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ABSTRACT
Recently there has been a significant interest in building big data
analytics systems that can handle both “big data” and “fast data”.
Our work is strongly motivated by recent real-world use cases that
point to the need for a general, unified data processing framework
to support analytical queries with different latency requirements.
Toward this goal, we start with an analysis of existing big data sys-
tems to understand the causes of high latency. We then propose an
extended architecture with mini-batches as granularity for computa-
tion and shuffling, and augment it with new model-driven resource
allocation and runtime scheduling techniques to meet user latency re-
quirements while maximizing throughput. Results from real-world
workloads show that our techniques, implemented in Incremental
Hadoop, reduce its latency from tens of seconds to sub-second, with
2x-5x increase in throughput. Our system also outperforms state-of-
the-art distributed stream systems, Storm and Spark Streaming, by
1-2 orders of magnitude when combining latency and throughput.

1. INTRODUCTION
Recently there has been a significant interest in building big data

systems that can handle not only “big data” but also “fast data” for
analytics. Here “fast data” refers to high-speed real-time and near
real-time data streams, such as twitter feeds, search query streams,
click streams, impressions, and system logs. For instance, a breaking
news reporting service that monitors the Twitter firehose requires
tweet feeds to be analyzed within seconds to detect hot topics and
breaking news events [24]. As another example, Google’s Zeitgeist
pipeline ingests a continuous input of search queries and detects
anomalous queries (spiking or dipping) within seconds [2].

To respond to these new analytics needs, our work takes a step
further towards building a unified data processing framework that
supports both big data, by scaling to multiple machines, and fast
data, by taking continuous data streams and answering analytical
queries with user-specified latency constraints. In particular, we
focus on a fundamental question in this study: What are the key
design criteria for building such a system?

A number of systems have been developed to handle fast data,
including Google MillWheel [2], Twitter Storm [37], Facebook Ptail
and Puma [5], Microsoft Naiad [31] and Sonora [38], WalmartLabs’
Muppet [24], IBM System S [41], Yahoo S4 [32], and academic
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prototypes such as Spark Streaming [39], StreamMapReduce [6],
StreamCloud [16], SEEP [8] and TimeStream [35]. Despite various
differences in implementations, these systems share some common
features: (1) They all employ data parallelism to scale processing
to a cluster of nodes. Data parallelism partitions a large dataset into
smaller subsets, following either the storage order (physical parti-
tioning) or a user-specified logical condition (logical partitioning),
and then executes an analytic task in parallel over these subsets.
(2) They also support incremental processing, a tuple or a small
batch at a time, to move tuples quickly through a pipeline of opera-
tors. In contrast, batch processing may process all data in the first
operator, then move on to process all the data in the next operator,
and so on, causing significant delays of the final output.

The key questions that we ask are: (1) Are data parallelism and
incremental processing sufficient for analytical queries with strin-
gent latency requirements? (2) If not, what are the additional design
features that big and fast data analytics system should embrace?

A starting point of our study is a thorough understanding of the
sources of latency in existing fast data systems. Our benchmark
study reveals that while incremental processing allows arriving tu-
ples to be processed one-at-a-time, it does not guarantee the actual
latency of processing a tuple in a large distributed system. (1) A
key observation is that to enable streaming analytics with bounded
latency of processing (e.g., 1 second) through a distributed system, it
is crucial to determine the degree of parallelism (e.g., the number of
processes per node) and granularity of scheduling (e.g., batching tu-
ples every 5ms for shuffling). Otherwise, upstream and downstream
operators may process data at different speeds, causing substantial
data accumulation in between. This reason, as well as using a large
batch size as granularity for scheduling, will cause a long wait time
before tuples are processed or shuffled. The appropriate choices of
those parameters vary widely among analytic tasks due to differ-
ent computation needs. We refer to this problem as job-specific
resource planning. (2) When the memory of a cluster is not large
enough to process all data, the tuples spilled to disk experience high
latency because their processing is often deferred to a later phase
(e.g., at the end) of the job. This calls for latency-aware scheduling
to determine which tuples to process and in what order to process
them in order to keep latency low. By way of addressing the above
two issues, we make the following contributions in this paper:

Model-driven Resource Planning. Given an analytical query and
a user latency constraint, L, our goal is to determine the degree
of parallelism (the number of processes per node) and granularity
of scheduling (batching tuples every n ms) for computation and
shuffling, in order to meet the latency constraint for final results.

Tremendous engineering efforts have been invested in industry
to decide the values of these parameters for critical workloads. The
recent development of Hadoop Yarn [23] provides a friendly in-
terface for users to set key system parameters, but cannot do so
automatically for a given job. Recent fast data systems [2, 6, 8, 16,



24, 31, 32, 35, 37, 38, 39] do not take latency or job characteristics
as input, and require the user to manually set the system parameters.
In practice, enterprise businesses cannot afford the manual work to
find the optimal configuration for each job.

To offer best usability, we propose a model-driven approach to
automatically determining the resource allocation plan for each
job. The first unique aspect of our approach is that we consider
performance, including both latency and throughput, in a holistic
manner. A naive approach to minimizing latency may overprovision
resources, e.g., giving all resources to push one tuple at a time
through the distributed system, which limits throughput severely.
Instead, we formulate the per-job resource planning problem as a
constrained optimization problem: given a user analytic job and
latency constraint L, find a resource allocation plan to maximize
throughput while subjecting the latency of results to L. The second
feature is that we support a variety of latency models, including
per-tuple latency, per-window latency, and quantiles associated with
latency distributions. Then we subject any of these latency metrics
to the latency constraint L and maximize system throughput.

Latency-Aware Scheduling. As an optimization, we further pro-
pose latency-aware scheduling at runtime to determine the set of
tuples to process and the order to process them in order to maximize
the number of results that meet the latency requirement, i.e., the
total utility. Such runtime scheduling is helpful because at run-
time, the workload characteristics may differ from those provided
earlier to our model-driven resource planning, e.g., due to bursty
inputs and change of computation costs under constrained memory.
Thus, runtime selection and prioritization of tuples greatly affects
the overall utility. We propose two runtime scheduling algorithms,
at batch-level and tuple-level, respectively, which consider both
costs and deadlines of data processing. In particular, our tuple-level
scheduling algorithm has provable results on the quality of runtime
schedules and efficiency of the scheduling algorithm.

Prototyping and Evaluation. All of our techniques have been im-
plemented in an extension of Incremental Hadoop [26]. Evaluation
using real-world workloads such as click stream analysis and tweet
analysis show the following results: (1) Our models can capture
the trend of actual latency changes when we tune system param-
eters, with error rates within 15% for the average latency metric,
and within 20% for 0.99-quantile of latency. (2) Our model-driven
approach to resource planning can reduce the average latency from
10’s of seconds in Incremental Hadoop to sub-second, with 2x-5x in-
crease in throughput. (3) For runtime scheduling, our latency-aware
tuple scheduling algorithm outperforms Dover [22], a state-of-the-
art scheduling algorithm with provable optimality in the worse case,
and can dramatically improve the number of tuples meeting the
latency constraint, especially under constrained memory. (4) We
finally compare our system to Twitter Storm [37] and Spark Stream-
ing [39], two state-of-the-art, commercial-grade distributed stream
systems. For all workloads tested, our system, implemented as
a proof-of-concept in the general Hadoop framework, offers 1-2
orders of magnitude improvements over Storm and Sparking Stream-
ing, when considering both latency and throughput.

2. SYSTEM DESIGN
In this section, we outline our overall design of a big and fast data

analytics system, which provides a technical context for our discus-
sion in the following sections. Since our design is based on Hadoop,
which already handles big data processing at scale, we focus on
architectural extensions for fast (streaming) data processing.

Background on Incremental Hadoop. Our work is built on an
improvement of Hadoop, called Incremental Hadoop [26, 28]. As
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usual, an analytic task can be expressed as a number of rounds of
map and reduce functions. Here incremental processing means
that as soon as new data is loaded into the system, it can be processed
through the mappers and reducers to produce timely results. Such
incremental processing is enabled by a hash framework that (1) uses
hashing to group data by key, whenever needed, and (2) applies an
incremental algorithm called INC-hash to perform the work defined
in the reduce function as each tuple arrives at the reducer. To
do so, INC-hash maintains 〈key, state〉 pairs in memory. When a
new tuple arrives, the corresponding state for its key is updated if
the state is in memory; otherwise, the tuple is written to disk and
will be processed at the end of the job. INC-hash was reported with
much improved I/O cost and total running time compared to stock
Hadoop and MapReduce Online [11] (also designed for incremental
processing). However, this work did not report on the actual latency
of each result output from the system.

2.1 Overview of A Scalable Stream System
At a high level, an analytical query in our scalable stream system

is modeled as a direct acyclic graph (DAG) of computation units.
A computation unit is a pair of map() and reduce(), called an MR-
pair. As before, map() is an operation usually used to extract and
filter tuples, and reduce() is an operation to perform analytics over
a group of tuples of the same key. As for data parallelism, map()
can be executed in parallel on subsets of data that are physically
partitioned, while reduce() can be executed on subsets that are
logically partitioned (by the user-defined key). In an MR-pair, map()
can be an empty, or reduce() can be empty, but not both.1

More precisely, a query in our system is defined as a dataflow
DAG, as shown in Fig. 1. A vertex in the DAG is either a data
distributer (“D” vertex) or an MR-pair (“MR” vertex), and an edge
represents a stream of tuples flowing between the vertexes. Each
tuple is encoded as a triplet 〈timestamp, key, value〉. A distributor
can take one or multiple streams of tuples from external sources or
upstream MR-pairs, as well as files from a distributed file system
(DFS). It feeds the received tuples to one or multiple downstream
MR-pairs. An MR-pair takes an input stream from a distributor,
performs computation over the stream, and outputs a stream to web
UI, DFS, or one or multiple distributors.

Incremental Updates. Our system provides a low-level API to
program an MR-pair. Like before, a map function is applied to
transform each input tuple (a triplet here) to a list of output tuples.

map(time,key1,val1) → list(time,key2,val2)

where all the arguments here indicate data types. For reduce pro-
cessing, two functions are used:

1How to compile a query into a DAG of MR-pairs is within the purview of
MapReduce query compilers such as PigLatin [15], while in this paper we
focus on system support to run a given query plan with low latency.



init(key2) → state
update(time,key2,val2,state) →

(state,list(time,key3,val3))

Reduce is stateful, and a computation state is maintained for each
map output key. init is called to create an empty state when a new
key is received from map output. update is triggered by each tuple
received, which takes the unique state for a given key and updates it
using the tuple. The update function can also emit a list of output
tuples. For example, to identify frequent words in tweet feeds, map
can be used to extract a list of 〈word, count〉 pairs from each tweet
with words as keys. init creates a counter as the state for each new
word. update increments the counter and, if the counter exceeds
a predefined threshold, outputs a single pair 〈word, count〉. This
programming model is similar to those in [6, 24], and has been used
in a range of real-world applications.

Time Windows. Our work also provides an API for time window
operations. A query defines time windows by specifying the range r
and slide s. Given a system starting time t0, the 〈r, s〉 pair defines a
series of time windows, (t0 + i · s, t0 + r + i · s], where i=0, 1, · · · .
These windows can be tumbling (non-overlapping) or sliding (over-
lapping) windows. After a query is compiled, those time windows
that overlap with the lifetime of the query will trigger actual pro-
cessing. More specifically, the map API remains unchanged, and
the reduce API consists of the following three functions:

init(key2,wtime) → state
update(time,key2,wtime,val2,state) → state
finalize(key2,wtime,state) → list(time,key3,val3)

Now the system maintains a state for each combination of key and
time window. Denote a particular time window by its end time, tw.
The 〈key, tw〉 pair, called a partitioned window, is a unique instance
of windowed operation. For each partitioned window, init is
called when a new key is seen in reduce input. update is triggered
by each arriving tuple, which takes the state of the correspond-
ing partitioned window and updates it with the tuple. Since time
windows may overlap in time, a tuple will trigger update for all
relevant 〈key, tw〉 pairs. Finally, finalize is called to complete
the computation of a partitioned window and generate output tuples.

Please refer to our technical report [25] for example queries, such
as sessionization and windowed aggregates, implemented using our
API. These queries are omitted here in the interest of space.

2.2 Extended Hadoop Architecture
We next propose necessary architectural changes of Incremental

Hadoop to support stream queries with low latency. We explain
these design differences using a single MR-pair as shown in Fig. 2.

Handling stream data using mini-batches and queues. The first
set of changes is proposed to break stream input into mini batches
and process them with low overhead, including the use of data
distributors, queues, and long-living mappers.

We add a distributor (D) that can take streaming input from an
external data source or an upstream MR-pair. For an external data
source, the distributor tags each input tuple with a system timestamp.
The distributor packs the input tuples into a mini batch every Bin
seconds, as opposed to large batch, to reduce the delay of tuples at
the distributor. It places the batch in an in-memory queue, QD, such
that mappers can fetch data from memory without I/O overhead.
The distributor can optionally materialize the mini batches to a DFS
for fault tolerance. The distributor can run in multiple processes and
nodes to avoid becoming the bottleneck of the system.

We modify a mapper (M) to be able to live forever, rather than
terminate after processing a batch. Thus, we can avoid high mapper

startup cost caused by each mini batch. We also add several in-
memory queues to each mapper. A mapper requests input batches
from the distributor, and places the fetched batches in the input
queue QMI. It then applies the map function to each input tuple from
QMI, and emits intermediate tuples, which are further packed into
shuffle mini batches every Bsh seconds. A shuffle batch is added to
the queue QMM, where it is materialized for fault tolerance, and then
split into partitions and placed into the queues QMO corresponding to
different reducers to send. The mapper then informs the coordinator
(C) of the availability of each shuffle batch.

On the reducer side, we add an in-memory queue QRI to a reducer
(R). A reducer asks the coordinator for the available shuffle batches
every Bch seconds, then fetches the batches, and places them in
QRI. We also add a key-value store (currently implemented using
BerkeleyDB) to store key-state pairs when memory is not enough.

Our system also supports out-of-order data and fault tolerance by
leveraging existing techniques. Further details are left to [25].

3. RESOURCE PLANNING
We now start to address a key question raised in this study: Are

data parallelism and incremental processing sufficient for analyt-
ical queries with stringent latency requirements? A starting point
of our work is a benchmark study [25] that provides a thorough
understanding of the sources of latency in Hadoop-based fast data
systems. Here, we extract the results that give the most important
observations, as shown in Fig. 3.

The workload tested is word counting over tweet feeds where
a map function extracts the words as the key and emits a value
(partial count) for each key, where a reduce function computes the
total count of each key. To measure latency, we break down the
lifetime of a tuple, a key-value pair output by the map function, into
a number of phases: (1) Map Function (MF) captures the execution
cost of map(); (2) Map Materialization (MM) captures the time to
materialize map output for fault tolerance; (3) Shuffle Wait (SW)
captures the time that map output waits to be shuffled; (4) Shuffle
Transfer (ST) is the actual data transfer time; (5) Reduce Wait (RW)
is the time that data sits in the reducer input buffer, waiting to be
processed; (6) Reduce Update (RU) is the actual cost of reduce(),
i.e., updating the computation state with each tuple. Fig. 3 shows
these latency measures using both stock Hadoop and Incremental
Hadoop [26], in a cluster of 10 nodes with 3 mappers and 3 reducers
on each node. While Incremental Hadoop indeed provides better
latency than stock Hadoop, it still experiences tens of seconds of
latency in Shuffle Wait (SW) and Reduce Wait (RW). The reason is
that reducers cannot keep up with mappers in processing, and hence
data accumulates between them, in both the map output buffers and
reduce input buffers. In addition, each phase of a tuple’s lifetime
contains at least seconds of latency. This is caused by the large batch
size used as granularity for scheduling (32MB in this benchmark,
and even larger sizes used in Hadoop such as 64-128MB).

The above observations indicate that to enable streaming analytics
with bounded latency of processing (e.g., 1 second) through a dis-
tributed system, it is crucial to determine the degree of parallelism
(e.g., the number of mappers/reducers per node) and granularity of
scheduling (e.g., batching data items every 5 ms for shuffling). The
appropriate choices of those parameters vary widely among analytic
tasks due to different computation needs – using the fixed values
tuned for one workload is far from ideal for other workloads, often
resulting in high latency of tuples moving through the system. We
refer to this problem as job-specific resource planning.

To offer best usability, in this section we propose a model-driven
approach to automatically determining the resource allocation plan
for each job. Below, we explain how our approach addresses perfor-
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Figure 3: Tuple latency benchmark.

Table 1: System parameters in modeling.
Name (Symbol) Description
Cluster Size S The number of slave nodes
Map Parallelism M The number of mappers per node
Reduce Parallelism R The number of reducers per node
Input Batch Size Bin The distributer packs input tuples

into an input batch every Bin sec
Shuffle Batch Size Bsh A mapper packs map output tuples

into a shuffle batch every Bsh sec
Shuffle Check Period A reducer checks available shuffle
Bch batches from mappers every Bch sec

time

Recv’d by 
distributor

update( ) 
on reducer

e1 e2

e2 e1

window
start

window
end (    )

process 
window
start (   )

process 
window
end (   )

finalize( )
on reducer 

elhk1,wi elhk2,wi

key1 key2

tw
t1 t2

l̈e1

l̈e2

Figure 4: An example of window latencies.

mance (latency and throughput) in a holistic manner and supports a
variety of latency models, including per-tuple latency, per-window
latency, and any quantiles associated with these latency distributions.

3.1 Model-driven Resource Planning
Given the job of an analytical query, an estimated data input rate

λ0, and a latency constraint L, our goal is to find the optimal re-
source allocation plan for the job. To do so, we start by considering
the relationship among latency, throughput, and resources. A naive
approach may minimize latency by giving all resources to push one
tuple at a time through the distributed system, which limits through-
put severely. Instead, we aim to support both latency and throughput
by taking latency as constraint and maximizing throughput under
this constraint. To further take resources into account, we consider
a cluster of S̄ available slave nodes. For each number of slave nodes
S ∈ {1, . . . , S̄}, we compute the maximum input rate, ΛL(S), that
can be sustained by S nodes under L, as well as the optimal set-
ting of key system parameters, denoted as ΘL(S), that reaches the
maximum input rate. Then, to configure the system for “a job with
input rate λ0 and latency constraint L”, the smallest value of S that
satisfies ΛL(S) ≥ λ0, denoted by S∗, is the minimum number of
nodes to use, and ΘL(S∗) is the optimal configuration for the S∗
nodes. Finally, our approach returns (S∗, ΘL(S∗)) as the resource
allocation plan for the analytic job.

In this approach, a key task is to find the maximum input rate that
can be sustained (throughput), ΛL(S), and the optimal setting of
parameters, ΘL(S), for each S ∈ {1, . . . , S̄}. Let λ denote an input
rate in number of tuples per second, θ be a vector of key system
parameters, and Ψλ,(S,θ) be the latency2 under the input rate λ and
resource allocation plan (S, θ). Then, we obtain ΛL(S) and ΘL(S)
by solving a constrained optimization problem for each S as follows:

ΛL(S) = max
θ

λ, subject to Ψλ,(S,θ) ≤ L;

ΘL(S) = arg max
θ

λ, subject to Ψλ,(S,θ) ≤ L.
(1)

At the core of our approach is the analytical model of Ψλ,(S,θ),
which is built on λ and (S, θ), as well as job-specific characteristics
and hardware specification of the cluster. Table 1 summarizes all the
parameters in (S, θ) for each MR-pair (a computation unit as defined
in §2.1). More specifically, θ includes the numbers of mappers and
reducers per node, and the mini-batch sizes of various queues placed
in our architecture. While the hardware specification of the cluster
can be obtained once for all analytical jobs, job-specific character-
istics are provided by the programmer or learned at runtime by the
system. (We will explain these characteristics more when presenting
the detailed models.) Then with the model, Ψλ,(S,θ), Equation 1 can
be solved by a general non-linear constrained optimization solver,
such as MinConNLP in JMSL3.

2The metric can be the average latency or a quantile of latency.
3http://www.roguewave.com/products/imsl-numerical-libraries.aspx

To develop accurate latency models, we identify the major chal-
lenges as follows: (1) Dominant components of latency: A thor-
ough understanding of the system is required to identify all possible
dominant components that contribute to latency. Existing models of
MapReduce jobs [17, 18, 19, 14] are designed to predict the run-
ning time of a job on stored data. They are not suitable for latency
analysis because they ignore key parameters such as the input rate
and queue sizes, and factors such as queuing delay and wait time
to create a mini-batch, which affect latency strongly. (2) Shared
resources: Each latency component has to be modeled in a complex
environment where system resources are shared by different sys-
tem modules. Concurrent execution of the map, shuffle and reduce
phases are necessary for incremental processing and minimizing
latency of output tuples. Existing models [17, 19], however, assume
that the map, shuffle and reduce phases do not run in parallel. (3) Di-
verse models based on simple statistics: To offer high usability, it
is desirable to support a diverse set of latency metrics, including
per-tuple latency, per-window latency, and different quantiles of
these latency distributions, while using only the basic job statistics
that can be easily provided by the programmer or learned at runtime.
None of the existing models can support these latency metrics.

To address these challenges, we choose to model the mean and
variance of per-tuple and per-window latency because they enable
us to build more complex models for quantiles of latency, while
allowing a clean abstraction of various data processing and system-
level behaviors using appropriate statistical tools.

3.2 (µ, σ2) of Per-Tuple Latency
We begin with the incremental updates workload as defined in

§2.1. For ease of composition, we first focus on one round of
MapReduce computation, i.e., one MR-pair. In incremental updates,
a result is output when a map output tuple is processed by the
update function and triggers the current state to satisfy an output
criterion. Therefore, we define tuple latency as follows:

DEFINITION 3.1 (TUPLE LATENCY). Consider a map output
tuple e. Let e′ be the (unique) map input tuple that generates e. The
latency L̈ of e is the time difference from the distributor receiving e′
to the update function completing the processing of e.

We assume that the latencies of all tuples are independent, identically
distributed (i.i.d.) random variables. Then the observed latency
of each tuple can be viewed as a sample drawn from the same
underlying tuple latency distribution, denoted as f L̈(l). Our goal is
to model E(L̈) and Var(L̈).

Latency components: With a detailed analysis of the architecture
in Fig. 2, we break L̈ into 12 distinct phases as listed in Table 2.
Since these phases run sequentially, we have L̈ = ∑12

i=1 L̈i. We
further assume that L̈i and L̈j are independent (i 6= j). Then

E(L̈) =
12

∑
i=1

E(L̈i), Var(L̈) =
12

∑
i=1

Var(L̈i).



Table 2: Latency breakdown of a map output tuple e (e′ is the map input tuple that generates e).
Random Variable Description Causes of Latency

L̈1 From when e′ reaches the distributor to when e′ is packed into an input mini batch. Batching
L̈2 Queuing delay seen by input batch at queue QD prior to network transfer. Queuing
L̈3 Network latency to transfer the input batch containing e′. Network
L̈4 Queuing delay seen by the input batch at queue QMI prior to map processing. Queuing
L̈5 CPU latency needed by map function to process the input batch and generate e. CPU
L̈6 From when e is generated to when e is packed into a shuffle mini batch. Batching
L̈7 Queuing delay seen by the shuffle batch at queue QMM prior to disk write. Queuing
L̈8 Disk latency to write out the shuffle batch containing e. Disk I/O
L̈9 From when the shuffle batch is added to queue QMO to when the network begins transferring the batch. Queuing+Heartbeat
L̈10 Network latency to transfer the shuffle batch containing e. Network
L̈11 Queuing delay seen by the shuffle batch at queue QRI Queuing
L̈12 CPU latency needed by the update function to process the shuffle batch containing e. CPU

Thus, we can model E(L̈i) and Var(L̈i), the mean and variance of
latency in each phase, separately.

More fundamentally, we classify these latency components into
six types as shown in the last column in Table 2: (1) CPU, (2)
network, (3) disk I/O, (4) queuing, (5) batching tuples, and (6)
heartbeat, i.e, waiting a reducer to ask for new map output. We
develop a unified approach to modeling latency types (1), (2) and
(3), and show the main principles below. Then we briefly introduce
the challenge and our solution to model type (4). It is straightforward
to model (5) and (6). Thus we leave their details to [25].

CPU, network and disk latencies under shared resources: The
latency in this category is determined by the processing time of a
batch by the respective resource, i.e. CPU cycles, network band-
width, or disk bandwidth. E(L̈i) in this category can be generally
modeled as u/v, where u is the total resource required by a batch
on average, and v is the resource available to the batch per second.
(1) Estimate u: We estimate u by m · ut, where m is the average
number of tuples per batch and ut is the average resource required
per tuple. In general, m can be computed from the data rate and the
batch size. Depending on where the batch is in the MR system, the
data rate needs to be revised based on the number of mappers or re-
ducers, and input-to-output ratio, α, of the map function (in number
of tuples) if the batch is downstream of map. The statistics required
to estimate u, i.e., ut and α, can be provided by the programmer
from historical data or computed by the system from recent batches.
(2) Estimate v: Due to the nature of incremental processing, the
resources on a compute node are shared by many threads on the
node (one thread per mapper/reducer). Hence, v is less than the total
resources V available on the node. To address the issue of shared
resources, we seek to estimate v using a lower bound by assuming
that the other threads have higher priority–such a conservative esti-
mate will make our predicted latency an upper bound of the actual
latency, which entails still a valid resource allocation plan through
constrained optimization. Our approach is to first estimate p, the
fraction of the relevant resource required by all other threads on the
same node. Then, we model v = (1− p)V. For Var(L̈i) in these
types, we directly model them using the sample variance, which is
empirically measured from the test runs of the workload.

CPU Latency. The latency components, L̈5 and L̈12, model the
CPU processing latency of the map and update functions over a
batch of tuples, respectively. Since they model the time from the
start of the processing of a batch to when a specific tuple in the batch
is processed, and a tuple is in a uniformly random position in the
batch, E(L̈5) and E(L̈12) can be modeled as half of the processing
time of the batch. Then we model the average processing time l of
a batch using the above approach. Here, u is the number of CPU
cycles used to process a batch on average, which can be obtained by
testing the average CPU cost per tuple and estimating the size of a
batch. C is the number of processing cycles that the CPU has per

unit time. If we know p, the fraction of CPU cycles consumed by all
other threads on the same node, we can model l = u/((1− p) · C).
Further, consider that each CPU has n cores, and a mapper (or
reducer) has a single thread to run map (or update), the fraction
of CPU cycles available to the batch is bounded by 1/n. We then
model the average time to process the batch as:

E(L̈cpu) =
u

2 ·min(1− p, 1/n) · C . (2)

To model p, let cm (cr) be the CPU cycles required by a mapper
(reducer) per unit time, which can be computed from the number of
tuples processed by a mapper (reducer) in unit time. The total CPU
cycles required per unit time on a node is

ctotal = M · cm + R · cr.

When we estimate the running time of a batch in a mapper or reducer,
we exclude the cost of the current thread itself from ctotal , and
model p as (ctotal − cm)/C, or (ctotal − cr)/C. Plugging p into
Equation 2, we obtain the model of E(L̈cpu).

We model network and disk I/O latency in a similar fashion.

Queuing delays have been well studied in the area of queuing the-
ory. The challenge in our problem is to select an accurate model
based on the characteristics that can be easily obtained. After survey-
ing of a wide range of queueing models [33, 20, 21, 4], we decide
to model each queue as a G/G/1 queue because the more restrictive
models, such as M/M/1, make assumptions that are not true in MR
systems, while the more general models, such as queuing network,
further complicate our model and may require statistics hard to ob-
tain. Queuing theory of the G/G/1 model [21, 4] states that the mean
and variance of the queuing delay can be modeled based on the first,
second and third moments of Ta and Ts, where Ta and Ts are the
random variables for the inter-arrival time between two consecutive
batches and the service time of a batch, respectively. We have mod-
eled E(Ts) for CPU-, network- and disk-type consumers, i.e. E(L̈i)
in these types. E(Ta) can be computed from the average number
of batches added to the queue per unit time. Higher moments of Ta
and Ts can be measured empirically.

Finally, the extension to multi-round MapReduce can be achieved
by breaking the latency constraint L of the entire job to a series of
constraints Li of each MR-pair i, which is described more in [25].

3.3 (µ, σ2) of Per-Window Latency
Unlike incremental update workloads, the results in the windowed

workloads are computed only after a reducer has received all the
tuples in a time window. Therefore, the per-tuple latency cannot
reflect the latency of a windowed result. In this section, we define
and model the latency of a windowed result. Recall from §2.1
that a window query defines a series of time windows, (t0 + i · s,
t0 + r + i · s], where r is the window size, s is the slide, and i =



0, 1, . . . For each time window, tuples can be further partitioned by
the key, resulting in a set of partitioned windows, each of which
produces a unique windowed result (if non-empty).

DEFINITION 3.2 (WINDOW LATENCY). The latency L̃ of a
partitioned window, denoted as 〈key,window〉, is the time difference
from the end-time of the window to the point that the finalize
function completes the processing of 〈key,window〉.

We assume that latencies of all partitioned windows are i.i.d
random variables. Then, the observed latency of each partitioned
window can be viewed as a sample from the same window latency
distribution, denoted as f L̃(l), and our goal is to model E(L̃) and
Var(L̃). As we shall show shortly, a new major latency component
of L̃ is the delay of the last tuple of the partitioned window received
by a reducer. The challenge is to choose appropriate tools to model
such delay based on easy-to-obtain statistical measurements.

Latency components. Our key observation of the window pro-
cessing behavior is that once the wall-clock time reaches the end-
time tw of a window, all of its partitioned windows are processed at
the same time in two phases: In Phase 1, the system executes the
update function until all tuples with timestamps earlier than tw
are processed. We denote the completion time of this phase as t1.
Then, in Phase 2, the system executes the finalize function over
all the related non-empty partitioned windows and completes at t2.

Fig. 4 shows the tw, t1 and t2 of an example window in a reducer,
with input from two mappers. Tuple e1 is the last tuple of the window
received by the reducer from mapper 1, e2 is the last tuple from
mapper 2, and they correspond to the two distinct keys in the window.
At time t1, when both e1 and e2 have been processed by update
(), the reducer executes finalize() on the non-empty partitioned
windows corresponding to key1 and key2 sequentially. The observed
latencies of the two partitioned windows are marked as L̃〈key1,w〉
and L̃〈key2,w〉, both of which contain (t1 − tw) and a portion of
(t2 − t1) determined by the completion time of the corresponding
finalize execution. Denote the observed tuple latencies of e1 and
e2 by L̈e1 and L̈e2 . We estimate (t1− tw) with max(L̈e1 , L̈e2 ). Then,
we can approximate: L̃〈key1,w〉 ≈ max(L̈e1 , L̈e2 ) + (t2 − t1)/2,

and L̃〈key2,w〉 ≈ max(L̈e1 , L̈e2 ) + (t2 − t1).
Model. Formally, the quantity (t1 − tw) is uncertain, and we

model it using a random variable U. Let t′ denote the time when
the finalize function completes the execution of a particular
partitioned window (t1 ≤ t′ ≤ t2). Since the quantity (t′ − t1) is
also uncertain, we model it using a random variable F. It is easy to
get L̃ = U + F. Assume that U and F are independent. Then,

E(L̃) = E(U) + E(F), Var(L̃) = Var(U) + Var(F).

We only need to model the mean and variance of U and F separately.
Mean and Variance of U. In the above example, L̃〈key1,w〉 and

L̃〈key2,w〉 are two samples drawn from the distribution of L̃. Based
on the insights from the above example, we model

U = max(L̈e1 , · · · , L̈eS·M ),

where ei is the last tuple of the window received by the reducer
from mapper i. The moments of max(L̈e1 , · · · , L̈eS·M ) are studied
in order statistics [12]. We have assumed that L̈e1 , · · · , L̈eS·M , L̈ are
i.i.d. in §3.2. Since we observe the distribution of L̈ to be well
centered at its mean in most workloads, we assume that L̈ follows a
Gaussian distributionN (µ̈, σ̈2). Based on Fisher-Tippett-Gnedenko

theorem, the following approximation can be applied [12]:

E(max(L̈e1 , · · · , L̈eS·M )) ≈µ̈ + a · σ̈,

Var(max(L̈e1 , · · · , L̈eS·M )) ≈
(
a′ · σ̈

)2 ,

where a and a′ are constants relying only in the total number of
mappers (S ·M). We can see that µ̈= E(L̈) and σ̈2= Var(L̈) are
required, which we have modeled in §3.2.

Mean and Variance of F. Assume that each time window has
k non-empty partitioned windows on average, and sk is the CPU
cycles required to process a partitioned window by finalize(). k
and sk can be estimated by the average measured empirically. Then,
we model (t2 − t1) = (k · sk)/v, where v is the CPU resources
available to a reducer, which has been modeled in §3.2. As shown in
the above example, for a time window, (t′− t1) of the ith partitioned
window processed by finalize() can be modeled with i · (t2 −
t1)/k. Now consider a particular key. Assume F for this key in
different time windows are i.i.d. We assume that, in each time
window, the key has an equal probability to be processed as the 1st,
2nd,· · · ,kth partitioned window. Thus, F has an equal probability,
1/k, to be i · (t2 − t1)/k with i = 1, 2, · · · , k. We have E(F) =
(1 + 1/k)(t2 − t1)/2 and Var(F) = (1− 1/k2)(t2 − t1)

2/12.

3.4 Quantiles of Latency
To simplify notation, we use L to generally refer to L̈ if the

workload is an incremental update, or L̃ if it is a windowed workload.
We have modeled µ and σ2 of L in both types of workloads. Now
we model any quantile of L, based on µ and σ2. Let Q(x) denote
the x-quantile of L, which has the following property:

Pr (L ≤ Q(x)) = x. (3)

When the distribution of L is known or can be well approximated,
we can model Q(x) = F−1(x), where F−1 is the inverse CDF
of L, and F−1 can be expressed using µ and σ2 in many cases.
For example, when the distribution of L can be approximated by a
normal distribution, we can model Q(x) = µ + σ ·Φ−1(x), where
Φ−1(x) is the inverse CDF of the standard normal distribution.
When the distribution of L is not observed, we use an upper bound
of the quantile to model Q(x) in order to provision enough resources
to meet the latency constraint. According to Cantelli’s inequality,

Pr
(

L ≤ µ +

√
x

1− x
· σ
)
≥ x. (4)

According to Eq. 3 and 4, we can have µ +
√

x
1−x · σ as an upper

bound of Q(x). Therefore, we model Q(x) = µ +
√

x
1−x · σ.

Finally, a complete list of job-specific characteristics and hard-
ware specification required in our model is provided in [25].

4. LATENCY-AWARE SCHEDULING
While our model-based approach to resource planning can reduce

latency, it may not always offer optimal performance at time. This
occurs if the job-specific characteristics previously provided to the
model change at runtime, such as the increase in processing cost due
to constrained memory and bursty inputs at runtime. In this section,
we propose runtime scheduling as an optimization, which selects
and prioritizes tuples to be processed by the update function in
each reducer in order to maximize the total utility gained from such
processing. We define the scheduling problem as follows:

Problem Statement. Let us represent each map output tuple e by
(te, t̃e, ce), where te is the time when the distributor receives the
input tuple that generates e, t̃e is the time when the reducer receives



e, and ce is the time cost of processing e by the update function.
The problem is to design an online algorithm for each reducer (i.e.
the algorithm knows nothing about e before t̃e) to decide an order to
process tuples sequentially in order to maximize ∑ U(e, t̂e), where
U is a utility function for tuple e and t̂e is the time when the update
function completes the processing of e.

We first explain how we obtain the time cost ce for running
update() on tuple e. In a reducer, we maintain key-state pairs in an
in-memory hash table, where each arriving tuple triggers the update
of the computation state for its key. When memory is insufficient
to hold all key-state pairs, some of them are staged to a key-value
store on local disk (using SSD for better performance). To minimize
I/O, we use an existing frequency-based paging algorithm [26] to
decide the keys in memory. Then to estimate ce, we partition tuples
into two groups: one group for tuples with keys in memory, and the
other for tuples that are staged to disk. Which group a tuple belongs
to can be determined by checking the in-memory hash table with
low cost. We measure the average per-tuple cost in each group at
runtime, and estimate ce with the average value of the group.

We next present a simple yet popular utility function. Given a
user-defined latency constraint L, U(e, t̂e) = 1 if t̂e ≤ te + L
(deadline of e); U(e, t̂e) = 0, otherwise. That is, if the latency of a
tuple is within L, we gain utility 1. Otherwise, we gain 0.

The problem of maximizing total utility in this context is close to
online scheduling problems in real-time operating systems [22, 10],
where computation tasks are scheduled to maximize utility. The two
major differences in our problem are: (1) a tuple represents a task so
the number of tasks to schedule is much larger, and (2) processing
a tuple is relatively cheap compared to processing a complex task.
Therefore, existing scheduling techniques do not suit our problem
due to the high time and space complexity of running the scheduling
algorithm for a large number of cheap tuples. To overcome these
problems, we propose two scheduling techniques below.

4.1 Batch-level Scheduling
To reduce scheduling complexity, the first method we propose

is batch-level scheduling. It considers a shuffle batch received by
a reducer as the scheduling unit. When a batch is scheduled, the
tuples in the batch are processed sequentially. The total utility of
a batch is the number of tuples in the batch nb. Regarding the
cost of the batch, a key assumption we make is that this cost can
be approximated by nb · ce, where ce is the average cost per tuple.
This assumption is made to simplify scheduling, but is supported
by the following intuition: While the costs of processing individual
tuples may vary, when we average them over a batch, the tuple-level
differences tend to cancel each other and the average cost can be
quite stable, especially if we measure the average cost from recently
processed batches. Therefore, we obtain two properties for each
batch: (1) The value density of a batch, which is the utility divided
by the cost, is 1/ce, a constant across batches. (2) When we process
a portion of tuples in the batch, we gain utilities of those tuples, even
if we do not complete the batch. Given these two properties, the
earliest deadline first (EDF) scheduling is known to be optimal [10].

However, batch-level scheduling processes tuples in a batch re-
gardless of their costs, e.g., spending time to process a tuple with a
high cost in a scheduled batch rather than two tuples with low costs
in an unscheduled batch. Hence, it may not yield optimal utility.

4.2 Tuple-level Cost-aware Scheduling
Next we propose tuple-level cost-aware scheduling, as well as op-

timizations to reduce its scheduling overhead. Tuple-level schedul-
ing does not satisfy the properties of batch-level scheduling. The
value density of a tuple varies due to the varying cost, and we can

Algorithm 1 Sketch of finding a largest schedulable subset.
largestSchedulableSubset(Γ)
1: t← current time, Initialize di , Γi from Γ
2: for i = 1, 2, · · · , g do
3: while total cost of t + Γ1 ∪ Γ2 ∪ · · · ∪ Γi > di do
4: remove the tuple of the largest cost from Γ1 ∪ Γ2 ∪ · · · ∪ Γi
5: return Γ1 ∪ Γ2 ∪ · · · ∪ Γg

gain the utility of a tuple only by fully processing it. Hence, EDF
is not suitable for tuple-level scheduling. The Dover algorithm [22]
achieves the optimal worst-case competitive ratio in this setting of
online scheduling. However, Dover does not consider costs of tuples
effectively, and thus can suffer from low utility in practice (verified
in §5), despite the worst-case guarantee in theory.

We propose a new cost-aware scheduling algorithm. To better
describe the algorithm, we first define a concept: A set of tuples Γ
is schedulable at time t if there exists an order to process all tuples
in Γ sequentially starting at time t and no tuple misses its deadline.
Now we sketch the algorithm, which includes three functions:

I init() is called when a reducer is created.
I release(Γ′) is called when a shuffle batch is received by

the reducer. Here the algorithm maintains a schedulable set
of tuples Γ to process, which is initially empty. When a set of
tuples Γ′ are released to the reducer, the scheduler merges Γ′
into Γ, finds a largest schedulable subset of Γ at current time,
and updates Γ to the schedule subset.

I nextToProcess() returns the next tuple in Γ to process
and is invoked by the reducer whenever the processing of
the previous tuple completes. Since it is known [13] that
processing a schedulable set in increasing order of deadline
guarantees that no tuple misses its deadline, our algorithm
generates a plan to process tuples in Γ in that order. A tuple
is removed from Γ immediately when its processing starts.

Sometimes, before all the tuples in the current schedulable set Γ are
processed, the reducer can receive a new shuffle batch. Then the
algorithm merges the remaining tuples in Γ with the new tuples Γ′,
finds a new largest schedulable subset from these tuples, and hands
it to the reducer for processing through nextToProcess().

The key part of the algorithm is finding a largest schedulable
subset from Γ, which considers both cost and deadline of each tuple.
The high-level intuition is that if we enumerate all subsets of Γ, for
each subset we can check whether it is a schedulable subset based
on the cost and deadline; among those schedulable subsets, we want
to find the subset that has the largest number of tuples. Of course,
enumerating all subsets is expensive to do. We first outline how
we avoid the enumeration in finding a largest schedulable subset,
and then introduce an efficient implementation of the scheduling
algorithm based on a tree structure. At last, we show the per-tuple
scheduling time complexity.

Finding a Largest Schedulable Subset. Let g be the number of
distinct deadlines of the tuples in Γ, and d1, d2, · · · , dg are these
distinct deadlines in increasing order. Partitioning Γ based on the
deadline gives a tuple set Γi for each deadline di (i = 1, · · · , g).
Algorithm 1 shows the sketch: considering each deadline di in
increasing order, we remove the tuple with the highest cost in Γ1 ∪
Γ2 ∪ · · · ∪ Γi repeatedly, until all remaining tuples in Γ1 ∪ · · · ∪ Γi
can be processed before di starting at current time t (Lines 3-4).
After all deadlines are checked, the remaining tuples in Γ1 ∪ · · · ∪
Γg are returned (Line 5). The following proposition states the
correctness of the algorithm, which is proved in [25].

PROPOSITION 4.1. Γ1 ∪ Γ2 ∪ · · · ∪ Γg returned by Algorithm 1
is a largest schedulable subset of Γ at time t.



Table 3: Description and time complexity of basic operations over tree T .
Operation Description Complexity
insert(T , e) Insert a tuple e to tree T O(log m)
delete(T , e) Delete a tuple e from tree T O(log m)
schedulable(T ) Return whether all tuples in T are schedulable now O(1)
min unsched grp(T ) Return min. di s.t. now + total cost of Γ1 ∪ · · · ∪ Γi > di O(log g)
max cost in grps(T , di) Return the tuple with the maximum cost in Γ1 ∪ · · · ∪ Γi O(log g)
next(T ) Return a tuple with the earliest deadline in T O(log g)
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Figure 5: An example of tree T .

A Tree-based Implementation. We now propose an efficient im-
plementation of the tuple-level cost-aware scheduling algorithm
using a tree structure T for organizing tuples in Γ. We implement a
few basic operations over T with corresponding time complexity
shown in Table 3, where m is the maximum number of tuples in Γ.

More specifically, T is a balanced binary search tree of all the
distinct deadlines in Γ. Let Ni denote the tree node associated dead-
line di. Each node Ni maintains: 1) a max heapHi that organizes
all tuples in Γi based on tuple cost; 2) metadata that summarizes all
tuples in the subtree Ti rooted at Ni, including:

I cΣ: total cost of tuples in subtree Ti

I cmax: the maximum cost of a tuple in Ti

I φ: the latest time to start processing all the tuples in Ti such
that the tuples are schedulable

An example of T with 3 distinct deadlines 10, 15 and 20 is shown
in Fig. 5, where the heap of three tuples with deadline 15 is shown
as an example while the other two heaps are omitted.

The tree structure offers two key properties for supporting the
operations efficiently. (1) The question, “are the tuples in the subtree
Ti schedulable at time t,” can be answered by the boolean expression
“t ≤ Ni.φ” in O(1) time. (2) The metadata in each node Ni can be
computed directly from the metadata of its left child NL, right child
NR, and its associated deadline group Γi in O(1) time as follows:

Ni.cΣ = NL.cΣ + NR.cΣ + Γi.cΣ

Ni.cmax =max(NL.cmax, NR.cmax, Γi.cmax)

Ni.φ = min(NL.φ, (di − NL.cΣ − Γi.cΣ), (NR.φ− NL.cΣ − Γi.cΣ))

where Γi.cΣ is the total tuple cost in Γi, and Γi.cmax is the max-
imum tuple cost in Γi. The calculation of Ni.cΣ and Ni.cmax is
straightforward. We explain Ni.φ more below. Let t be a time
when all the tuples in Ti are schedulable. Processing the tuples
in Ti in increasing order of deadline starting at time t is known to
guarantee that no tuple misses its deadline [13]. In such an execu-
tion plan, the processing of tuples in the subtree of NL starts at t,
yielding the constraint t ≤ NL.φ. The time when the processing of
Γi ends, which is also when the processing of the tuples in the sub-
tree of NR starts, is t + NL.cΣ + Γi.cΣ, giving the two constraints
t+ NL.cΣ + Γi.cΣ ≤ di and t+ NL.cΣ + Γi.cΣ ≤ NR.φ. Combing
the three constraints, we have the above equation for Ni.φ. In Fig. 5,
the metadata of N2 can be computed as described above.

Finally, based on the tree operations shown in Table 3, we imple-
ment our tuple-level scheduling algorithm as shown in Algorithm 2,
where Lines 2-3 of release() reimplement Algorithm 1.

Time Complexity. Based on tree T , the operations in Table 3 can
be performed in at most O(log m) time, where m is the maximum
number of tuples in Γ as described above. (Note g ≤ m.) We leave
the implementation and time complexity analysis of the operations
over T to [25]. As shown in Algorithm 2, each of the basic tree
operations is called at most once per tuple. So, the amortized time
per tuple of the scheduling algorithm is O(log m).

4.3 Optimization in Cost-aware Scheduling

Algorithm 2 Implementing the cost-aware tuple-level scheduling
algorithm using a tree structure.
init()

1: T ← empty tree
release(Γ′)
1: for each e ∈ Γ′ do insert(T , e)
2: while schedulable(T ) 6= true do
3: d←min unsched grp(T ), e←max cost in grps(T , d),

delete(T , e), Abandon e
nextToProcess()

1: e← next(T )
2: if e 6= null then delete(T , e), return e

In practice, our tuple-level, cost-aware scheduling may still de-
grade performance due to the O(log m) complexity per tuple. We
next propose several optimizations of our tuple-level scheduling
to further reduce the scheduling cost. (1) We cluster tuples into a
fixed number of groups based on similar costs, and estimate the
cost of a tuple using the average cost of the group. For example,
we described a solution to create a memory group and a disk group
earlier in this section. (2) We use a configurable coarse-grained time
unit for deadlines to lower the scheduling cost by reducing the size
of the tree structure. The size of the time unit controls the trade-off
between accuracy of deadlines and efficiency of scheduling. We
observe empirically that the most utility is gained when the time unit
is about one order of magnitude smaller than the latency constraint.
(3) Instead of operating on each individual tuple, a set of tuples from
a shuffle batch that share the same cost and deadline can be inserted,
deleted, and scheduled for processing together by the scheduler.
Due to a small number of cost levels and coarse-grained deadlines,
a significant number of tuples can be operated together, and thus the
amortized per-tuple scheduling cost is reduced.

We have also extended the runtime scheduling for time windows,
the details of which are shown in our technical report [25].

5. PERFORMANCE EVALUATION
We have implemented all of our proposed techniques in a proto-

type system that extends Incremental Hadoop [26]. In this section,
we evaluate the efficiency of our system with the new modeling and
scheduling techniques for reducing latency. We also compare to
Spark Streaming [39] and Twitter Storm [37], two state-of-the-art
distributed stream systems that are widely used in industry.

Our evaluation uses a cluster of 10 compute nodes, each equipped
with an Intel Xeon X3360 Processor (4 cores), 8GB RAM, and
a 2TB Western Digital RE4 HDD. We use three workloads that
represent varied complexities of the reduce function (Rf): 1) Ses-
sionization over a 236GB WorldCup click stream [26] (Rf: In-
cremental Update+UDF), for which we consider 0.5-sec latency
constraint to simulate stringent performance requirements in click
steam analysis; 2) Word counting over a 13GB Twitter dataset, which
returns words whose counts exceed a threshold (Rf: Incremental
Update+Aggregation), for which we consider 1-sec constraint to
accommodate the computation needs to extract multiple words from
each tweet; 3) Windowed Word Counting over the Twitter dataset us-



����

����

����

����

�����

�����

�����

�� �� �� �� �� ��

�
�
��
��
��
��
��
�
��
��
�
��

��������������������������

�����������

����������

���������������

��������������

����������������

���������������

(a) Modeled vs real average latency with the num-
ber of mappers per node, M, tuned.
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(b) Modeled vs real average latency with the re-
ducer shuffle check period, Bch, tuned.
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(c) Modeled vs real average latency with detailed
breakdown in 12 phases in word counting.
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(d) Modeled vs real 0.99-quantile of latency with
the number of mappers per node, M, tuned.
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(e) Modeled vs real 0.99-quantile of latency with
the reducer shuffle check period, Bch, tuned.
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(f) Valid configurations in M (# mappers) and R
(# reducers) under 1-sec constraint on avg. latency.
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(g) Valid configurations in Bsh (shuffle period) and
Bch (shuffle check period) under 1-sec avg. latency.
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(h) Valid configurations in of M and R under 1-sec
constraint on the 0.99-quantile of latency.

��

��

��

��

��

��

��

��

��� ��� ��� ��� �

�
�
��
��
��
��
��
�
��
��
��

����������������

��������
��
��

��
�����

��������
��
��

��
�������

��������
��
��

��
��������

���������

(i) Comparing three “rule of thumb” configura-
tions and the optimized one (WinWC, L=3 sec).

Figure 6: Accuracy of our latency models and validity of the model-driven configuration optimization.

ing 30-second tumbling windows (Rf: Time Window+Aggregation),
for which we consider 3-sec constraint because it has an additional
cost of processing a large number of partitioned windows and needs
1-2 seconds for computation for every window in a reducer.

We simulate a stream data source at a configurable input rate with
input mini-batch size Bin=5ms. By default, we allocate sufficient
buffer space to mappers and reducers, unless stated otherwise. In the
evaluation of resource planning, runtime scheduling is not applied
so all input data is processed. When evaluating runtime scheduling,
the configuration is optimized using the resource planning method.

5.1 Latency-Aware Configuration
We begin by motivating our resource planning with the evaluation

of “rule of thumb” configurations, and then evaluate the accuracy of
our latency models and their effectiveness for reducing latency.

“Rule of thumb” configurations. We first evaluate our system
under a set of “rule of thumb” configurations. For the numbers of
mappers and reducers, M and R are fixed to the number of CPU
cores per node, which is a widely adopted heuristic in industry; for
the scheduling granularities, Bsh and Bch are tuned from 10 ms to
1 sec. We measure the average latency in all the three workloads,
where the input rate for sessionization is 8 million clicks/sec, and

the input rates for word counting and windowed word counting are
1 million tweets/sec. Table 4 shows the results under the “rule of
thumb” configurations as well as our optimized configuration, where
‘-’ represents that the system suffers from unbounded latency given
the current input rate. It can be seen that (1) latency is sensitive
to the configuration of the key parameters, (2) only a few “rule of
thumb” configurations can satisfy the latency constraints, and (3) the
optimized configuration of each workload can satisfy the constraint.

Model Accuracy. To evaluate accuracy, we compare our modeled
latency with the latency measured in our cluster when tuning the
key system parameters. The default setting is: M = R = 2, and
Bsh = Bch = 0.2 sec. We consider latency metrics ranging from
the average latency to the 0.99 quantile of latency.

Regarding average latency, Fig. 6(a) shows the results when we
tune the number of mappers, M, in three workloads, while Fig. 6(b)
shows those when we tune the batch size, Bch. The modeled average
latency is close to real values in all the workloads. In 31 out of the
34 experiments, the relative error is below 15%. Results from other
tuned parameters show similar results [25]. Note that, increasing
M may help reduce latency by utilizing more CPU cores as shown
in Fig. 6(a). But beyond a certain point, further increasing M does
not help due to the limited number of CPU cores per node. Fig. 6(c)



Table 4: Avg. latency under the “rule of thumb” versus optimized con-
figurations. A bold number means that it meets the latency constraint.

(M, R) (Bsh, Bch) Sessionize WordCount WinWC
L=0.5 sec L=1 sec L=3 sec

(4, 4) (10 ms, 10 ms) - 1.13 sec -
(4, 4) (10 ms, 100 ms) 0.27 sec 0.72 sec 2.01 sec
(4, 4) (10 ms, 1 sec) 0.72 sec 1.07 sec 4.33 sec
(4, 4) (100 ms, 10 ms) - - -
(4, 4) (100 ms, 100 ms) 0.27 sec 0.93 sec -
(4, 4) (100 ms, 1 sec) 0.71 sec 1.02 sec 2.67 sec
(4, 4) (1 sec, 10 ms) 0.86 sec - -
(4, 4) (1 sec, 100 ms) 0.77 sec 2.15 sec 6.82 sec
(4, 4) (1 sec, 1 sec) 1.21 sec - -
(4, 2) (380 ms, 20 ms) 0.38 sec
(2, 2) (300 ms, 400 ms) 0.66 sec
(2, 2) (290 ms, 90 ms) 1.38 sec

shows a detailed latency breakdown as defined in Table 2 under the
default configuration in word counting. In all the phases where the
measured latency is over 5ms, the relative error is below 10%.

For the 0.99-quantile of latency, Fig. 6(d) and Fig. 6(e) show the
results with varied M and Bch, for word counting and windowed
word counting. For readability, we omit the similar results for ses-
sionization in these plots. To model the 0.99-quantile, we consider
the cases that (1) the latency distribution L can be observed at run-
time, for which we empirically observed it to be well approximated
by normal distributions; (2) L is not observable, for which we model
an upper bound of 0.99-quantile using Cantelli’s inequality. In both
workloads, the modeled latency has similar trends as the real values.
When L is not observed, the modeled latency is an overestimate in all
experiments, up to 2.2 times of true latency, due to the use of a data-
oblivious upper bound. When L is observable, which is expected
to be the common case, the model accuracy is much improved: the
relative error is below 20% in 19 out of the 22 experiments.

Model Validity. We next validate the system configuration returned
by our model in word counting. We consider 1-second latency
constraints on average latency and 0.99-quantile of latency. We feed
data at the maximum input rates according to our model, which
are 1.2 million tweets/sec for the average latency, and 0.81 million
tweets/sec for the 0.99-quantile. We evaluate our system under
the model-suggested configuration, as well as other configurations
in the system parameter space. We run three times under each
configuration, and consider a configuration valid if (1) the latency
metric is below 1 sec, and (2) no input tuples are dropped, in all
three runs. Fig. 6(f) and 6(g) show the validity of configurations in
the 2-dimensional space of M and R, and the space of Bsh and Bch,
respectively for average latency. We can see that there are only a few
configurations valid at the input rate suggested by the model, marked
by solid dots. The model-suggested configuration, marked by a
square, is among those few valid configurations. Fig. 6(h) shows
similar results for 0.99-quantile of latency in the 2-dimensional
space of M and R.

Comparison to “rules of thumb”. Fig. 6(i) compares three “rule
of thumb” configurations and the optimized one on average latency
in the windowed word counting workload. When the input rate is
low, the optimized configuration provides a latency similar to the
lowest latency of the “rule of thumb” configurations. As the input
rate increases, the optimized configuration can sustain 5.2% to 57%
higher input rate under the 3-second latency constraint.

5.2 Latency-Aware Scheduling
We next evaluate our runtime scheduling algorithms in cases

when the job characteristics at runtime differ from or not covered by
model-based resource planning. The metric used is the percentage
of gained utility (as defined in §4) over the maximum possible utility,
i.e. the percentage of tuples that satisfy the latency constraint.

We assumed that sufficient memory cannot be allocated to all
processing threads. We now evaluate our scheduling algorithms in
§4, by varying the available memory Y in each reducer. Fig. 7(a)
shows gained utility under the 1-second latency constraint (L), using
the word counting workload and an input of 1.1 million tweets per
second. Here, the minimum memory needed to hold all key-state
pairs in a reducer is 200MB. As Y reduces below 200MB, without
scheduling the number of tuples that satisfy L drops very fast. It is
because now some key-state pairs have to be staged to the key-value
store on disk. Hence, the per-tuple processing cost increases, which
in turn reduces the sustainable input rate to under 1.1 million per
second. As tuples queue up in the system, when many of them arrive
at the reducer, they have already missed the deadline. Processing
them offers no utility and deprives other viable tuples of necessary
resources, causing them to miss the deadline as well.

Batch-level scheduling helps by dropping some batches when they
arrive at the reducer. However, among those retained batches, those
tuples whose key-states are on disk are still processed, postponing
other viable cheap-to-process tuples until after the deadline. The
cost-aware scheduling offers the best performance, without losing
much utility. This is because the tuple-level, cost-aware scheduling
gives higher priority to tuples whose key-states pairs are in memory.
For skewed key distribution, it further keeps most hot keys in mem-
ory and thus most tuples are processed in memory. Fig. 7(b) shows
similar trends for the windowed word counting workload.

We next consider bursty inputs. For word counting with sufficient
memory under 1-second latency constraint, Fig. 7(c) shows the re-
sults for (1) normal load of 1.1M tweets/sec, (2) moderate overload
of 1.5M tweets/sec, and (3) high overload of 2.0M tweets/sec. In
case (2), only a small fraction of tuples can meet the latency require-
ment without scheduling. Scheduling can drop non-viable tuples
and save enough system resources to process the majority of tuples
within latency constraint. In case (3), very few tuples can meet
the latency constraint without scheduling (which is too low to be
displayed in the figure). Scheduling helps increase the system utility,
but many tuples are dropped since they have missed deadlines upon
arrival at the reducer. Here scheduling works as a load-shedding
mechanism, saving significant CPU cycles for non-viable tuples.

Last, we compare our cost-aware scheduling to Dover [22], a
proven optimal algorithm in the worse case. For a detailed study
with controlled per-tuple cost, we run simulation by taking the real
input traces to reducers with constrained memory (50MB), fixing
the cost of in-memory tuples to a value measured in the real system,
but varying the cost of an on-disk tuple. Fig. 7(d) shows the results
from the trace of the sessionization workload where the cost per
in-memory tuple is 2µs. We can see that when the cost per on-
disk tuple is 10µs to 100µs, our cost-aware scheduling outperforms
Dover significantly due to the ability to prioritize in-memory tuples.
In practice, SSDs are widely used for key-value stores, and a random
I/O on a modern SSD takes tens of microseconds.4 Thus, the cost per
on-disk tuple may easily fall in the range between 10µs and 100µs,
where our cost-aware scheduling shows superior performance over
Dover. Similar observations are made in the word counting and
windowed word counting workloads as well.

5.3 Comparison to Other Systems
Finally, we compare our system to stock Hadoop, Incremental

Hadoop [26], Storm [37] and Spark Streaming [39]. In our system,
we take latency as constraint, optimize resource allocation, and show
the maximum input rate achieved under the latency constraint. (We
do not run runtime scheduling in order to process all the data like the
4For example, Samsung 850 PRO SSD can achieve 90K to 100K IOPS,
which translates to 10 to 11µs per random I/O.
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(a) Effect of scheduling under constrained mem-
ory, in the word counting workload.
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(b) Effect of scheduling under constrained mem-
ory, in the windowed word counting workload.
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(c) Effect of scheduling under busty inputs.
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(d) Comparing our tuple-level, cost-aware schedul-
ing to the Dover algorithm.
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(e) Comparison to stock Hadoop, Incremental
Hadoop, Storm and Spark (word counting).
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(f) Comparison to stock Hadoop, Incremental
Hadoop, Storm and Spark (windowed counting).

Figure 7: Results of runtime scheduling, and comparison to Hadoop, Incremental Hadoop, Spark Streaming, and Storm in latency and throughput.

other systems.) In other systems, we have to manually try different
configurations to explore the tradeoff of latency and throughput.

Fig. 7(e) shows the results of latency and throughput achieved
for word counting. We roughly partition the plot into three regions:
(1) Hadoop and Incremental Hadoop read data from the distributed
file system, and hence have a fixed input rate of around 300,000
and 600,000 tweets/sec, respectively. However, both have high
tuple latency of 10’s to 100’s of seconds, hence not suitable for low-
latency tasks. (2) Storm achieves latency of less than 10 seconds
when the input rate is within 100,000 tweets/sec, belonging to the
low input rate, low latency region. (3) Spark Streaming requires
manually setting the batch size (much larger than our mini batches)
and recommends 1-5 seconds. Here it achieves stable latency of
less than 10 seconds when the input rate is at most 9,000 (20,000)
tweets/sec for the 1-sec (5-sec) batch size, also in the low input rate,
low latency region. (4) Our system, configured for 1-second latency
and even with scheduling turned off, can fully process every input
tuple with a mean latency under 1sec for input rates up to 1.2 million
tweets/sec, putting it in the high input rate, low latency region.

The comparison to Spark Streaming and Storm reveals our advan-
tages of using both mini batches and the resource planning method.
Regarding the batch size, Storm performs per-tuple-based schedul-
ing and the high per-tuple scheduling cost prevents Storm from
handling higher data inputs.5 Spark Streaming supports batch size
of several seconds, whereas our system can support batches as small
as tens of milliseconds efficiently. Further resource planning allows
our system to run under optimized configuration including the batch
sizes, the effectiveness of which has been evaluated in §5.1. Further
analysis of Storm and Spark is given in [25].

For windowed word counting, Spark Streaming stays in the low in-
put rate region and experiences higher latency, as shown in Fig. 7(f).
This is because it does not perform incremental processing for a
window. Instead, it collects all the data and performs all computa-

5We also tried a version of Storm, called Trident, which can process streams
in batches, but exhibits worse performance due to various added overheads.

tion after the window ends, hence delivering windowed results with
high latency. Further, Spark Streaming lacks stable support of small
batches: here 1-sec batches give worse latency than 5-sec batches.

Summary. Our system can reduce the average latency from 10’s of
seconds in Incremental Hadoop to sub-second, with 2x-5x increase
in throughput. It is able to outperform Storm by 7x-28x in latency
and 8-13x in throughput, and outperform Spark Streaming by 4x-27x
in latency and 10x-56x in throughput.

6. RELATED WORK
Stream database systems (e.g., [1, 7, 9]) laid a foundation for
stream processing including window semantics, optimized imple-
mentations, and out-of-order data processing. Our work leverages
state-of-the-art techniques for windowed operations and out of order
processing in the new context of the MapReduce cluster computing.
Techniques for QoS including scheduling and load shedding have
been studied in Aurora/Borealis [1, 7, 36]. However, scheduling
in Aurora [7] considers latency only based on CPU costs and se-
lectivity of operators in the single-machine environment, whereas
our resource planning considers many more factors in a distributed
system and uses constrained optimization to support both latency
and throughput. Load shedding in Borealis [36] allocates resources
in a distributed environment by solving a linear optimization prob-
lem, but only maximizes throughput without considering latency
and only supports pipeline parallelism without data parallelism.

Distributed stream systems such as System S [41], S4 [32] and
Storm [37] adopt a workflow-based programming model and leave
many systems issues such as memory management and I/O opera-
tions to user code. In contrast, MapReduce systems abstract away
these issues in a simple user programming model and automati-
cally handle the memory and I/O issues in the system. CBP [27]
supports stateful bulk processing for incremental analytics, but not
low-latency streaming analytics (e.g., with running time of 10’s to
100’s of minutes). Photon [3] is designed particularly for joining
data streams in real-time. Naiad [31] is a general parallel platform



for batch, streaming and iterative workloads, but it adopts per-tuple
data transmission similar to Storm with high cost, and does not
handle latency constraints. Other systems such as MillWheel [2],
Sonora [38], Spark Streaming [39], StreamMapReduce [6], Stream-
Cloud [16], SEEP [8] and TimeStream [35] address a different set
of issues such as fault tolerance, load balancing and elasticity. For
resource planning, they do not take latency or job characteristics
as input, but require manually setting the parameters by the user.
We anticipate that our modeling and scheduling techniques, once
adapted, can also help reduce latency in these systems.

Cost Models. Recent work presented models to predict total run-
ning time of a MapReduce job over stored data based on analysis
of CPU, I/O and network costs or based on training over profiles
of previous jobs [14, 17, 18, 19, 26]. These models differ from
ours as we aim to capture latency, which relates to a different set
of system parameters and concerns, such as the input rate, queue
sizes, and latency in each step. ParaTimer [30] is a progress indictor
for MapReduce jobs, which identifies map and reduce tasks on a
query’s critical path. It serves a different purpose from our goal of
modeling latency. Zeitler et al. [40] proposed a model of total CPU
cost for distributed continuous queries, a different goal from ours.

Scheduling. Scheduling techniques to maximize utility have been
used in real-time operating systems [13, 22, 10]. However, they are
not suitable to our problem due to high time and space complexity.
Sparrow [34] is a scheduling system minimizing response time of
tasks in a parallel environment by load balancing, different from our
focus on per-tuple latency experienced in a sequence of operators.

7. CONCLUSIONS AND FUTURE WORK
Towards building a unified processing framework for big and fast

data, we identified the causes of high latency in today’s Hadoop sys-
tems. To support low-latency, we proposed an extended architecture
with mini-batches as granularity for computation and shuffling, and
augmented it with new modeling and scheduling techniques to meet
user-specified latency requirements while maximizing throughput.
Results using real-world workloads show that our techniques, all
implemented in a Hadoop-based prototype, can reduce average la-
tency from 10’s of seconds in Incremental Hadoop to sub-second,
with a 2x-5x increase in throughput. Our scheduling techniques
further increase the number of tuples that actually meet the latency
constraint. Our system is able to outperform two state-of-the-art
distributed stream systems, Storm and Sparking Streaming, by 1-2
orders of magnitude when considering both latency and throughput.
In future work, we plan to evaluate our system under a wider range
of real-world workloads, and extend it to gracefully handle a mix of
query workloads with widely varying latency constraints.
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