
Functional Programming with the FC++ Library

Brian McNamara and Yannis Smaragdakis

College of Computing

Georgia Institute of Technology

http://www.cc.gatech.edu/�yannis/fc++/

July 26, 2001

FC++ is a library for functional programming in

C++. At a high-level, FC++ can be described as

\STL functionals on steroids". Compared to all other

libraries for functional programming in C++ (includ-

ing the Standard Library) FC++ is distinguished by

its powerful type system, which enables the library

to reproduce a large amount of useful functionality

(including a large portion of the Haskell Standard

Prelude, an STL-compatible lazy list data structure,

and several general operators on functions). This pa-

per is addressed to an audience familiar with C++

and attempts to clarify what FC++ does and how.

1 What is FC++?

FC++ [6] is a library for doing functional program-

ming in C++. The library comprises a general

framework for creating FC++ functions (which we

sometimes call functoids) as well as about 100 com-

mon/useful functions.

Functional programming is a programming

paradigm in which functions are treated as regular

values. Readers familiar with the \functional" part of

the Standard Library have already encountered some

of the ideas behind FC++. Nevertheless, the C++

Standard Library stops short of providing a general

framework for functional programming. Other

libraries have attempted to �ll the gap by supplying

either syntax support (e.g., a \lambda" operator

for anonymous functions) [2][8] or a framework for

expressing higher-order function types[5].

FC++ is distinguished from all such libraries by its

powerful type system. FC++ o�ers complete support

for manipulating polymorphic1 functions|passing

them as arguments to other functions and return-

ing them as results. For instance, FC++ supports

higher-order polymorphic operators like compose(): a

function that takes two (possibly polymorphic) func-

tions as arguments and returns a (possibly polymor-

phic) result (the composition). Thus, FC++ can

be used to embed a lot of the capabilities of mod-

ern functional programming languages (like Haskell

or ML) in C++. Indeed, FC++ comes with a wealth

of useful pre-de�ned functions|a large part of the

Haskell Standard Prelude|as well as support for lazy

evaluation, including a \lazy list" data structure and

a number of functions that operate on these lazy

lists. The library also contains a number of sup-

port functions for transforming FC++ data struc-

tures into the data structures of the C++ Standard

Template Library (STL), and vice versa, as well as

operators for promoting normal functions into FC++

functoids. Finally, the library supplies \indirect func-

toids": run-time variables that can refer to any func-

toid with a given monomorphic type signature.

The library is implemented in ISO Standard C++.

Its implementation relies heavily on C++ templates

1Throughout the paper, we use the term \polymorphic" to

refer to parametric polymorphism (e.g. template functions).

This is a common use for the term among functional program-

mers, though object-oriented programmers often use the word
\polymorphism" to mean subtype polymorphism (e.g. dynamic

dispatch). In this paper, \polymorphism" means parametric

polymorphism by default.

1

and the C++ type system. Unlike other libraries for

functional programming in C++, FC++ does not fo-

cus on improving syntax by using either the prepro-

cessor or overloading techniques (like expression tem-

plates). Such approaches have value but are brittle.

Instead, the value of FC++ is in its type system for

polymorphic functions|providing a nicer syntactic

front-end for de�ning functions (like in the \Lambda

Library" [2] or \FACT!" [8]) is an orthogonal issue.

This is often a point of confusion, so we would like

to emphasize it again: the only \template compu-

tation" in FC++ is for the type system. That is,

template functions are used in FC++ for determin-

ing the types of complicated polymorphic operations

(e.g., the polymorphic type of the result of composing

two polymorphic functions). Nevertheless, the actual

code contained in functions is regular C++ expres-

sions. Any piece of C++ code can be easily wrapped

as an FC++ functoid. Anything expressible in the

base C++ language (including template functions)

is also expressible using the FC++ conventions with

only minor additions, so that it can be used with the

rest of the functionality in the library.

The FC++ library currently comprises about 4000

lines of C++ code. We are continuing to develop the

library to make it more expressive, more eÆcient (a

large part of our recent work), and more convenient

to use.

2 What can I do with FC++?

In this section, we will walk through some examples

that demonstrate the capabilities of FC++.

Many of the examples will use lists, so we begin

with code that shows a little about the List class

(Figure 1). A List is parameterized by the type of its

elements; in the listing, we show both a list of ints

and a list of strings. We use the functions cons()

(which adds an element to the front of a list), head()

(the �rst element of a list), tail() (the rest of the

list), and the constant NIL (empty list), which are

common in functional languages.

This example also demonstrates the capabilities

of FC++ for manipulating polymorphic functions.

The tail() function takes a \list of T" and re-

#include <assert.h>

#include <string>

#include "prelude.h"

using namespace fcpp;

int main() {

int x=1, y=2, z=3;

std::string s="foo", t="bar", u="qux";

List<int> li =

cons(x,cons(y,cons(z,NIL)));

List<std::string> ls =

cons(s,cons(t,cons(u,NIL)));

assert(head(li) == 1);

// list_with() makes short lists

assert(tail(li) == list_with(2,3));

ls = compose(tail,tail)(ls);

assert(head(ls) == "qux");

assert(tail(ls) == NIL);

}

Figure 1: Lists and compose

turns a \list of T" where T can be any type. The

compose() operator composes two unary functions,

that is, compose(f, g) yields a new function h such

that h(x) is the same as f(g(x)). The compose() op-

erator can take polymorphic functions as parameters

and return a polymorphic function as a result. In

this example, compose(tail,tail) is a polymorphic

function with the same signature as tail.
FC++ lists are lazy. For example, we can say

List<int> integers = enumFrom(1);

to create an in�nite list of all the integers 1, 2, 3,
Elements of the list are only evaluated as they are
requested. We can perform various operations lazily
on such lists, such as the filter() function de�ned
in the library, which returns only those elements of a
list that meet a certain predicate. For example,

List<int> evens = filter(even, integers);

creates a list of the even integers (2, 4, 6, . . .); even
is another function de�ned in the FC++ library. We
can easily de�ne our own predicates by writing nor-
mal C++ functions, for example

2

#include <assert.h>

#include "prelude.h"

using namespace fcpp;

bool prime(int x) {

if(x<2) return false;

for(int i=2; i <= x/2; i++)

if(x%i == 0) return false;

return true;

}

int main() {

List<int> integers = enumFrom(1);

assert(take(3,integers)==list_with(1,2,3));

List<int> evens = filter(even,integers);

assert(take(3,evens)==list_with(2,4,6));

List<int> primes =

filter(ptr_to_fun(&prime), integers);

assert(take(3,primes)==list_with(2,3,5));

}

Figure 2: Lazy operations and C++ functions

bool prime(int x) { ... }

and then use, for example,

filter(ptr_to_fun(&prime), integers);

to compute the (in�nite) list of primes. The FC++

function ptr_to_fun() transforms a normal C++

function into a functoid. It is one of a number of

library members which provide the interface between

FC++ functoids and both C++ functions and C++

Standard Library function objects. Figure 2 shows a

complete program, which also demonstrates take()|

a function that selects the �rst N elements of a list

and discards the rest.
FC++ functoids support currying. If we start with

the list of numbers 1-3:

List<int> integers = list_with(1,2,3);

we can generate the list 2-4 with map(inc,integers)

where inc() is a function that increments a number
by 1, and map() is a function that applies a function
to each element to a list. Suppose instead we want

to add 2 to each element of the list. Of course, we
could say

map(compose(inc,inc), integers)

but we can also just say

map(plus(2), integers).

The FC++ library de�nes function plus() such that

plus(x,y) yields x+y. (Indeed, the library contains

named functions for all of the common operators.)

Like all functoids in the FC++ library, plus is cur-

ryable. That is to say, plus(2) yields a new function

f(x), where f(x) = 2 + x.

As you might expect, currying of polymorphic

functions is fully supported and may yield other poly-

morphic functions. In fact, currying is implemented

by FC++ operators that are themselves (higher-

order polymorphic) functoids. We can use these op-

erators explicitly, if needed. For instance, bind1of2()

is a function that takes a binary function and binds

its �rst argument to a particular value, resulting in

a unary function. Thus, bind1of2(plus, 2) is the

same as plus(2). We can also write plus(2,_) to

mean the same thing; _" is a special value in FC++

that serves as a placeholder for arguments to be cur-

ried. Figure 3 shows a number of examples which

demonstrate currying in FC++.

The FC++ library supplies users with many use-

ful prede�ned functions. More than 50 functions from

the Haskell Standard Prelude are included in the li-

brary. We have already seen a few such functions,

like map(), take(), filter(), and enumFrom(). FC++

also supports until(), foldr(), iterate(), cycle(),

span(), zipWith(), and many others. These prede-

�ned functions make it easy for users of the FC++

library to rapidly compose algorithms to suit their

needs using functional programming techniques.

FC++ has interfaces to normal C++ functions and

the C++ Standard Library. We have already encoun-

tered ptr_to_fun(), which converts a normal function

into an FC++ functoid. The ptr_to_fun() operator

works on member functions as well, creating a func-

toid which takes a pointer to the receiver object as an

extra �rst parameter. Figure 4 shows ptr_to_fun()

applied to both normal and member functions, and

3

#include <assert.h>

#include "prelude.h"

using namespace fcpp;

List<int> answer;

// holds the answer of upcoming

// computations for exposition purposes

void check(List<int> l)

{ assert(l==answer); }

int main() {

List<int> integers = list_with(1,2,3);

// each small group of statements

// demonstrates similar functionality with

// different syntax

answer = list_with(2,3,4);

check(map(inc, integers));

check(map(plus(1), integers));

answer = list_with(3,4,5);

check(map(compose(inc,inc),integers));

check(map(plus(2), integers));

answer = list_with(0,-1,-2);

check(map(bind1of2(minus,1),integers));

check(map(minus(1), integers));

check(map(minus(1,_), integers));

answer = list_with(0,1,2);

check(map(bind2of2(minus,1),integers));

check(map(minus(_,1), integers));

// map can also be curried

answer = list_with(3,4,5);

check(map(plus(2))(integers));

check(map(_, integers)(plus(2)));

}

Figure 3: Currying examples

#include <assert.h>

#include "prelude.h"

using namespace fcpp;

int f(int x, int y) { return 3*x + y; }

class Foo {

int n;

public:

Foo(int nn) : n(nn) {}

int bar(int x, int y) const

{ return n*x + y; }

};

int main() {

assert(ptr_to_fun(&f)(3)(1) == 10);

Foo foo(3);

assert(ptr_to_fun(&Foo::bar)(&foo,3)(1)

== 10);

}

Figure 4: FC++ and native C++ functions

demonstrates that the results are functoids by using

the currying ability of FC++ functoids.

To interface to the C++ Standard Library data

structures, FC++ supports iterators. Figure 5 shows

that the List class supports iterators of the STL style.

This makes converting to and from STL data struc-

tures easy.

The functoids we have seen thus far are called di-

rect functoids in the FC++ library, because calls

to them are statically bound (they are called di-

rectly). FC++ also supports indirect functoids via

the FunN classes. These functoids are dynamically

bound, and thus can change their \function values"

by assignment. Indirect functoids are described by

their monomorphic type signature, and variables of

type FunN can be bound to any function with the right

signature. For example, a Fun1<int,bool> describes

a one-argument function that takes an int and re-

turns a bool, whereas a Fun2<int,int,char> describes

a two-argument function which takes two ints and re-

turns a char. The function makeFunN() converts a di-

rect functoid into an indirect one. In the case of poly-

4

#include <assert.h>

#include <vector>

#include <algorithm>

#include "prelude.h"

using namespace fcpp;

int main() {

List<int> l = take(5, enumFrom(1));

std::vector<int> v(5);

std::copy(l.begin(),l.end(),v.begin());

std::reverse(v.begin(), v.end());

List<int> r(v.begin(), v.end());

assert(r == list_with(5,4,3,2,1));

}

Figure 5: FC++ and STL

morphic functions, a monomorphic instance must be

selected with monomorphizeN(). In fact, both conver-

sions can be performed implicitly when an indirect

functoid variable is assigned a direct functoid value.

Figure 6 gives some examples of indirect functoids.

3 Where is the magic?

In the previous section we saw how functoids can

be used. We also saw how to convert regular C++

functions or methods into functoids, so that they

can be used with the FC++ pre-de�ned functional-

ity, including higher-order operators like currying and

compose. Nevertheless, we have not shown you how

the polymorphic functoids inside FC++ (compose,

map, etc.) are implemented or how to de�ne your

own polymorphic functoids.
To create your own polymorphic functoid, you need

to create a class with two main elements: a template
operator() and a member structure template named
Sig. To make things concrete, consider the de�ni-
tion of map (or rather, the class Map, of which map is a
unique instance) shown in Figure 7. This de�nition
uses the helper template FunType, which is a special-
ized template for di�erent numbers of arguments. For
two arguments, FunType is essentially:

template <class A1, class A2, class R>

struct FunType {

typedef R ResultType; typedef A1 Arg1Type;

typedef A2 Arg2Type; };

#include <assert.h>

#include "prelude.h"

using namespace fcpp;

bool prime(int x) {

if(x<2) return false;

for(int i=2; i <= x/2; i++)

if(x%i == 0) return false;

return true;

}

bool big(int x) { return x > 100; }

int main() {

Fun1<int,bool> f =

makeFun1(ptr_to_fun(&prime));

assert(f(11) == true);

f = makeFun1(ptr_to_fun(&big));

assert(f(11) == false);

List<int> l = list_with(1,2,3);

// explicit conversion of "tail" to

// an indirect functoid

Fun1<List<int>,List<int> > g =

makeFun1(monomorphize1<List<int>,

List<int> >(tail));

assert(g(l) == list_with(2,3));

g = init; // implicit conversion

assert(g(l) == list_with(1,2));

}

Figure 6: Indirect functoids examples

struct Map {

template <class F, class L>

struct Sig : public FunType<F,L,

List<typename F::template Sig<

typename L::ElementType>::ResultType> > { };

template <class F, class T>

typename Sig<F, List<T> >::ResultType

operator()

(const F& f, const List<T>& l) const {

if(null(l))

return NIL;

else

return cons(f(head(l)),

curry2(Map(), f, tail(l))); }

};

Figure 7: Map in FC++

5

We can now analyze the implementation of Map.

The operator() will allow instances of this class to

be used with regular function call syntax. What is

special in this case is that the operator is a template,

which means that it can be used with arguments of

multiple types. When an instance of Map is used with

arguments f and l, uni�cation will be attempted be-

tween the types of f and l, and the declared types of

the parameters (const F&, and const List<T>&). The

uni�cation will yield the values of the type parame-

ters F and T of the template. This will determine the

return type of the functoid.
Now, let's examine the Sig member class of the Map

class. By FC++ convention, the Sig member should
be a template over the argument types of the function
you want to express (in this case the function type F

and the list type L). The Sig member template is used
to answer the question \what type will your function
return if I pass it these argument types?" The answer
in the Map code is:

List<F::Sig<L::ElementType>::ResultType>

(we have elided the typename and template keywords

for readability). This means: \map returns a List

of what F would return if passed an element like the

ones in list L".
In Haskell, one would express the type signature of

map as:

map :: (a -> b) -> [a] -> [b]

The Sig members of FC++ functoids essentially

encode the same information, but in a compu-

tational form: Sigs are type-computing compile-

time functions that are called by the C++ uni�-

cation mechanism for function templates and im-

plement the FC++ type system. This type sys-

tem is completely independent from the native C++

type system|map's type as far as C++ is con-

cerned is just class Map.2 Other FC++ func-

toids, however, can read the FC++ type informa-

tion from the Sig member of Map and use it in

their own type computations. The map functoid it-

self uses that information from whatever functoid

2Actually, this is a small lie|map is not an instance of Map,

but rather an instance of Curryable2<Map>. Curryability is

expressed via the CurryableN combinators in FC++.

happens to be passed as its �rst argument (see

the F::Sig<L::ElementType>::ResultType expression,

above).

4 Performance Tests

FC++ is quite eÆcient in its implementation of func-

tional concepts. For common programming tasks

that use the FC++ conventions, the overhead is ei-

ther zero or negligible (i.e., just a dynamic dispatch

indirection for indirect functoids). The only case

where performance is a legitimate concern is if one

attempts to copy functional idioms directly to C++

using FC++. FC++ is not an optimizing compiler

for a functional language, so it misses several com-

mon optimizations; for example: no special runtime

support for specialized functions exists; tail-recursion

elimination is not automatically performed; no run-

time support for lazy evaluation exists. Additionally,

FC++ o�ers a simple reference counting mechanism

(used internally for indirect functoids and lazy lists),

which is not directly comparable to an optimized

garbage collector. Nevertheless, the implementation

of FC++ carefully tries to avoid unnecessary over-

head and a number of optimizations are employed.

In a previous paper [6] we showed that the FC++

reference counting mechanism is much faster (by a

factor of 6 to 8) than another technique used in the

literature [5] for keeping track of functoid references.

In this section we show some simple performance

measurements comparing FC++ to Hugs (a well-

known Haskell interpreter) and ghc (an optimizing

Haskell compiler). The benchmarks are programs

that C++ programmers are unlikely to write in this

form, but they show common functional program-

ming idioms, involving heavy use of lazy (in�nite)

lists. Therefore, these benchmarks serve as stress

tests of FC++'s lazy lists.

For each benchmark, we wrote two programs: one

in Haskell, and one in C++ using the FC++ library.

The programs are faithful translations of each other;

they each represent the same solution to the given

problem. The programs were run on a Sun Sparc

Ultra-30 with 128M of RAM. We used g++2.95.2,

ghc5.00.1, and the February 2001 version of Hugs. In

6

divisible t n = t `rem` n == 0

factors x = filter (divisible x) [1..x]

prime x = factors x == [1,x]

primes n = take n (filter prime [1..])

l = primes 600

main =do print (l !! 599)

Figure 8: Primes in Haskell

the case of both g++ and ghc, we used -O2 and static

linking.

(In the C++ code for the benchmarks, you may

notice that OddLists are used in addition to Lists.

OddLists are distinguished from Lists to expose the

fact that the �rst element of the list is an evaluated

cons; this enables other optimizations in our list im-

plementation.)

4.1 Primes

Primes is a simple program that computes a (lazy)

list of the �rst N prime numbers and then prints

the N th prime. It does so simply by �ltering all the

primes from the (in�nite) list of integers, and then

taking the �rst N of them. Figure 8 shows the code

for primes in Haskell. Figure 9 shows the code for

primes in FC++.

Table 1 shows the performance results for primes

for various values of N. FC++ is about 55 times as

fast as Hugs for this program, and also consistently

faster than ghc. The reason FC++ is faster than ghc

appears to be due to the integer arithmetic: ghc uses

64-bit integers (long longs) for all integer operations.

Indeed, if the C++ version of the program is changed

to use long long instead of int, then the times are

practically equal.

4.2 Tree

Tree is a program that generates a random binary

search tree of integers and then (lazily) computes the

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Divisible : public CFunType<int,int,bool> {

bool operator()(int x, int y) const

{ return x%y==0; }

} divisible;

struct Factors : public CFunType<int,OddList<int> > {

OddList<int> operator()(int x) const {

return filter(curry2(divisible,x),

enumFromTo(1,x));

}

} factors;

struct Prime : public CFunType<int,bool> {

bool operator()(int x) const {

return factors(x)==cons(1,cons(x,NIL));

}

} prime;

struct Primes : public CFunType<int,OddList<int> > {

OddList<int> operator()(int n) const {

return take(n, filter(prime, enumFrom(1)));

}

} primes;

int main() {

OddList<int> l = primes(NUM);

cout << at(l, NUM-1) << endl;

}

Figure 9: Primes in FC++

N FC++ ghc Hugs

200 0.26 0.27 13

400 1.17 1.21 60

600 2.64 3.46 146

800 4.89 5.37 271

1000 7.77 8.56 424

Table 1: Primes (all times in seconds)

7

data Tree a = Node !a !(Tree a) !(Tree a)

| Nil

leaf (Node _ Nil Nil) = True

leaf (Node _ _ _) = False

fringe Nil = []

fringe n@(Node d l r)

| leaf n = [d]

| otherwise = fringe l ++ fringe r

main =do --// code to make a random tree "t"

print (filter (== 13) (fringe t))

Figure 10: Tree in Haskell

N FC++ ghc Hugs

10000 0.08 0.03 0.24

20000 0.19 0.06 0.56

30000 0.29 0.10 0.89

40000 0.41 0.12 -

80000 0.87 0.26 -

160000 1.69 0.56 -

Table 2: Tree (all times in seconds)

\fringe" of the tree. The fringe of a tree is a list of

all of the leaves of the tree, in the order they are

encountered during an inorder traversal. The main

program prints all of the nodes in the fringe that

match an arbitrary value (13 in the listings); this is

merely a convenient way to force the evaluation of

the lazy list.

Figure 10 shows the Haskell code for tree; Figure 11

shows tree in FC++. For both the Haskell and C++

programs, the code that actually builds the random

binary trees is elided from the listings.

Table 2 shows the performance results for tree. N

is the number of nodes in the tree. No results are re-

ported for Hugs for more than 30,000 nodes because

the system memory was exhausted. For this bench-

mark, FC++ is consistently faster than Hugs, but

about three times slower than ghc. Investigating the

disparity between the FC++ and ghc performance,

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Tree {

int data;

Tree *left;

Tree *right;

Tree(int x) : data(x), left(0), right(0) {}

Tree(int x, Tree* l, Tree* r)

: data(x), left(l), right(r) {}

bool leaf() const

{ return (left==0) && (right==0); }

};

struct Fringe : public CFunType<Tree*,OddList<int> > {

OddList<int> operator()(Tree* t) const {

if(t==0)

return NIL;

else if(t->leaf())

return cons(t->data,NIL);

else

return cat(Fringe()(t->left),

curry(Fringe(),t->right));

}

};

Fringe fringe;

int main() {

// code to build tree "t"

List<int> l = fringe(t);

l = filter(fcpp::equal(13), l);

while(!null(l)) {

cout << head(l) << endl;

l = tail(l);

}

}

Figure 11: Tree in FC++

8

merge a@(x:xs) b@(y:ys) =

if x < y then x : (merge xs b)

else if x > y then y : (merge a ys)

else x : (merge xs ys)

hamming =

1 : (merge (merge (map (*2) hamming)

(map (*3) hamming))

(map (*5) hamming))

main =do putStr "Hamming number: "

print 2000

putStr "is "

print (hamming !! 2000)

Figure 12: Hamming in Haskell

we found that ghc performs list concatenation much

faster than FC++ does.

4.3 Hamming

The �nal program computes Hamming numbers.

Hamming numbers are all the integers which are

products of powers of 2, 3, and 5. An elegant way

to compute the (in�nite) list of all Hamming num-

bers is to say that the �rst number in the list is 1,

and that the rest of the list is computed by merging

three other lists: twice, three times, and �ve times

the list of Hamming numbers itself. The solution is

very easy to express recursively in Haskell; it is given

in Figure 12. Notice how the de�nition of hamming

refers to hamming itself. To construct the same solu-

tion in C++, we need to be a little more verbose, but

the structure is exactly the same. The FC++ code

is shown in Figure 13.

Table 3 shows the relative performance of the pro-

grams to print the N th Hamming number. Again,

FC++ outperforms Hugs, this time by a factor of

about 10; the times for FC++ and ghc are nearly

equal. It is worth noting that Hamming is an excel-

lent test of \caching" in lists (Section 5.1). In an older

version of FC++ where caching was not available to

lists, the performance grew exponentially. (For ex-

ample, Hamming(300) took over 30s to compute!)

#include <iostream>

#include "prelude.h"

using namespace fcpp;

using std::cout; using std::endl;

struct Merge {

template <class L, class M>

struct Sig : public FunType<L,M,

OddList<typename L::ElementType> > {};

template <class T>

OddList<T> operator()(const List<T>& a,

const List<T>& b) const {

T x = head(a);

T y = head(b);

if(x < y)

return cons(x, curry2(Merge(),tail(a),b));

else if(x > y)

return cons(y, curry2(Merge(),a,tail(b)));

else

return cons(x,

curry2(Merge(),tail(a),tail(b)));

}

} merge;

typedef long long int FOO; // g++ has "long long"

struct Hamming : public CFunType< List<FOO> > {

List<FOO> operator () () const {

using fcpp::multiplies;

static List<FOO> h = Hamming();

static List<FOO> x =

curry2(map,multiplies((FOO)2),h);

static List<FOO> y =

curry2(map,multiplies((FOO)3),h);

static List<FOO> z =

curry2(map,multiplies((FOO)5),h);

static List<FOO> m1= curry2(merge, x, y);

static List<FOO> m2= curry2(merge, m1, z);

return cons((FOO)1, m2);

}

} hamming;

int main() {

cout << "The "<<NUM<<"th hamming number is: ";

cout << at(hamming(), NUM) << endl;

}

Figure 13: Hamming in FC++

9

N FC++ ghc Hugs

1000 0.02 0.01 0.17

1500 0.03 0.02 0.24

2000 0.03 0.02 0.34

4000 0.07 0.05 0.68

8000 0.14 0.13 1.42

12000 0.21 0.19 2.21

Table 3: Hamming (all times in seconds)

5 Performance Analysis

The current FC++ implementation is more than an

order or magnitude faster than the previous release of

the library. In this section, we discuss six major op-

timizations we have applied to our implementation,

quantifying the individual bene�ts whenever possi-

ble. For each optimization, we picked an appropriate

benchmark that clearly demonstrates the di�erence

in performance. (The di�erence for the other pro-

grams is typically less dramatic.)

5.1 Caching

The �rst optimization is caching (memoization) in

lazy lists. A lazy list is represented by an unevalu-

ated function, or \thunk". When the value of the list

is requested (head(), tail(), or null() is called), the

thunk is called in order to produce the value. Rather

than re-call the thunk each time the list's value is

needed, the thunk should be called only once, and

its value remembered. This optimization is imper-

ative for programs like Hamming; without caching,

Hamming grows exponentially (rather than linearly).
Caching is implemented as a kind of variant record.

Conceptually, a \memoized thunk" or \cache" is

class Cache {

bool value_is_valid;

Fun0<Value> function;

Value value;

public:

Value val() {

if(!value_is_valid)

{ value=function(); value_is_valid=true; }

return value; } };

In the actual implementation, we eliminate the

space overhead of the boolean variable by using a

distinguished Value (named XBAD) to represent the

!value_is_valid state.

5.2 Structure of list implementation

When we reimplemented FC++ lazy lists to use

caching, we experimented with three di�erent struc-

tures for the underlying implementation of lazy lists.

We arbitrarily named the three versions TOP, MID-

DLE, and BOTTOM (the names re
ect the order

that we wrote them on a white board). These struc-

tures are represented both as skeleton C++ code and

pictorially in Figure 14. (To simplify the exposition,

the code assumes that lists hold only ints (rather

than being template <class T>s), and also uses raw

pointers rather than reference-counted pointers.)

We tested all three list implementations on

Primes(1000); the results are shown in Table 4. It

should be no surprise that MIDDLE was the winner;

MIDDLE contains fewer indirections than the other

two solutions. TOP and BOTTOM are both slower

due to the extra indirection and poorer locality. Ad-

ditionally, BOTTOM (and MIDDLE too, actually)

su�ers another hit because it needs a special value

to represent the empty list (called XNIL, which is like

XBAD mentioned in Section 5.1), and every evaluation

of a list requires an extra test to determine which

member of the variant record is active.

The challenge is implementing MIDDLE for

List<T>s where T has no default constructor. C++

requires that constructors be called for all members

of an object, but in the case of MIDDLE, when the

value in the Cache isn't valid, we have no construc-

tor to call. As a result, the �rst �eld of the pair

is actually an unsigned char array whose size and

alignment are appropriate for Ts. Placement new and

explicit destructor invocations are used to explicitly

manage the lifetime of the T created in the raw stor-

age when the Cache value becomes valid. It should be

noted that the C++ language standard provides no

mechanism to ensure that the unsigned char array is

properly aligned to hold data of type T. Nevertheless,

there is a relatively portable \hack": creating a union

of all kinds of C++ objects (primitive data types,

10

 typedef pair<int,List>* Value;

TOP
class List {
 Cache* c;
};
class Cache {

 Fun0<Value> function;
 Value value;
};

class List {
 Cache* c;

class Cache {
 typedef pair<int*,List> Value;
 Fun0<Value> function;
 Value value;

BOTTOM

};

};

 typedef pair<int,List> Value;

MIDDLE
class List {
 Cache* c;
};
class Cache {

 Fun0<Value> function;
 Value value;
};

fxn fxn

TOP

BOTTOM

MIDDLE

fxn fxn

fxn fxn

1 2

1 2

1 2

Figure 14: Three possible list implementations

11

Primes(1000) Time (s)

TOP 12.43

MIDDLE 7.77

BOTTOM 26.36

Table 4: Comparison of di�erent list structures

Hamming(12000) (no functoid reuse) Time (s)

FC++, non-intrusive (-IRC -REUSE) 0.451

FC++, intrusive (+IRC -REUSE) 0.280

Table 5: The value of intrusive reference counting

structures, pointers, pointers to functions, pointers

to members, etc.) ensures that the alignment of the

union is wide enough to hold any kind of object on al-

most any system. Life would be a lot simpler if C++

were extended to have either a mechanism to specify

alignments (a system-level solution) or a way to ex-

plicitly ask to have a particular structure member's

constructor not called when the structure is created

(a language-level solution); in the meantime, the hack

works well enough on most systems. (A system for

which the hack does not work can always revert to

an alternative implementation of lists, e.g. TOP.)

5.3 Intrusive reference counting

The FC++ library contains two reference-counted

pointer classes: one that uses an intrusive refer-

ence count, and one that is non-intrusive. The two

schemes are depicted in Figure 15. The advantage

of non-intrusive reference counts is that the object

being counted does not need to support any partic-

ular interface; it is ignorant of the reference count-

ing. Intrusive reference counts, on the other hand,

require that the objects they count supply the count-

ing mechanism. The bene�ts of intrusive reference

counts are increased locality and fewer separate calls

to new. (For a more thorough introduction to the

topic of intrusive reference counts, see [3], Chapter

7.)

We tested Hamming both with and without intru-

struct Take {

template <class T>

OddList<T>

operator()(size_t n, const List<T>& l) const {

if(n==0 || null(l))

return NIL;

else

return cons(head(l),

curry2(Take(),n-1,tail(l)));

}

} take;

Figure 16: take() without functoid reuse

sive reference counts. Since the \reuse functoids" op-

timization (discussed in the following subsection) re-

quires intrusive reference counts, we turned o� that

optimization for both of these runs, in order to have

a fair comparison. As seen in Table 5, the lack of in-

trusive reference counts makes Hamming slow down

by a factor of about 1.6.

5.4 Reusing functoids during recur-

sive calls

The typical implementation of a functoid which op-

erates on lazy lists contains a curried recursive call as

its last line. For example, consider the Take functoid

shown in Figure 16 (with Sig member elided). (Re-

call that take selects the �rst N elements of a list an

discards the rest.) The call to curry2() that is passed

to cons() in the last line of the functoid creates a new

object on the heap that represents the recursive call

(the \thunk" that makes functoids lazy). The only

thing that di�ers between the newly created functoid

and the current functoid itself are the values of l and

n. Instead of discarding the called functoid and cre-

ating a similar new functoid, we can recode take so

that it reuses the functoid. Figure 17 shows the code

with this reuse (again, with Sig members elided).

We tested Primes both with and without \reuse"

versions of filter(), take(), at(), enumFrom(), and

enumFromTo(). The results are shown in Table 6.

Clearly, reusing functoids is a big win. When there is

no reuse, each call to take() has a functoid destruc-

12

 count

 object

obj data

ref ref count

 object

ref ref

Figure 15: Non-intrusive reference counting (left) and intrusive reference counting (right)

struct TakeHelp:public Fun0Impl<OddList<T> > {

mutable size_t n;

mutable List<T> l;

TakeHelp(size_t nn, const List<T>& ll)

: n(nn), l(ll) {}

OddList<T> operator()() const {

if(n==0 || null(l))

return NIL;

else {

T x = head(l);

l = tail(l);

--n;

return cons(x,Fun0<OddList<T> >(this));

}

}

};

struct Take {

template <class T>

List<T>

operator()(size_t n,const List<T>& l) const {

return Fun0<OddList<T> >

(new TakeHelp<T>(n,l));

}

} take;

Figure 17: take() with functoid reuse

Primes(1000) Time (s)

FC++, no functoid reuse (-REUSE) 26.36

FC++, reusing functoids (+REUSE) 7.77

Table 6: The value of reusing functoids

struct Take {

template <class T>

OddList<T>

operator()(size_t n, const List<T>& l,

Reuser2<Inv,Var,Var,Take,size_t,List<T> >

r = REUSE_INIT) const {

if(n==0 || null(l))

return NIL;

else

return cons(head(l),

r(Take(), n-1, tail(l)));

}

} take;

Figure 18: take() with reuse via a Reuser

ted, deallocated, and has a new functoid allocated

and constructed. With reuse, there is only mutation;

no heap allocation/deallocation occurs.

Comparing Figures 16 and 17, one can see that

hand-coding a \reuse" version of a functoid takes a

bit more code than the non-reuse version. In order to

simplify the task of applying this valuable optimiza-

tion, we have added Reusers to the library. Reusers

enable us to capture the essence of functoid reuse

with signi�cantly less coding e�ort. Figure 18 shows

Take written with a Reuser. A ReuserN is similar to

a call to curryN(). The Reuser appears as an ex-

tra parameter to the functoid. This parameter has a

default value (thus making the interface change e�ec-

tively \invisible" to clients) which is used to create

a new thunk on the heap. As a result, the initial

call to a functoid that employs a Reuser allocates

space for a thunk. Subsequent recursive calls are

then channelled through the Reuser (rather than via

13

a call to curry()); the Reuser's heap thunk, when in-

voked, explicitly passes itself along to the next call

as the extra parameter. This enables reuse of the ex-

isting heap thunk. Reusers take template parameters

specifying the argument types of the to-be-curried

call, as well as extra template parameters that spec-

ify whether those parameters are invariant (Inv) or

variant (Var) between calls (knowing this informa-

tion prevents needless overwriting of duplicate val-

ues). Though the internal mechanism is quite com-

plicated, Reusers are relatively easy to apply (com-

pare the code in Figures 16 and 18), and perform

nearly as well as the \hand-written" code to perform

the optimization (there is only a small \abstraction

penalty").

5.5 Avoiding functions with static

data

The Cache implementation (Figure 14, MIDDLE)
uses two distinguished values for its pointer �eld. The
value XNIL represents an empty list, and the value
XBAD represents an \uncached" value (the function is
valid, the value is not). These were originally encoded
as

template <class T> class Cache { ...

static Ref<Cache<T> >& XNIL() {

static Ref<Cache<T> > dummy(new Cache);

return dummy;

} // XBAD similarly

}

However it is far better to say

template <class T> class Cache { ...

static Ref<Cache<T> > XNIL;

}

Ref<Cache<T> > Cache<T>::XNIL(new Cache);

In the former, each time XNIL() is called, a boolean

ag (inserted by the compiler) must be checked (to

see if initialization of the static variable has already

occurred). In the latter, initialization happens at the

start of the program, and XNIL is just a value. We

tested both versions on Primes; the results are shown

in Table 7.

Using global data that calls constructors can be

perilous; there are order-of-initialization and order-

of-destruction issues for global objects in C++ that

Primes(1000) Time (s)

FC++, static data in functions (-GL) 11.63

FC++, global data (+GL) 7.77

Table 7: The value of using global data

are often hard to solve. Fortunately, all of these

global objects (which sometimes refer to one another)

are de�ned in the same translation unit. This greatly

simpli�es the issue, and enables us to ensure the cor-

rect order of initialization for these objects (section

3.6.2, paragraph 1 of the C++ standard [4], pre-

scribes the order of initialization for such objects 3).

As for order-of-destruction issues, we circumvent the

potential problems by arti�cally incrementing the ref-

erence counts of the global objects during initializa-

tion. Then, even when the reference-counted pointers

are destructed after the end of main(), the ref counts

do not go to zero, and so the objects to which they

refer are left alive; they dangle in the heap until the

system collects them when the program exits.

Note also that having XNIL() return a reference in

the former version is quite important; return by value

degrades the performance even more severely. This is

because returning a Ref object by value does (need-

less) work, incrementing and decrementing the refer-

ence count as the temporary reference lives its short

life.

5.6 Using iteration instead of tail re-

cursion

g++ does not transform tail recursion into iteration.

As a result, we have done the transformation by hand

in library functions like filter() and at(), and call

this the \tail recursion optimization". We ran Primes

3It should be noted that a defect report has been

�led to the C++ committee, and the proposed resolution

of the defect report would invalidate the paragraph cited

above. The authors of this paper have suggested an al-

ternative resolution for the issue, which both addresses the

defect and preserves initialization order. The matter is

still an open issue at the time of this writing. The inter-
ested reader should visit http://anubis.dkuug.dk/jtc1/sc22/

wg21/docs/cwg active.html#270 and read comp.std.c++ for

a thorough discussion of the issue.

14

Primes(1000) Time (s)

FC++ with tail recursion (-TRO) 10.69

FC++ with iteration (+TRO) 7.77

Table 8: The value of transforming tail recursion into

iteration

Primes(1000) Time (s)

FC++ (-IRC -REUSE -GL -TRO) 62.05

FC++ (+IRC +REUSE +GL +TRO) 7.77

Table 9: The value of four optimizations combined

both with and without this optimization; the results

are shown in Table 8. Transforming tail recursion to

iteration has a signi�cant impact on the performance.

5.7 Summary of Optimizations

The results of these optimizations accumulate. We

ran Primes both in its optimal con�guration, and also

with all four of the previous optimizations turned o�

(intrusive reference counting (IRC), reusing functoids

(REUSE), global data (GL), and tail recursion opti-

mization (TRO)). The results are shown in Table 9;

note that without any of these optimizations, Primes

is eight times slower. Keep in mind also that the un-

optimized program still includes the best caching and

list implementation; our original naive implementa-

tion was even slower.

5.8 Disclaimers and Conclusions

In the previous section, we have compared the per-

formance of C++ programs with Haskell programs.

It is important to note that no direct comparison can

really be made. All cross-language experiments are

fraught with factors that make a direct apples-to-

apples comparison impossible, and our experiments

are no di�erent. There are many confounding fac-

tors, a few of which were mentioned at the beginning

of this section. Here we list a handful of obvious dif-

ferences between FC++ and Haskell which we have

not attempted to account for.

� Haskell is lazy (non-strict) throughout, whereas

C++ is strict except in FC++ lazy lists, which

are explicitly coded to be lazy.

� FC++ manages memory with reference-counted

pointers and uses the default allocator provided

by our implementation. Haskell uses garbage

collection, and a sophisticated allocator designed

for optimal performance for a lazy functional

language.

� Haskell has more exception-handling by default;

for example, taking the head() of an empty list

raises an exception in Haskell, whereas it simply

leads to unde�ned behavior in FC++ (though we

do have a compiler
ag that enables exceptions

for this kind of misuse).

� GHC Haskell uses a 64-bit representation for all

integers, whereas g++ uses a smaller represen-

tation for ints.

� Haskell has a run-time system which supports

a mix of compiled and interpreted code, man-

ages storage allocation, and supports concurrent

threads of execution. C++ has no comparable

run-time system.

� Many FC++ optimizations must be done \by

hand"; the Haskell compiler performs similar op-

timizations automatically.

By listing these confounding factors, it is not our

intention to invalidate the results of the experiments

of the previous section. Rather, we simply wish to

make explicit the context in which the results must be

interpreted. It is meaningless to make general state-

ments like \FC++ is faster than Haskell" or vice-

versa. Our goal is merely to demonstrate that FC++

can perform comparably to Haskell on some simple

example programs, and to suggest that the two plat-

forms may have roughly comparable run-time perfor-

mance for programs which make heavy use of lists

and lazy evaluation.

15

6 Applications and Conclu-

sions

The FC++ library supports functional programming

in C++, by enabling users to write and manipulate

polymorphic and higher-order functions. The library

has a smooth interface to the rest of C++, so that

functional code and OO code can blend well. In this

paper we gave an overview of FC++ and analyzed

the performance of its lazy lists. More information

about FC++ can be found in the references [1][6][7].

FC++ is useful for functional programmers be-

cause it provides an alternative, commonly available

platform for implementing familiar designs. An ex-

ample of this approach is the XR (Exact Real) library

[9]. XR uses the FC++ infrastructure to provide ex-

act (or constructive) real-number arithmetic, using

lazy evaluation.

FC++ is also an interesting platform for object-

oriented programming, because it allows functional

techniques to be used in conjunction with common

OO styles. In another paper [7], we show how a num-

ber of OO design patterns can be simpli�ed, gener-

alized, or made safer using functional programming

techniques.

References

[1] The FC++ web page:

http://www.cc.gatech.edu/�yannis/fc++/

[2] The lambda library. http://lambda.cs.utu.fi/

[3] A. Alexandrescu, Modern C++ Design, Addison-

Wesley, 2001.

[4] ISO/IEC 14882: Programming Languages {

C++. ANSI, 1998.

[5] K. L�aufer, \A Framework for Higher-Order Func-

tions in C++", Proc. Conf. Object-Oriented Tech-

nologies (COOTS), Monterey, CA, June 1995.

[6] B. McNamara and Y. Smaragdakis, \FC++:

Functional Programming in C++", Proc. Inter-

national Conference on Functional Programming

(ICFP), Montreal, Canada, September 2000.

[7] Y. Smaragdakis and B. McNamara, \FC++:

Functional Tools for Object-Oriented Tasks"

Georgia Tech CoC Tech. Report 00-37, also avail-

able in [1].

[8] J. Striegnitz, FACT! The Functional Side of

C++, http://www.fz-juelich.de/zam/FACT.

[9] The XR Exact Real Home Page. http://

www.btexact.com/people/briggsk2/XR.html

16

