction of our
4 annotations.

5. FUTURE WORK
We believe that the years to come will see the emer-

gence of a healthy ecology of small language extensions
based on the annotation features of Java and C#. There
are already major examples of such extensions, especially
with distribution- and persistence-related annotations, im-
plemented in the context of J2EE Application Servers. Such
extensions can be implemented with heavyweight support—
e.g., parsing files, or recognizing annotations in a class loader
and performing bytecode manipulation. In fact, the JBoss
AOP mechanism (in whose early design and implementa-
tion we have played an active role) is the foremost example
of infrastructure used to implement annotation-based lan-
guage extensions. Nevertheless, experience from compilers
in general-purpose languages has shown that it is beneficial
to develop a mature back-end language and implement high-
level features by translating to that back-end. Our approach
proposes that AspectJ is well-suited as such a back-end lan-
guage for small Java language extensions and that gener-
ating AspectJ code offers significant simplicity benefits. In
the future we plan to support this claim with more exam-
ples and perform a thorough comparison with competing
mechanisms.

6. REFERENCES
[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOP ’01: Proceedings of the 15th European
Conference on Object-Oriented Programming, pages
327–353, London, UK, 2001. Springer-Verlag.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

[3] Y. Smaragdakis. A personal outlook on generator
research. In C. Lengauer, D. Batory, C. Consel, and
M. Odersky, editors, Domain-Specific Program
Generation. Springer-Verlag, 2004. LNCS 3016.

[4] D. Zook, S. S. Huang, and Y. Smaragdakis. Generating
AspectJ programs with meta-AspectJ. In Generative
Programming and Component Engineering (GPCE),
pages 1–18. Springer-Verlag, October 2004.

