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ABSTRACT

This paper describes FC++: a rich library supporting functional
programming in C++. Prior approaches to encoding higher order
functions in C++ have suffered with respect to polymorphic func-
tions from either lack of expressiveness or high complexity. In
contrast, FC++ offers full and concise support for higher-order
polymorphic functions through a novel use of C++ type inference.

Another new element in FC++ is that it implements a subtype
polymorphism policy for functions, in addition to the more com-
mon parametric polymorphism facilities. Subtype polymorphism
is common in object oriented languages and ensures that functions
in FC++ fit well within the C++ object model.

Apart from these conceptual differences, FC++ is also an improve-
ment in technical terms over previous efforts in the literature. Our
function objects are reference-counted and can be aliased without
needing to be copied, resulting in an efficient implementation. The
reference-counting mechanism is also exported to the user as a
general-purpose replacement of native C++ pointers. Finally, we
supply a number of useful functional operators (a large part of the
Haskell Standard Prelude) to facilitate programming with FC++.
The end result is a library that is usable and efficient, while requir-
ing no extensions to the base C++ language.

1  MOTIVATION AND OVERVIEW
It is a little known fact that part of the C++ Standard Library con-
sists of code written in a functional style. Although the C++ Stan-
dard Library offers rudimentary support for higher order functions
and currying, it stops short of supplying a sophisticated and reus-
able module for general purpose functional programming. This is
the gap that our work aims to fill. The result is a full embedding of
a simple pure functional language in C++, using the extensibility
capabilities of the language and the existing compiler and run-time
infrastructure.

At first glance it may seem that C++ is antithetical to the functional
paradigm. The language not only supports direct memory manipu-
lation but also only has primitive capabilities for handling func-
tions.Function pointersare first class entities, but they are of little
use since new functions cannot be created on the fly (e.g., as spe-

cializations of existing functions by fixing some state information
Nevertheless, the elements required to implement a functional p
gramming framework are already in the language. The techniq
of representing first-class functions using classes is well known
the object-oriented world. Among others, the Pizza language
uses this approach in translating functionally-flavored constructs
Java code. The same technique is used in previous impleme
tions of higher-order functions in C++ [5][6]. C++ also allows
users to define a nice syntax for function-classes, by overload
the function application operator, “() ”. Additionally one can
declare methods so that they are prevented from modifying th
arguments; this property is enforced statically by C++ compile
Finally, using the C++ inheritance capabilities and dynamic di
patch mechanism, one can define variables that range over all fu
tions with the same type signature. In this way, a C++ user c
“hijack” the underlying language mechanisms to provide a fun
tional programming model.

All of the above techniques are well-known and have been us
before. In fact, several researchers in the recent past (e
[5][6][8]) have (re-)discovered that C++ can be used for function
programming. Läufer’s work [6], stands out as it represents a we
documented,reusable framework for higher-order functions,
instead of a one-of-a-kind implementation. Nevertheless, all of t
above approaches, as well as that of the C++ Standard Library,
fer from one of two drawbacks:

• High complexity when polymorphic functions are used: Poly-
morphic functions may need to be explicitly turned into mono
morphic instances before they can be used. This causes
implementation to become very complex. Läufer observed
[6]: “...the type information required in more complex applica
tions of the framework is likely to get out of hand, especiall
when higher numbers of arguments are involved.”

• Lack of expressiveness: In order to represent polymorphic func-
tions, one can use C++ function templates. This approach d
not suffer from high complexity of parameterization, becaus
the type parameters do not need to be specified explicitly whe
ever a polymorphic function is used. Unfortunately, functio
templates cannot be passed as arguments to other function t
plates. Thus, using C++ function templates, polymorphic fun
tions cannot take other polymorphic functions as argumen
This is evident in the C++ Standard Library, where “highe
order” polymorphic operators likecompose1 , bind1st , etc. are
not “functions” inside the Standard Library framework and
hence, cannot be passed as arguments to themselves or o

operators.1

Our work addresses both of the above problems. Contrary to pr
belief (see Läufer [6], who also quotes personal communicati
with Dami) no modification to the language or the compiler

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP ‘00, Montreal, Canada.
Copyright 2000 ACM 1-58113-202-6/00/0009...$5.00.
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needed. Instead, we are relying on an innovative use of C++ type
inference. Effectively, our framework maintains its own type sys-
tem, in which polymorphic functions can be specified and other
polymorphic functions can recognize them as such.

(Important note: Since C++ type inference is in the core of our
technique, a disclaimer is in order: C++ type inference is a unifica-
tion process matching the types of actual arguments of a function
template to the declared polymorphic types (which may contain
type variables, whose value is determined by the inference pro-
cess). C++ type inference doesnot solve a system of type equa-
tions and doesnot relieve the programmer from the obligation to
specify type signatures for functions. Thus, the term “C++ type
inference” should not be confused with “type inference” as
employed in functional languages like ML or Haskell. The over-
loading is unfortunate but unavoidable as use of both terms is
widespread. We will always use the prefix “C++” when we refer to
“C++ type inference”.)

The result of our approach is a convenient and powerfulparamet-
ric polymorphismscheme that is well integrated in the language:
with our library, C++ offers as much support for higher-order poly-
morphic functions as it does for native types (e.g., integers and
pointers).

Apart from the above novelty, FC++ also offers two more new ele-
ments:

• First, we define a subtyping policy for functions of FC++, thus
supportingsubtype polymorphism. The default policy is hardly
unexpected: a function A is a subtype of function B, iff A and B
have the same number of arguments, all arguments of B are sub-
types of the corresponding arguments of A, and the return value
of A is a subtype of the return value of B. (Using OO typing ter-
minology, we say that our policy iscovariant with respect to
return types andcontravariantwith respect to argument types.)
Subtype substitutability is guaranteed; a functiondouble ->

char  can be used where a functionint -> int  is expected.

• Second, FC++ has a high level of technical maturity. For
instance, compared to Läufer’s approach, we achieve an equally
safe but more efficient implementation of the basic framework
for higher order functions. This is done by allowing function
objects to be multiply referenced (aliased), albeit only through
garbage collected “pointers”. The difference in performance is

substantial: compared to Läufer’s framework,2 and running with
the same client code (the main example implemented by Läufer)
we achieve a 4- to 8-fold speedup.

Additionally, FC++ builds significant functionality on top of the
basic framework. We export a fairly mature reference-countin
“pointer” class to library users, so that use of C++ pointers c
be completely eliminated at the user level. We define a wealth
useful functions (a large part of the Haskell Standard Prelude)
enhance the usability of FC++ and demonstrate the express
ness of our framework. It should be noted that defining the
functions in a convenient, reusable form is possible exac
because of the support for polymorphic functions offered b
FC++. It is no accident that such higher-order library function
are missing from other C++ libraries: supplying explicit type
would be tedious and would render the functions virtually unu
able.

The rest of the paper is organized as follows. Section 2 descri
our representation of monomorphic and polymorphic function
Section 3 shows some representative examples using our fra
work. Section 4 analyzes the expressiveness and limitations
FC++. Section 5 discusses aspects of our implementation. Sec
6 presents related work. Section 7 contains our conclusions.

2  REPRESENTING FUNCTIONS
To clarify our goal of embedding a functional language in C++,
quick example is useful. In Haskell [10]:

take 5 (map odd [1..])

evaluates to
[True,False,True,False,True] .

With FC++, we can do the same in C++:
take( 5, map( odd, enumFrom(1) ) )

Note some aspects of the above example:enumFrom creates an
“infinite” list. map demonstrates the support for higher order fun
tions. take is one of many standard Haskell functions supporte
by FC++. The differences between the C++ and Haskell code
limited to syntax details: the C++ version has extra parenthe
and commas, and lacks the syntactic sugar for common operati
(e.g. "[1..] ").

Previous C++ libraries that supported functional idioms could al
express something resembling the above example. The biggest
ference, however, is that in FC++ all the elements of our exam
are fully polymorphic. FC++ is the first C++ library to suppor
rank-2 polymorphism: passing polymorphic entities as paramete
to other polymorphic entities. Support for rank-2 polymorphism
much more useful in C++ than in functional languages like Hask
or ML, because of the limited capabilities of C++ type inferenc
Since C++ type inference only unifies function arguments, witho
rank-2 polymorphism the above example would need to eith
a) use a monomorphic functionodd , or b) explicitly instantiate a
class templateOdd, e.g.,

take( 5, map( Odd<int>, enumFrom(1) ) ) .
The problem with approach (a) is thatodd would not be general
enough to be used with, say, complex numbers. The problem w
approach (b) is that it is inconvenient due to the explicit type sign
tures and because it requires maintaining class template version
well as function template versions for the same concepts.

Following a convention also used by Läufer, we use the termfunc-
toid to refer to our abstraction of the familiar concept of “func
tion”. For clarity, we will distinguish between two kinds of
functoids in FC++:indirect functoids, anddirect functoids.

Indirect functoids are first-class entities in FC++. That is, one c
define variables ranging over all indirect functoids with the sam

1. The Standard Library offers “Class template versions” of these
operators (unary_compose for compose1 and binder1st

for bind1st ) but these suffer from the first problem (high
complexity of parameterization).

2. In the object oriented community, the term “framework” usu-
ally refers to an “applications framework” [4]: a set of reusable
classes that can be refined through subclassing and definition
of dynamic methods. Läufer’s framework is a minimal applica-
tions framework. FC++ is based on an applications framework
(slightly different from Läufer’s) but also employs other mech-
anisms (e.g., C++ method templates). In this paper, the word
“framework” will not always refer to an applications frame-
work.
2
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type signature. Indirect functoids can only represent monomorphic
functions, however. In contrast, direct functoids can represent
either monomorphic or polymorphic functions but they are not
first-class entities. Direct functoids allow us to exploit C++ type
inference. Conversion operators from direct functoids (for a mono-
morphic type signature) to indirect functoids are provided in the
library.

We will first describe the special case ofmonomorphicdirect func-
toids, because they are simpler and serve as a good introduction for
readers not familiar with C++.

2.1  Monomorphic Direct Functoids
C++ is a class-based object-oriented language. Classes are defined

statically using the keywordsstruct or class .3 C++ provides a
way to overload the function call operator (written as a matching
pair of parentheses: “() ”) for classes. This enables the creation of
objects which look and behave like functions (function objects).
For instance, we show below the creation and use of function
objects to double and add one to a number:

struct Twice {
int operator()( int x ) { return 2*x; }

} twice;

struct Inc {
int operator()( int x ) { return x+1; }

} inc;

twice(5) // returns 10
inc(5) // returns 6

The problem with function objects is that their C++ types do not
reflect their “function” types. For example, bothtwice and inc

represent functions from integers to integers. To distinguish from
the C++ language type, we say that thesignatureof these objects is

int -> int

(the usual functional notation is used to represent signatures). As
far as the C++ language is concerned, however, the types of these
objects areTwice and Inc . (Note our convention of using an
upper-case first letter for class names, and a lower-case first letter
for class instance names.) Knowing the signature of a function
object is valuable for further manipulation (e.g., for enabling para-
metric polymorphism, as will be discussed in Section 2.3). Thus,
we would like to encapsulate some representation of the type sig-
nature ofTwice in its definition. The details of this representation
will be filled in Section 2.3, but for now it suffices to say that each
direct functoid has a member calledSig (e.g.,Twice::Sig ) that
represents its type signature.Sig is not defined explicitly by the
authors of monomorphic direct functoids—instead it is inherited
from classes that hide all the details of the type representation. For
instance,Twice  would be defined as:

struct Twice : public CFun1Type<int, int> {
int operator()( int x ) { return 2*x; }

} twice;

That is,CFun1Type is a C++ class template whose only purpose
to define signatures. A class inheriting fromCFun1Type<A,B> is a
1-argument monomorphic direct functoid that encodes a functi
from typeA to typeB. In general, the templateCFunNType is used
to define signatures for monomorphic direct functoids ofN argu-
ments.

Note that in the above definition ofTwice we specify the type sig-
nature information (int -> int ) twice: once in the definition of
operator() (for compiler use) and once inCFun1Type<int,

int> (for use by FC++). There seems to be no way to avoid th
duplication with standard C++, but non-standard extensions, l
the GNU C++ compiler’stypeof , address this issue.

Monomorphic direct functoids have a number of advantages o
normal C++ functions: they can be passed as parameters, they
have state, they can be given aliases using “typedef ”, etc. Native
C++ functions can be converted into monomorphic direct fun
toids using the operatorptr_to_fun of FC++. It is worth noting
that the C++ Standard Template Library (STL) also represen
functions using classes with anoperator() . FC++ provides con-
version operations to promote STL function classes into monom
phic direct functoids.

2.2  Indirect Functoids
Direct functoids are not first class entities in the C++ languag
Most notably, one cannot define a (run-time) variable ranging ov
all direct functoids with the same signature. We can overcome t
by using a C++ subtype hierarchy with a common root for all fun
toids with the same signatureand declaring the function applica-
tion operator, “() ”, to be virtual (i.e., dynamically dispatched). In
this way, the appropriate code is called based on the run-time ty
of the functoid to which a variable refers. On the other hand,
enable dynamic dispatch, the user needs to refer to functions in
rectly (through pointers). Because memory management (allo

tion and deallocation) becomes an issue when pointers are us4

we encapsulate references to function objects using a refere
counting mechanism. This mechanism is completely transparen
users of FC++: from the perspective of the user, function obje
can be passed around by value. It is worth noting that our encap
lation of these pointers prevents the creation of cyclical data str
tures, thus avoiding the usual pitfalls of reference-countin
garbage collection.

Indirect functoidsare classes that follow the above design. A
indirect functoid representing a function withN arguments of types
A1, ..., AN and return typeR, is a subtype of class

FunN<A1, A2..., AN, R>.
For instance, one-argument indirect functoids with signature

P -> R

are subtypes of classFun1<P,R> . This class is the reference-
counting wrapper of classFun1Impl<P,R> . Both classes are pro-
duced by instantiating the templates shown below:

template <class Arg1, class Result>
class Fun1 : public CFun1Type<Arg1,Result> {

Ref<Fun1Impl<Arg1,Result> > ref;
...

public:3. The difference between the two keywords is that members of a
struct are by default accessible to non-class code (public ),
whereas members of aclass are not (they default topri-

vate ).
4. In C++, memory deallocation is explicit; objects created wit

new must be explicitly freed withdelete .
3
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typedef Fun1Impl<Arg1,Result>* Impl;
Fun1( Impl i ) : ref(i) {}
Result operator()( const Arg1& x ) const {

return ref->operator()(x); }
...

};

template <class Arg1, class Result>
struct Fun1Impl : public CFun1Type<Arg1,Result> {

virtual Result operator()(const Arg1&) const=0;
virtual ~Fun1Impl() {}

};

(Notes on the code: The ellipsis (... ) symbol in the above code is
used to denote that parts of the implementation have been omitted
for brevity. These parts implement our subtype polymorphism pol-
icy and will be discussed in Section 2.5. TheRef class template
implements our reference-counted “pointers” and will be discussed
in Section 5.3. For this internal use, any simple reference counting
mechanism would be sufficient.)

Concrete indirect functoids can be defined by subclassing a class
Fun1Impl<P, R> and using instances of the subclass to construct
instances of classFun1<P,R> . Variables can be defined to range
over all functions with signature

P -> R .

For instance, ifInc is defined as a subclass ofFun1Impl<int,

int> , the following defines an indirect functoid variablef and ini-
tializes it to an instance ofInc :

Fun1<int, int> f (new Inc);

In practice, however, this definition would be rare because it would
require thatInc be defined as a monomorphic function. As we will
see in Section 2.3, the most convenient representation of functions
is that of polymorphic direct functoids.

Monomorphic direct functoids can be converted to indirect func-
toids, using operationsmakeFunN (provided by FC++). For
instance, consider direct functoidsTwice and Inc from Section
2.1 (the definition ofInc was not shown). The following example
is illustrative:

Fun1<int,int> f = makeFun1( twice );
f( 5 );                    // returns 10
f = makeFun1( inc );
f( 5 );                    // returns 6

It should be noted here that our indirect functoids are very similar
to the functoids presented in Läufer’s work [6]. Indeed, the only
difference is in the wrapper classes,FunN<A1, A2,..., AN, R>.
Whereas we use a reference counting mechanism, Läufer’s imple-
mentation allowed no aliasing: different instances of
FunN<A1, A2..., AN, R> had to refer to different instances of
FunNImpl< A1, A2, ..., AN, R>. To maintain this property,
objects had to be copied every time they were about to be aliased.
This copying results in an implementation that is significantly
slower than ours, often by an order of magnitude, as we will see in
Section 5.1. Also, unlike Läufer’s functoids, our indirect functoids
will rarely be defined explicitly by clients of FC++. Instead, they
will commonly only be produced by fixing the type signature of a
direct functoid.

2.3  Polymorphic Direct Functoids
Polymorphic direct functoids support parametric polymorphism
Consider the Haskell functiontail , which discards the first ele-
ment of a list. Its type would be described in Haskell as

tail :: [a] -> [a]

Herea denotes any type;tail applied to a list ofintegersreturns a
list of integers, for example.

One way to represent a similar function in C++ is through memb
templates:

struct Tail {
template <class T>
List<T> operator()( const List<T>& l );

} tail;

Note that we still have anoperator() but it is now amember
function template. This means that there are multiple such oper
tors—one for each type. C++ type inference is used to produ
concrete instances ofoperator() for every type inferred by a use
of the Tail functoid. Recall that C++ type inference is a unifica
tion process matching the types of actual arguments of a funct
template to the declared polymorphic types. In this example, t
typeList<T> contains type variableT, whose type value is deter-
mined as a result of the C++ type inference process. For instan
we can refer totail for both lists of integers and lists of strings
instead of explicitly referring totail<int> or tail<string> .
For each use oftail , the language will infer the type of elemen
stored in the list, based ontail ’s operand.

As discussed earlier, a major problem with the above idiom is th
the C++ type of the function representation does not reflect t
function type signature. For instance, we will write the type sign
ture of the tail function as:

List<T> -> List<T>

but the C++ type of variabletail  is justTail .

The solution is to define a member, calledSig , that represents the
type signature of the polymorphic function. That is,Sig is our way
of representing “arrow” types.Sig is a template class parameter
ized by the argument types of the polymorphic function. For exam
ple, the actual definition ofTail  is:

struct Tail {
template <class L>
struct Sig : public Fun1Type<L,L> {};

template <class T>
List<T> operator()(const List<T>& l) const
{ return l.tail(); }

} tail;

whereFun1Type is used for convenience, as a reusable mech

nism for naming arguments and results.5

5. Its definition is just:
template <class A1, class R> struct Fun1Type {

typedef R ResultType;
typedef A1 Arg1Type;

};
4
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In reality, theSig member ofTail , above, does not have to repre-
sent the most specific type signature of functiontail . Instead it is
used as a compile-time function that computes the return type of
functiontail , given its argument type. This is easy to see: theSig

for Tail just specifies that ifL is the argument type ofTail , then
the return type will also beL. The requirement thatL be an
instance of theList template does not appear in the definition of
Sig  (although it could).

The above definition ofTail is an example of apolymorphic
direct functoid. In general, a direct functoid is a class with a mem-
ber operator() (possibly a template operator), and a template
member classSig that can be used to compute the return type of
the functoid given its argument types. Thus the convention is that
the Sig class template takes the types of the arguments of the
operator() as template parameters. As described in Section 2.1,
for monomorphic direct functoids, the member classSig is hidden
inside theCFunNType classes, but in essence it is just a template
computing a constant compile-time function (i.e., returning the
same result for each instantiation).

The presence ofSig in direct functoids is essential for any sophis-
ticated manipulation of function objects (e.g., most higher-order
functoids need it). For example, in Haskell we can compose func-
tions using “. ”:

(tail . tail) [1,2,3] -- evaluates to [3]

In C++ we can similarly define the direct functoidcompose1 to
act like “. ”, enabling us to create functoids like

compose1(tail,tail) .
The definition ofcompose1 uses type information fromtail as
captured in itsSig structure. Using this information, the type of
compose1(tail, tail) is inferred and does not need to be
specified explicitly. More specifically, the result of a composition
of two functoidsF andG is a functoid that takes an argument of
typeT and returns a value of type:

F::Sig<G::Sig<T>::ResultType>::ResultType  ,
that is, the type thatF would yield if its argument had the type that
Gwould yield if its argument had typeT. This example is typical of
the kind of type computation performed at compile-time using the
Sig  members of direct functoids.

In essence, FC++ defines its own type system which is quite inde-
pendent from C++ types. TheSig member of a direct functoid
defines a compile-time function computing the functoid’s return
type from given argument types. The compile-time computations
defined by theSig members of direct functoids allow us to per-
form type inference with fully polymorphic functions without spe-
cial compiler support. Type errors arise when theSig member of a
functoid attempts to perform an illegal manipulation of theSig

member of another functoid. All such errors will be detected stati-
cally when the compile-time type computation takes place—that
is, when the compiler tries to instantiate the polymorphicopera-

tor() .

Polymorphic direct functoids can be converted into monomorphic
ones by specifying a concrete type signature via the operator
monomorphize . For instance:

monomorphize1<List<int>, int> (head)

produces a monomorphic version of the “head” list operation for
integer lists.

2.4  Use of Direct Functoids
In this section we will demonstrate the use of FC++ direct fun
toids and try to show how much they simplify programming wit
polymorphic functions. The comparison will be to the two alterna
tives: templatized indirect functoids, and C++ function template
Section 3.2 also shows the benefits of direct functoids in a mo
realistic, and hence more complex, example. To avoid confus
we will show here a toy example where the difference is, hop
fully, much clearer.

Consider a polymorphic functiontwice that returns twice the
value of its numeric argument. Its type signature would be

a -> a .
(In Haskell one would say

Num a => a -> a .
It is possible to specify this type bound in C++, albeit in a round
about way—we will not concern ourselves with the issue in th
paper.)

Consider also the familiar higher-order polymorphic functionmap,
which applies its first argument (a unary function) to each eleme
of its second argument (a list) and returns a new list of the resu
One can specify bothtwice and map as collections of indirect
functoids. Doing so generically would mean defining a C++ tem
plate over indirect functoids. This is equivalent to the standard w
of imitating polymorphism in Läufer’s framework. Figure 1 show
the implementations ofmap andtwice  using indirect functoids:

(For brevity, the implementation ofoperator() in Map is omit-
ted. The implementation is similar in all the alternatives we wi
examine.)

Alternatively, one can specify bothtwice and map using direct
functoids (Figure 2). Direct functoids can be converted to indire
functoids for a fixed type signature, hence there is no loss
expressiveness. (In fact, the code forMapshown in Figure 2 is sim-
pler than the real code, but only very slightly. In reality, the C+
keyword typename needs to precede the reference toRT1 and
L::EleType , so that the compiler knows that their nested mem
bersEleType  andResultType  are types.)

The direct functoid implementation is only a little more comple
than the indirect functoid implementation. The complexity is du
to the definition ofSig . Sig encodes the type signature of the

// N: Number type
template <class N>
struct Twice : public Fun1Impl<N, N> {

N operator()(const N &n) const
{ return 2*n; }

};

// E: element type in original list
// R: element type in returned list
template <class E, class R>
struct Map : public

Fun2Impl<Fun1<E, R>, List<E>, List<R> >
{

List<R>
operator()(Fun1<E,R> f, List<E> l) const {...}

};

Figure 1: Polymorphic functions as templates over indirect
functoids.
5
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direct functoid in a form that can be utilized by all other higher
order functions in our framework. According to the convention of
our framework,Sig has to be a class template over the types of the
arguments ofMap. Recall also thatFun2Type is just a simple tem-
plate for creating function signatures—see footnote 5.

To express the (polymorphic) type signature ofMap, we need to
recover types from theSig structures of its function argument and
its list argument. TheRT1 type is just a shorthand for reading the
return type of a 1-argument function. Since that type may be a
function of the input type,RT1 is parameterized both by the func-
tion and by the input type. That is, the type computation
RT1<F, L::EleType>::ResultType

means “result type of functionF, when its argument type is the ele-
ment type of listL”.

In essence, usingSig we export type information from a functoid
so that it can be used by other functoids. Recall that theSig mem-
bers are really compile-time functions: they are used as type com-
puters by the FC++ type system. The computation performed at
compile time using all theSig members of direct functoids is
essentially the same type computation that a conventional type
inference mechanism in a functional language would perform. Of
course, there is potential for an incorrect signature specification of
a polymorphic function but the same is true in the indirect functoid
solution.

To see why the direct functoid specification is beneficial, consider
the uses ofmap andtwice . In Haskell, we can say

map twice [1..]

to produce a list of even numbers. With direct functoids (Figure 2)
we can similarly say

map( twice, enumFrom(1) ) .
This succinctness is a direct consequence of using C++ type infer-
ence. With the indirect functoid solution (Figure 1) the code would
be much more complex, because all intermediate values would
need to be explicitly typed as in

Map<int,int>()(
Fun1<int, int> (new Twice <int>()),

enumFrom(1) ) .

Clearly this alternative would have made every expression terrib
burdensome, introducing much redundancy (int appears 5 times
in the previous example, when it could be inferred everywhe
from the value1). Note that this expression has a single functio
application. Using more complex expressions or higher-ord
functions makes matters even worse. For instance, using
compose1 functoid mentioned in Section 2.3, we can create a li
of multiples of four by writing

map(compose1(twice, twice), enumFrom(1)) .
The same using indirect functoids would be written as

Fun1<int, int> twice (new Twice <int>());
Map <int, int>()

(Compose1<int, int, int>()
(twice, twice),

enumFrom(1) )

We have found even the simplest realistic examples to be v
tedious to encode using templates over indirect functoids (
equivalently, Läufer’s framework [6]).

In short, direct functoids allow us to simplify theuseof polymor-
phic functions substantially, with only little extra complexity in the
functoiddefinition. The idiom of using template member function
coordinated with the nested template classSig to maintain our
own type system is the linchpin in our framework for supportin
higher-order parametrically polymorphic functions.

Finally, note thattwice could have been implemented as a C+
function template:

template <class N> N twice (const N &n)
{ return 2*n; }

This is the most widespread C++ idiom for approximating poly
morphic functions (e.g., [8][11]). C++ type inference is still use
in this case. Unfortunately, as noted earlier, C++ function tem
plates cannot be passed as arguments to other functions (or fu
tion templates). That is, function templates can be used to expr
polymorphic functions but these cannot take other function te
plates as arguments. Thus, this idiom is not expressive enough.
instance, our example wheretwice is passed as an argument to
map is not realizable iftwice is implemented as a function tem-
plate.

What both of the above alternatives to direct functoids lack is t
ability to express polymorphic functions that can accept oth
polymorphic functions as arguments. This rank-2 polymorphis
capability of FC++ direct functoids is unique among C++ librarie
for functional programming. The closest approximation of th
functionality before FC++ was with the use of a hybrid of clas
templates, like in Figure 1, and function templates. In the hybr
case, each function has two representations: one using a temp
class (so that the function can be passed to other functions)
one using a function template (so that type inference can be u
when arguments are passed to the function). The C++ Stand
Library uses this hybrid approach for some polymorphic, highe
order functions. This alternative is quite inconvenient becau
class templates still need to be turned into monomorphic functi
instances explicitly (e.g., one would writeTwice<int> instead of
twice in the examples above), and because two separate repre
tations need to be maintained for each function. The user will ha
to remember which representation to use when the function
called and which to use when the function is passed as an ar
ment.

struct Twice {
template <class N> struct Sig : public

Fun1Type<N,N> {};
template <class N>
N operator()(const N &n) const { return 2*n; }

} twice;

// F: function type
// L: list type
struct Map {

template <class F, class L>
struct Sig : public

Fun2Type<F,L,
List<RT1<F, L::EleType>::ResultType> > {};

template <class F, class L>
typename Sig<F,L>::ResultType
operator()(F f, L l) const {...}

} map;

Figure 2: Polymorphic functions as direct functoids.
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2.5  Subtype Polymorphism
Another innovation of our framework is that it implements a policy
of subtype polymorphism for functoids. Our policy is contravariant
with respect to argument types and covariant with respect to result
types.

A contrived example: Suppose we have two type hierarchies,
where “Dog” is a subtype of “Animal” and “Car” is a subtype of
“Vehicle”. This means that a Dog is an Animal (i.e., a reference to
Dog can be used where a reference to Animal is expected) and a
Car is a Vehicle. If we define a functoid which takes an Animal as
a parameter and returns a Car, then this functoid is a subtype of
one that takes a Dog and returns a Vehicle. For instance:

Fun1<Ref<Animal>, Ref<Car> >  fa;
Fun1<Ref<Dog>, Ref<Vehicle> > fb = fa;

// legal: fa is a subtype of fb

(Note the use of ourRef class template which implements refer-
ences—a general purpose replacement of C++ pointers. The exam-
ple would work identically with native C++ pointers—e.g.Car*

rather thanRef<Car> .)

That is,fa is a subtype offb since the argument offb is a subtype
of the argument offa (contravariance) and the return type offa is
a subtype of the return type offb (covariance). We cannot go the
other way, though (assignfb to fa ). This means that we can sub-
stitute a “specific” functoid in the place of a “general” functoid.
Since subtyping only matters for variables ranging over functions,
it is implemented only for indirect functoids.

Subtype polymorphism is implemented by defining an implicit
conversion operator between functoids that satisfy our subtyping
policy. This affects the implementation of class templatesFunN of
Section 2.2. For instance, the definition ofFun1  has the form:

template <class Arg1, class Result>
class Fun1 : public CFun1Type<Arg1,Result> {

... // private members same as before
public:

... // same as before
template <class A1s,class Rs>
Fun1( const Fun1<A1s,Rs>& f ) :

ref(convert1<Arg1,Result>(f.ref)) {}
};

(The new part is italicized.) Without getting into all the details of
the implementation, the key idea is to define a template implicit
conversion operator fromFun1<A1s, Rs> to Fun1<Arg1,

Result> , if and only if A1s is a supertype ofArg1 and Rs is a
subtype ofResult . The latter check is the responsibility of direct
functoid convert1 (not shown). In particular,convert1 defines
code that will explicitly test (at compile time) to ensure that an
Arg1 is a subtype ofA1s and thatRs is a subtype ofResult . In
this way, the implicit conversion of functoids will fail if and only if
either of the above two conversions fails. Since the operator is tem-
platized, it can be used for any typesA1s andRs.

We should note that, although the above technique is correct and
sufficient for the majority of conversions, there are some slight
problems. First, C++ has inherited from C some unsafe conver-
sions between native types (e.g., implicit conversions from floating
point numbers to integers or characters are legal). There is no good
way to address this problem (which was inherited from C despite

the intentions of the C++ language designer; see [13] p. 710). S
ond, we cannot overload (or otherwise extend) the C++ opera
dynamic_cast . Instead, we have provided our own operation th
imitatesdynamic_cast for indirect functoids. The incompatibil-
ity is unfortunate, but should hardly matter for actual use: not on
do we provide an alternative, but also down-casting functoid refe
ences does not seem to be meaningful, except in truly contriv
examples. More details on our implementation of subtype po
morphism can be found in the documentation of FC++ [7].

Subtype polymorphism is important, because it is a familiar co
cept in object orientation. It ensures that indirect functoids can
used like any C++ object reference in real C++ programs.

3  USAGE EXAMPLES
In this section, we show some complete functional programs wr
ten using FC++. For reference, we compare to implementations
the same examples in Haskell, with the type signatures specifi
explicitly for easy reference.

3.1  Primes
A simple algorithm for determining if a numberx is prime is to
compute all of its factors, and see if the resulting list of factors
just the list[1, x ] . Figure 3 shows the Haskell code to comput
the firstn prime numbers (the code is slightly modified version o
that on p. 29 of [2]) and the corresponding implementation in C+
This example illustrates that the mapping from Haskell to C++
straightforward and exact.

3.2  Tree Fringe
As another sample program, consider computing the fringe o
binary tree. We define a Tree to be either a Node, which compri
a piece of data and references to two other Trees, or Nil. For c
venience, we say that a Tree meets the predicate leaf() if it is
Node whose subtrees are both Nil. The code for Trees in Hask
is:

data Tree a = Node a (Tree a) (Tree a)
| Nil

leaf (Node _ Nil Nil) = True
leaf (Node _ _ _)     = False

We can define a similar data type in C++ as:

template <class T>
struct Tree {

typedef T WrappedType;
T data;
Ref<Tree<T> > left, right;

Tree( T x ): data(x), left(0), right(0) {}
bool leaf() const
{ return (left==0) && (right==0); }

};

Let us define thefringe of the tree to be a list of all the data value
stored in the leaves of the tree, in left-to-right order. Figure
shows the Haskell and C++ code to compute the fringe. The C
version has the usual extra “noise” to declare the type of a dir
functoid, but the body is exactly analogous to the Haskell versio
If we reach nil, we return an empty list; else if we find a leaf, w
return a one-element list; otherwise we lazily catenate the resu
7
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of recursive calls on the left and right subtrees. (Note that
bind1of1 is used here to effect laziness;bind1of1 curries the
only argument of a unary function to yield a 0-arg functoid which
does not actually “do work” until it is needed and explicitly
invoked.)

Clients can then compare the fringes of two trees with
fringe tree1 == fringe tree2 -- Haskell
fringe(tree1) == fringe(tree2) // C++

which again demonstrates thatusing functoids is easy, even if
implementingthem is somewhat tedious due to theSig member.
The fringe functoid is both polymorphic (it works on trees of
integers, strings, etc.) and lazy (if two large trees’ fringes differ in
the first element, the rest of the trees will not be traversed, since the
result of the equality comparison is guaranteed to be false after the
first mismatch).

To see the importance of our implementation of parametric po
morphism via direct functoids, Figure 5 shows what the cod
would look like if we instead had chosen to implementfringe

using templatized versions of indirect functoids. The last retu
statement (italicized) in the function exemplifies the complexi
one repeatedly encounters when trying to express polymorp
functions using the framework of [6].

In reality, the code segment of Figure 5masks much of the com-
plexity, because it usesmakeFun0 andmakeFun1, which are func-
tion templates and employ C++ type inference. If we had al
expressedmakeFun0 and makeFun1 using exclusively indirect
functoids, the example would be even longer. We believe that F
ure 5 demonstrates convincingly why we consider our framewo
to be the first usable attempt at incorporating both higher-ord
functions and polymorphism in C++. It is not surprising that prev
ous approaches using higher-order functions in C++ (e.g, [5]) ha
shied away from polymorphism.

divisible  :: Int -> Int -> Bool
divisible t n = t ‘rem‘ n == 0

factors  :: Int -> [Int]
factors x = filter (divisible x) [1..x]

prime  :: Int -> Bool
prime x = factors x == [1,x]

primes  :: Int -> [Int]
primes n = take n (filter prime [1..])

struct Divisible
: public CFun2Type<int,int,bool> {

bool operator()( int x, int y ) const
{ return x%y==0; }

} divisible;

struct Factors
: public CFun1Type<int,List<int> > {

List<int> operator()( int x ) const
{ return filter( bind1of2(divisible,x),

enumFromTo(1,x) ); }
} factors;

struct Prime : public CFun1Type<int,bool> {
bool operator()( int x ) const
{ return factors(x)==list_with(1,x); }

} prime;

struct Primes
: public CFun1Type<int,List<int> > {

List<int> operator()( int n ) const {
return take(n,filter(prime,enumFrom(1)));

}
} primes;

Figure 3: Haskell and C++ code for computing the first n prime numbers.

fringe :: Tree a -> [a]

fringe Nil = []

fringe n@(Node d l r)
| leaf n = [d]
| otherwise = fringe l ++ fringe r

struct Fringe {
template <class RTT> struct Sig
: public Fun1Type<RTT,List<typename

RTT::WrappedType::WrappedType> > {};

template <class T>
List<T> operator()(Ref<Tree<T> > t)const{

if( t==0 )
return List<T>();

else if( t->leaf() )
return one_element(t->data);

else
return cat( bind1of1(Fringe(),t->left),

bind1of1(Fringe(),t->right));
}

} fringe;

Figure 4: Haskell and C++ code for computing the fringe of a polymorphic tree.
8
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4  DISCUSSION: SUPPORT AND LIMITA-
TIONS
At this point we can summarize the level of support for functional
programming that FC++ offers, as well as its limitations.

• Complexity of type signature specifications: FC++ allows
higher-order polymorphic function types to be expressed and
used. Type signatures are explicitly declared in our framework,
unlike in ML or Haskell, where types can be inferred. Further-
more, our language for specifying type computations (i.e., our
building blocks forSig template classes) is a little awkward. We
used our framework to define a large number (over 50) of com-
mon functional operators and have not found our type language
to be a problem—learning to use it only required minimal effort.

The real advantage of FC++ is that, although function defini-
tions need to be explicitly typed, function uses do not (even for
polymorphic functions). In short, with our framework, C++ has
as good support for higher-order and polymorphic functions as it
does for any other first-class C++ type (e.g., pointers and num-
bers, butnotC++ native functions, which are not first-class enti-
ties).

• Limitations in the number of functoid arguments: There is a
bound in the number of arguments that our functoids can sup-
port. This bound can be made arbitrarily high (templates with
more parameters can be added to the framework) but it will
always be finite. We do not expect this to be a problem in prac-
tice.

A closely related issue is that of naming. We saw base classes
like Fun1 and Fun1Impl in FC++, as well as operators like
makeFun1 andmonomorphize1 . These entities encode in their
names the number of arguments of the functions they manipu-
late. Using C++ template specialization, this can be avoided, at
least in the case of class templates. Thus, we can have templates

Fun andFunImpl with a variable number of arguments. If tem
plateFun is used with two arguments, then it is assumed to ref
to a one-argument function (the second template argument is
return type). We have experimented with this idea, and it is
candidate for inclusion in the next version of FC++.

Another desirable capability is that of implicit currying when
ever a function is used with fewer actual arguments than form
arguments. The challenge is to implement this functionality in
reusable way, instead of adding it to the definition of individua
functoids. This is straightforward for monomorphic functoids
but not for polymorphic direct functoids. Therefore, for unifor
mity reasons, we have not yet included this feature in FC++.

• Compiler error messages: C++ compilers are notoriously ver-
bose when it comes to errors in template code. Indeed, our ex
rience is that when a user of FC++ makes a type error, t
compiler typically reports the full template instantiation stack
resulting in many lines of error messages. In some cases
information is useful, but in others it is not. We can distinguis
two kinds of type errors: errors in theSig definition of a new
functoid and errors in the use of functoids. Both kinds of erro
are usually diagnosed well and reported as “wrong number
parameters”, “type mismatch in the set of parameters”, etc.
the case ofSig errors, however, inspection of the templat
instantiation stack is necessary to pinpoint the location of t
problem. Fortunately, the casual user of the library is likely
only encounter errors in the use of functoids.

Reporting of type errors is further hindered by non-local insta
tiations of FC++ functoids. Polymorphic functoids can b
passed around in contexts that do not make sense, but the e
will not be discovered until their subsequent invocation. In th
case, it is not immediately clear whether the problem is in th
final invocation site or the point where the polymorphic functoi
was passed as a parameter. Fundamentally, this problem ca
be addressed without type constraints in template instantiatio
something that C++ does not offer. Overall, however, type err
reporting in FC++ is quite adequate, and, with some experien
users have little difficulty with it.

• Creating closures: Our functoid objects correspond to the func
tional notion of closures: they can encapsulate state toget
with an operation on that state. Note, however, that, unlike
functional languages, “closing” the state is not automatic in o
framework. Instead, the state values have to be explicitly pas
during construction of the functoid object. Of course, this is
limitation in every approach to functional programming in C++

The reader may have noticed our claim in Section 2.2 that o
(internal) reference-counted functoid pointers cannot for
cycles. This implies that our closures (i.e., functoid objects) ca
not be self-referential. Indeed, this is a limitation in FC++, albe
not an important one: since our closures cannot be anonymo
and since the “closing” of state is explicit, it is convenient t
replace self-referential closures with closures that create a co
of themselves. This approach is slightly inefficient, but the ef
ciency gains of using a fast reference counting technique
functoid objects far outweigh this small cost.

• Pure functional code vs. code with side-effects: In C++, any
method is allowed to make system calls (e.g., to perform I/
access a random number generator, etc.) or to change the sta
global variables. Thus, there is no way to fully prevent sid

template <class T>
struct Fringe
: public CFun1Type<Ref<Tree<T> >,List<T> > {

List<T> operator()( Ref<Tree<T> > t )
const {

if( t==0 )
return List<T>();

else if( t->leaf() )
return OneElement<T>()(t->data);

else // take a deep breath!
return Cat<T>()(

makeFun0(
Bind1of1<

Fun1<Ref<Tree<T> >,List<T> >,
Ref<Tree<T> > >()

( makeFun1(Fringe<T>()), t->left),
Bind1of1<Fun1<Ref<Tree<T> >,List<T> >,

Ref<Tree<T> > >()
( makeFun1(Fringe<T>()), t->right));

}
};

Figure 5: Tree fringe computation using templates over indi-
rect functoids. This example demonstrates why templates over
indirect functoids are undesirable.
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effects in user code. Nevertheless, by declaring a method to be
const , we can prevent it from modifying the state of the enclos-
ing object (this property is enforced by the compiler). This is the
kind of “side-effect freedom” that we try to enforce in FC++.
Our indirect functoids (as shown in Section 2.2) are explicitly
side-effect free—any class inheriting from ourFunNImpl

classes has to have aconst operator () . Nevertheless, users
of the library could decide to add other methods with side-
effects to a subclass ofFunNImpl . We strongly discourage this
practice but cannot prevent it. It is a good convention to always
declare methods of indirect functoids to beconst .

For direct functoids, guarantees are even weaker. We cannot
even ensure thatoperator () will be const , although this is,
again, a good practice. Certainly functoids with side effects can
be implemented in our framework, but this seems both unneces-
sary and dangerous. Other opportunities for code with side
effects abound in C++. Our recommendation is that code with
side effects be implemented outside the FC++ framework. For
instance, such code could be expressed through native C++
functions. The purist can even define monads [14] using FC++.

5  TECHNICAL ISSUES

5.1  Library Performance
As explained in Section 2.2, our basic framework for indirect func-
toids is quite efficient due to its fast memory management through
reference counted pointers. Läufer’s framework for functional pro-
gramming in C++ [6] defines functoids that are very similar to our
indirect functoids. Läufer’s implementation ensures that no func-
toid is accessible through multiple references, by copying func-
toids at aliasing time (i.e., when a reference is assigned to another).
Since indirect functoid objects do not hold mutable state (they can-
not, as they only haveconst methods), reference-counting is as
safe as copying.

To measure the consequences of our optimization, we performed a
simple experiment. We used Läufer’s implementation of a lazy tree
fringe computation, with practically no modifications to his code
(to ensure that no bias is introduced). This program comprises the
main example in Läufer’s library and consists of amonomorphic
tree fringe computation (Figure 5 suggests that a polymorphic
implementation would be unmanageable). We attached to the main
implementation a client program that requests a tree fringe compu-
tation on a randomly produced tree of a given size. In Table 1, we
show timings in milliseconds on a Sun Ultra 5 (Sparc 300MHz
processor), with both programs compiled using egcs-2.91.66 (the
GNU C++ compiler) at optimization level 3. Different optimiza-
tion levels did not change the results qualitatively. The timings are
only for the fringe computation (i.e., after tree construction). We
first determined that the variation across different executions was
not significant, and then ran a single experiment for each problem
size (with a warm cache, as the tree was created right before the
fringe computation).

The first column of Table 1 shows the number of nodes in the tree.
The second shows the time taken when the tree fringe client used
Läufer’s functoid implementation. The third column shows the
execution time of the same program with our indirect functoid
implementation. The fourth column shows the ratio of the two for
easy reference. The fifth column shows the performance of a refer-
ence implementation: astrict tree fringe computation, using regu-

lar C++ functions (no functoids, no lazy evaluation) but still free o
side-effects.

As can be seen, our indirect functoids perform 4 to 8 times fas
than the implementation in [6]. Some small variation in perfo
mance can be observed, and this is expected, since the trees
generated from random data. Nevertheless, overall the trend is v

clear.6

The reason for the superlinear running times of both lazy imp
mentations is that forn nodes, a list of approximatelylogn functoid
objects is kept as the state of the lazy list. Since the implemen
tion is purely functional, this list needs to be copied when the sta
is updated, making the overall asymptotic complexityO(n logn).
Since copying is very fast with our implementation (a referen
count is incremented) the performance of our code is dominated
a linear component, and thus the speedup relative to Läufe
implementation increases for larger trees.

The superlinear scaling of the strict tree fringe computation is a
due to copying the fringe for subtrees at each node. That is,
strict computation is also side-effect free and has asymptotic co
plexity of O(n logn). We chose this to closely match the lazy
implementation so that a comparison is meaningful. The perfo
mance of the strict version is significantly faster than both lazy ve
sions, but this is hardly unexpected. The main overheads are du
the creation of functoid objects and to dynamic dispatch. We su
pect (but have yet to verify) that the former is much more taxin
than the latter.

The conclusion from our simple experiment is that our mechanis
for avoiding aliased referencing is at least 8 times faster than co
ing functoids, for realistic kinds of functoids (the more data a fun
toid object encapsulates, the higher the overhead of copyin

Table 1: Performance of FC++ in the tree fringe problem
(msec)

Tree Size
(nodes)

Läufer
Library

Indirect
Functoids

Ratio
Strict
Fringe

1000 121 28 4.32 -

2000 273 63 4.33 -

4000 716 132 5.42 -

8000 1320 256 5.16 16

16000 3590 600 5.98 33

32000 7611 1182 6.44 71

64000 17816 2449 7.27 157

128000 38758 6122 6.33 327

256000 96789 12995 7.45 816

512000 195091 23195 8.41 1361

6. Clear enough that we did not consider a more detailed expe
ment (e.g., one that will quantify the variance between runs)
be needed.
10
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Since many functional programs will involve passing a lot of func-
toid objects around, as this example amply demonstrates, the con-
sequences for overall performance can be significant.

5.2  Library Members
Our implementation is not merely a framework for functional pro-
gramming in C++, but an actual usable and extensible library. This
section describes the library, which currently consists of a few
thousand lines of code.

The entire library is free of side-effects, in that every method is a
const method, and all parameters are passed by constant refer-
ence. This was merely a design choice based on our desire to dem-
onstrate pure functional programming in C++.

The library code conceptually comprises three parts.

5.2.1  Functoids and theList  class
This portion of the library implements the backbone for functional
programming in C++. TheFunNandFunNImpl classes are defined
here, as well as the inheritable signature-helper classes like
Fun1Type . List is defined in a way so that elements of a list are
evaluated lazily, thus supporting structures like “infinite” lists.

5.2.2  Standard Prelude
Here we define about 50 functions that appear in the Haskell Stan-
dard Prelude (see [10], Section 5.6 and Appendix A), including
map, filter , take , foldl , zipWith , any , andelem . These func-
tions serve a dual purpose: first, they convinced us that it was pos-
sible (and easy!) to convert arbitrary functional code into C++
code using our framework; second, they provide a large and useful
library to clients, just as the Haskell Standard Prelude does for
Haskell programmers. We chose the exact names and behaviors of

Haskell functions whenever possible.7

It is worth noting that this portion of the library was implemented

in less than a week8—even though this section is nearly half of the
entire library! Once our general framework was in place and we
became familiar with it, implementing a large number of functoids
was very easy.

5.2.3  Other utilities
FC++ has a number of utility functoids. We create functoids to rep-
resent C++ operators, such asplus andequal_to , which roughly
correspond to operator sections in Haskell. We have functoids for
various conversions, such asmonomorphize , which converts a
direct functoid into an indirect functoid by fixing a type signature,
and stl_to_fun1 , which promotes a unary STL-style functoid
into one of our functoids.

We also provide functoids for currying function arguments. For
example, rather than supplying both arguments tomap as in

map(odd,int_list) // returns List<bool>

one could usebind1of2  to curry the first parameter
bind1of2(map,odd) //List<int> -> List<bool>

or instead curry the second via
bind2of2(map,int_list) //(int->T)-> List<T> .

Finally, this portion of the library also implementsRef , our refer-
ence-counting class, which is described next.

5.3  Ref
There are many “smart pointer” implementations in C++. Fo
FC++, we use a simple reference-counting scheme, as that is s
cient for our functoids. EachRef contains the actual pointer that it
wraps up, as well as a pointer to an integer count, which may
shared amongRef s.

template<class T>
class Ref {
protected:

T* ptr;
unsigned int* count;
void inc()     { ++(*count); }
... // continued next

A key for FC++ is that theRef s are subtype polymorphic; that is,
Ref<U> should behave as a subtype ofRef<T> if U is a subtype of
T. We create an implicit conversion via a templatized construct
which exists in addition to the normal copy constructor.

public:
... // implementation technicalities
Ref(const Ref<T>& other)//copy constructor
: ptr(other.ptr), count(0) {

if(ptr) { count = other.count; inc(); }
}
template <class U> // implicit conversion
Ref(const Ref<U>& other)
: ptr(implicit_cast<T*>(other.ptr)),

count(0) {
if(ptr) { count = other.count; inc(); }

}
};

We are assured thatU is a subtype ofT by implicit_cast (a
common C++ idiom), which is defined as:

template<class T, class U>
T implicit_cast( const U& x ) {

return x;
}

Ref is a fairly mature “smart pointer” class and can be used as
complete replacement of C++ pointers. A common criticism
smart pointer classes (e.g., [3]) is that they do not support the sa
conversions as native C++ pointers (e.g., a smart pointer to
derived class cannot be converted into a smart pointer to a b
class).Ref supports such conversions if and only if they would b
supported for native C++ pointers. We encourage use of theRef

class for all functional tasks in C++.

6  RELATED WORK
Läufer’s paper [6] contains a good survey of the 1995 state of t
art regarding functionally-inspired C++ constructs. Here we w
only review more recent or closely related pieces of work.

Dami [1] implements currying in C/C++/Objective-C and show
the utility in applications. His implementation requires modifica
tion of the compiler, though. The utility comes mostly in C; in

7. Some Haskell functions, likebreak , have names that conflict
with C++ keywords, so we were forced to rename them.

8. In fact, a portion of that week was “wasted” tracking down a
template bug in the g++ compiler, and finding a legal
workaround.
11
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C++, more sophisticated approaches (such as ours) can achieve the
same goals and more.

Kiselyov [5] implements some macros that allow for the creation
of simple mock-closures in C++. These merely provide syntactic
sugar for C++’s intrinsic support for basic function-objects. We
chose not to incorporate such sugar in FC++, as we feel the dan-
gers inherent in C-preprocessor macros outweigh the minor bene-
fits of syntax. FC++ users can define their own syntactic helpers, if
desired.

An interesting recent approach is that of Striegnitz’s FACT! library
[12]. FACT! provides a functional sublanguage inside C++ by
extensive use of templates and operator overloading. FACT!
emphasizes the front-end, with lambda expressions and support for
functions with arbitrarily many arguments. FC++, on the other
hand, provides sophisticated type system support for higher-order
and polymorphic functions. Hence, the two approaches are com-
plementary. The FACT! front-end support for expression templates
can be added to FC++. At the same time, most of the type system
innovations of FC++ can be integrated into FACT!’s back-end
(enabling full support for higher-order polymoprhic functions and
rank-2 polymorphism). Lazy lists are to be included in the next
version of FACT! [Striegnitz, personal communication].

The C++ Standard Template Library (STL) [11] includes a library
called<functional> . It supports a very limited set of operations
for creating and composing functoids that are usable with algo-
rithms from the<algorithm> library. While it serves a useful
purpose for many C++ tasks, it is inadequate as a basis for building
higher-order polymorphic functoids.

Läufer [6] has the most sophisticated framework for supporting
functional programming in C++. His approach supports lazy evalu-
ation, higher-order functions, and binding variables to different
function values. His implementation does not include polymorphic
functions, though, and also uses an inefficient means for represent-
ing function objects. In many ways, our work can be viewed as an
extension to Läufer’s; our framework improves on his by adding
both parametric and subtype polymorphism, improving efficiency,
and contributing a large functional library. Läufer also examines
topics that we did not touch upon in this paper, like architecture-
specific mechanisms for converting higher-order functions into
regular C++ functions.

7  IMPACT AND CONCLUSIONS
We have described our implementation of a functional program-
ming library for C++. Our work improves upon previous work in
the literature in two key ways: we add better support for polymor-
phism, and we improve the run-time efficiency of functoids. We
believe these improvements make our framework the first that is
actually usable and scalable for doing real functional programming
in C++. In particular, our novel way to support parametric poly-
morphism using direct functoids allows our functoids to be used
without having to explicitly specify intermediate types; our frame-
work enables the compiler to infer these types and the final type of
an expression is checked against its declared type, similarly to C++
expressions on native types (e.g., numbers). Thus, we demon-
strated that C++-style polymorphism, coupled with classes can be
used to express higher-order, polymorphic functions—a surprising,
and therefore interesting, result.

Our work has the potential for impact on a number of differe
communities:

• For C++ programmers, our framework opens new opportuniti
for functional programming using C++. The reusability benefi
of higher-order polymorphic functions are well-known. Addi
tionally, there are problems (e.g., callbacks within a speci
context, delayed evaluation, dynamic function specialization)
which FC++ offers more concise solutions than any of the alte
natives.

• For functional programmers, our framework enables an altern
tive platform for implementing functional programs. C++ ma
be an interesting platform, exactly because it is very different

• For language researchers, our work shows that C++ type inf
ence is a promising mechanism. The results are surprising e
to experts, indicating that the C++ type system is still not we
understood.
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