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ABSTRACT
Big data analytics systems today still lack the ability to

take user performance goals and budgetary constraints, col-
lectively referred to as “objectives”, and automatically con-
figure an analytic job to achieve the objectives. This pa-
per presents UDAO, a unified data analytics optimizer that
can automatically determine the parameters of the runtime
system, collectively called a job configuration, for general
dataflow programs based on user objectives. UDAO embod-
ies key techniques including in-situ modeling, which learns
a model for each user objective in the same computing envi-
ronment as the job is run, and multi-objective optimization,
which computes a Pareto optimal set of job configurations to
reveal tradeoffs between different objectives. Using bench-
marks developed based on industry needs, our demonstra-
tion will allow the user to explore (1) learned models to gain
insights into how various parameters affect user objectives;
(2) Pareto frontiers to understand interesting tradeoffs be-
tween different objectives and how a configuration recom-
mended by the optimizer explores these tradeoffs; (3) end-
to-end benefits that UDAO can provide over default config-
urations or those manually tuned by engineers.
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1. INTRODUCTION
Today’s big data analytics systems remain best effort in

nature: despite wide adoption, most of them lack the abil-
ity to take user performance goals or budgetary constraints,
collectively referred to as “objectives”, into account in order
to automatically configure an analytic job to achieve those
objectives. Consider a user that aims to run a mix of an-
alytics tasks on EC2 instances of AWS. Common practice
today involves the following manual effort from the user:
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First, the user needs to choose from over 60 Amazon EC2
instance types that differ in the number of cores and mem-
ory available. For example, the number of cores determines
the degree of parallelism that can be achieved in analytics
and strongly affect the performance and cloud costs. The
appropriate choice depends on the user workloads and ob-
jectives, and is often an educated guess by the user. Once
the cloud instance type is chosen, the user may still need
to tune the parameters of the runtime system, collectively
referred to as a “job configuration”, for each analytical task
in order to achieve good performance. In case of the popu-
lar Spark platform, these runtime parameters include paral-
lelism (for reduce-style transformations), Rdd compression
(boolean), Memory per executor, Memory fraction (of heap
space), Batch interval (the size of each minibatch) and Block
interval (the size of data handled by a map task) in the
streaming setting, to name a few.
Choosing the right cluster and job configuration to meet

user objectives is a difficult task. A recent study [6] shows
that even for HiveQL queries, expert engineers were often
unable to make the correct choice between two cluster op-
tions, and their estimated runtime ranged from 20x under-
estimation to 5x over-estimation. Searching for the config-
uration that best suits the user objectives is largely a trial-
and-error process today, including manual tuning of a large
number of runtime parameters as well as changes to cloud
instance types with more cores or memory. The above dis-
cussion indicates that cloud computing for data analytics
today largely guarantees availability, but lacks the ability to
take user objectives as service level agreements (SLAs).
In this paper, we present the design and demonstration

of a next-generation Unified Data Analytics Optimizer
(UDAO) that takes as input a user analytical task in the
form of a dataflow program (which subsumes SQL queries)
and a set of user objectives, and produces as output a cluster
configuration with a suitable number of cores as well as other
parameters of the runtime system that best meet the user
objectives. Our UDAO system has several distinct features:
1. Unified analytics: Our optimizer supports broad ana-

lytics including SQL queries, machine learning tasks, etc.,
that represent the general paradigm of dataflow programs.
This design decision is informed by our discussions with
two cloud service providers, detailed in the next section,
showing that analytics today makes intensive use of user-
defined functions for ETL and machine learning tasks. Our
approach to optimization does not distinguish between dif-
ferent types of analytics but instead relies solely on obser-
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vations of runtime behaviors of such analytical tasks and
represents a “blackbox" approach to unified analytics.
2. In-situ modeling of each user objective. To enable op-

timization, the UDAO system builds a performance model
for each objective of a user task. Performance modeling
in this new environment involves major challenges such as
diverse user objectives (e.g., throughput, latency, resource
utilization), heterogenous hardware, and complex, dynamic
system behaviors. Our system takes a new approach that
learns a model for each user objective in the same computing
environment where the user task is being executed, which
we refer to as in-situ modeling.
3. Multi-objective optimization. A key feature of UDAO

is multi-objective optimization (MOO), which takes a set
of user objectives and constructs a Pareto (optimal) set of
job configurations, where a job configuration belongs to the
Pareto set if it is not dominated by any other job configu-
ration in all objectives. The visualization of this set, called
a Pareto frontier, illustrates the tradeoffs between different
objectives, and allows the system to automatically recom-
mend a job configuration that explores the tradeoffs in a
manner that best suits user needs.
In this demonstration, we will illustrate UDAO as fol-

lows: (1) Benchmarks: we have designed multiple bench-
marks based on the needs specified by two cloud service
providers and collected large traces to enable the demon-
stration. (2) Learned models: by visualizing the model
learned for each user objective, UDAO allows the user to
gain insights into how various parameters, including their
complex interactions, affect user objectives. (3) Pareto
frontiers: by visualizing a Pareto frontier, UDAO allows
the user to understand interesting tradeoffs between objec-
tives and how a configuration recommended by the optimizer
explores these tradeoffs. (4) End-to-end benefits: com-
bining modeling and MOO, we demonstrate the net benefits
UDAO offers compared to default configurations and those
manually tuned by engineers. (5) Comparative results:
our demo also includes comparisons to alternative modeling
methods such as Ottertune [8] and popular MOO methods
such as [1, 4, 5] to illustrate their strengths and limitations.

2. SYSTEM OVERVIEW
In this section, we present the constraints and needs from

real-world use cases and our corresponding system design.

2.1 Requirements of Real-World Use Cases
We model an analytic task as a dataflow program as com-

monly used in systems such as Spark and Flink. For execu-
tion, the system transforms the program to a cluster execu-
tion plan with runtime parameters instantiated. As stated
before, these parameters control the degree of parallelism,
granularity of scheduling, memory allocated to executors
and data buffers, compression options, shuffling strategies,
etc. When the plan is executed, we call it a job and refer to
the runtime parameters collectively as the job configuration.
We held extensive discussions with two cloud service provi-

ders (anonymized for confidentiality reasons) and summarize
their constraints and real-world needs as follows.
1. Mixed workloads. Besides SQL queries, analytics pipe-

lines today often run large ETL jobs for data cleaning, trans-
formation, and integration, as well as machine learning tasks
for deep analysis. Given such a mix, a blackbox approach
that is able to handle a variety of workloads without mak-
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Figure 1: Overview of a dataflow optimizer.

ing specific assumptions (e.g., availability of query plans) is
a good starting point.
2. Repeated workloads. An optimizer is helpful when ana-

lytical tasks are long running and repeated frequently, e.g.,
daily and hourly batch jobs. Sometimes stream jobs can be
repeated as well: under the lambda architecture, the batch
layer runs to provide perfectly accurate analytical results,
while the speed layer offers fast approximate analysis over
live streams; the results of these two layers are combined to
serve a model. As old data is rolled into the batch job, the
streaming job is periodically restarted over new data.
3. Similarities across workloads. Similarities across work-

loads arise for several reasons: (a) Early processing tasks
in analytics pipelines are often similar; they can be shared
by tens of downstream tasks. (b) Most workloads are pa-
rameterized, i.e., generated from a set of templates with
the parameters set to appropriate values by each user. Such
similarities offer an opportunity for the optimizer to improve
prediction accuracy, even under a blackbox approach.
4. Private cloud. Our discussions with cloud service

providers have led us to focus on private clouds, where the
service provider offers support to a major customer or its
internal analytics groups—optimization in such settings is
more tractable than in the public cloud and is also more im-
portant for large customers. In this setting, we assume that
it is possible to gain access to a subset of user workloads
(e.g., 10%-20%) in order to tune overall performance. The
implications on the design of the optimizer include: (a) Ex-
ploration over the configuration space is possible via of-
fline sampling by the optimizer over a subset of workloads.
(b) When production workloads are running online, sam-
pling over different configurations is not possible; instead,
the goal of the optimizer is to recommend new configura-
tions to achieve desired performance as quickly as possible.

2.2 System Design
The above requirements lead to our system design as shown

in Figure 1. The top part of the figure depicts the dataflow
optimizer, while the bottom part depicts the runtime engine.
Inside the optimizer, the left panel shows the online path

when a user job is submitted. The user provides her dataflow,
objectives (F1, . . . , Fk), and optionally value constraints on
these objectives, [FL

i , F
U
i ] (see the edge labeled as step 1).

The job initially runs using a default or user-specified con-
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figuration, θ1 (i.e., a trivial choice for steps 2 and 3). For
the new job, the optimizer proceeds in three major phases.
A. Trace collection: This phase collects traces, col-

lectively called observations, during job execution (step 4),
which include: (i) user objectives such as throughput, laten-
cy, resource utilization, and computing cost; (ii) application-
level metrics, e.g., from Spark in our prototype, collecting
the records read and written, bytes read and written, bytes
spilled to disk, fetch wait time, etc.; (iii) OS-level metrics
such as CPU, IO, and network usage. This trace data is
written to a database as being collected (step 5).
B. In-situ modeling: If the job is seen the first time,

trace collection will be run for a period of time (e.g., 10
minutes). Then in-situ modeling is activated (step 6). It
takes as input (i) the traces for the new job, and (ii) a global
deep learning model, Λ = (Λ1,Λ2), trained offline using all
past jobs (to be detailed shortly). In-situ modeling performs
two tasks: (1) It transforms the new traces into a numerical
vector and runs it through the encoding model Λ1 to derive
a formal description (encoding) of the current job, denoted
by W . (2) It then feeds W to global regression models Λ2

to build job-specific predictive models, (Ψ1, . . . ,Ψk), one for
each user objective. It is important to note that no training
is incurred for the new job on the online path.
C. Optimization: Given the job-specific predictive mod-

els, the multi-objective optimization (MOO) module searches
through the space of configurations and computes a set of
Pareto-optimal configurations for the job (step 7). The sys-
tem then returns a visualized surface of these configurations,
called the Pareto frontier, to the user (step 9). A configura-
tion that best explores the tradeoffs among different objec-
tives is then chosen (step 2 repeated), and this new config-
uration, θ2, is recommended for future execution of the job
(step 3 repeated).
When the user job runs the next time, the system repeats

steps 4, 5, 6, and 7. If the global model was retrained be-
tween the last and current execution, in-situ modeling runs
again; otherwise, the previous predictive models are still
valid. For optimization, if the job-specific predictive models
are updated, the Pareto-frontier will be recomputed; oth-
erwise, the previous one will be reused. If the user wants
to adjust her preference on the objectives (e.g., from favor-
ing low latency to high throughput), she can indicate so by
setting the bounds, [FL

i , F
U
i ], on her objectives differently.

Given the Pareto frontier, the MOO module can quickly re-
turn a new configuration, θ3, that suits the new objectives.
The right panel of the optimizer shows the offline pro-

cessing with two major tasks:
D. Offline sampling: The optimizer uses a small subset

of user workloads for offline sampling over the configuration
space, e.g., exploring different configurations and observ-
ing the related objectives to enable more accurate models
(steps 9 and 10). Our work uses a mix of Bayesian Opti-
mization, a sequential optimization technique for exploring
an unknown space, and heuristics based sampling, leverag-
ing domain knowledge of configurations (e.g., from Spark
best practices) to overcome the cold start problem.
E. Periodic retraining: The optimizer periodically re-

trains by taking observations from all past online jobs and
jobs sampled offline, returning an updated global model
Λt = (Λt1,Λt2) (steps 11 and 12). The frequency of re-
training can be set to daily or when the predictive models
of some online jobs are observed to be not accurate enough.

2.3 Key Techniques
We next discuss the key techniques employed in UDAO.
Modeling. For each dataflow program, we model each

user objective as a function over all tunable parameters of
the runtime system. Learning such a model for each user
objective and a specific cluster environment has the poten-
tial to adapt to different objectives, hardware, and software
characteristics, while static models [2, 3, 6] often fail to
adapt due to hard-coded function shapes and constants.
However, since dataflow programs can use arbitrary meth-

ods and be written in any program language, it is difficult
for the optimizer to understand the nature of the compu-
tation, raising a major challenge in building accurate mod-
els. Ottertune [8], a state-of-the-art modeling technique for
black-box programs, employs workload mapping: it tries to
map a new job to the “nearest" past job based on the similar-
ity of runtime observations for common configurations, and
then uses the information about that past job to predict the
performance of the new job. This approach, however, is not
always effective in our problem setting because the majority
of user jobs are run with a small number of configurations
(e.g., 4-5) out of numerous possible configurations. Hence,
a new job and its nearest past job may not have many (or
any) configurations in common, rendering the mapping not
effective. Our work explores the combination of two ideas.
1) Representation learning: Deep learning (DL) is known

for its power of representation learning, which allows us to
perform layers of non-linear transformation of runtime ob-
servations to extract a representation W that (i) character-
izes the fundamental aspects of the work being done, called
a workload encoding; (ii) remains invariant when different
configurations are used for the workload. Given W , we can
then build a regression model that predicts a user objective
based on W and a specific configuration used. In our work,
we devise customized neural networks to learn both the en-
coding and regression models, denoted as Λ = (Λ1,Λ2). Un-
like Ottertune which trains a separate model for each job,
our models are trained using all past jobs, and can exploit
commonalities that exist across multiple workloads. Such
models can be quickly customized for each new job to ex-
tract its own encoding and predictive models.
2)Workload mapping: As an optimization, when a new job

arrives, we do not trigger expensive training using the traces
of the new job. Instead, we perform workload mapping from
the new job to a past one using their encodings, and leverage
the trained regression model for the old workload to predict
performance for the new one. Since the encodings are in-
variant to the configurations used, our mapping does not
require the new and old workloads to have many configura-
tions in common. Later as the traces from the new job are
included in periodic retraining, the encoding model becomes
more accurate and improves future workload mapping.
Multiple-objective optimization. Our multi-objective

optimization (MOO) problem is different from that for SQL
queries [7] in that MOO for SQL examines a finite set of
query plans using a combinatorial approach, while our sys-
tem needs to search through a potentially infinite set of val-
ues of runtime parameters, which are often numerical, and
hence uses a numeric approach.
In addition, we pose two requirements on the computation

of the Pareto-frontier to ensure effectiveness and efficiency:
1) Progressive expansion of the Pareto frontier (akin to the
loading of a Google earth image) so that the optimizer offers
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(a) BatchInterval vs. InputRate
(job 26)

(b) BatchInterval vs. InputRate
(job 44)

Figure 2: Learned models for latency

(a) PF of UDAO: latency,
throughput, cost

(b) End-to-end benefits of
UDAO

Figure 3: Pareto frontiers (PF) and net benefits

correct information soon after a job is submitted, and refines
the frontier with more details as more computation time is
invested; 2) Incremental computation so that a Pareto fron-
tier with more details reuses the computation incurred pre-
viously. Popular MOO techniques in the literature fail to
meet the new requirements in our problem setting: in par-
ticular, evolutionary algorithms [1] violate requirement 1,
while Weighted Sum [4] and Normal Constraints [5] violate
requirement 2. Our system uses a customized method to
transform a MOO problem to a set of constrained optimiza-
tion problems to find an increasingly larger set of Pareto-
optimal solutions, meeting both requirements above.

3. DEMONSTRATION
Our demo showcases UDAO developed on top of Apache

Spark, such that the user can understand i) the difficulty of
manual parameter tuning, and the effect of these parameters
on user objectives as indicated by the automatically learned
models; ii) the tradeoffs between user objectives, and how a
system recommended configuration explores these tradeoffs;
iii) end-to-end benefits that UDAO can provide over man-
ual performance tuning; iv) comparative analysis between
our techniques and alternative techniques. Specifically, our
demonstration has the following modules:
1. Benchmarks. We developed two benchmarks based

on the needs specified by two cloud service providers. (a) Big-
Bench (TPCx-BB) for batch analytics includes 30 work-
loads, which can be divided into 14 SQL tasks, 11 SQL
with UDFs and 5 ML workloads. (b) We also designed
a new stream benchmark by extending previous workloads
on click stream analysis [3] to include stream SQL queries,
SQL+UDF queries, and machine learning tasks. As sug-
gested by our industry collaborators, these workloads have
been parameterized in different ways to control the similar-
ities among workloads. We collected traces from running
these benchmarks for weeks to enable the demonstration.
2. Learned models. In this module, our system pro-

vides the original program, the execution plan, and all statis-
tics available on the Spark UI for the user to consider. By
visualizing the model learned for the same objective, UDAO
allows the user to gain insights into the important parame-
ters, including complex interactions between them, and un-
derstand how they affect latency. For example, Fig. 2(a)
shows the effect of BatchInterval in relation to InputRate,
where a smaller value of BatchInterval is always preferred,
while Fig. 2(b) shows that BatchInterval can exhibit oppo-
site trends: a larger value reduces latency when the input
rate is low, but increases latency when the input rate is high.
Besides visualizing the model, we also show the configu-

ration chosen by UDAO and minimum latency achieved.

3. Pareto frontiers. The next module addresses multi-
ple objectives such as latency, throughput, and computing
cost. By visualizing a Pareto frontier, UDAO allows the user
to visually understand tradeoffs between the objectives. As
Fig. 3(a) shows, in some regions by comprising a little on
latency, the system can achieve much higher throughput,
hence worth considering by the user. We also show how a
configuration recommended by the optimizer, using a set of
strategies developed internally, explores these tradeoffs.
4. End-to-end benefits. By combining modeling and

MOO, we show the net benefits that UDAO provides for
user objectives compared to default configurations or those
manually tuned by engineers. For example, Fig. 3(b) shows
latency and throughput of 15 jobs under the configurations
manually chosen by our engineer (the blue dots) and those
chosen by our optimizer (orange dots). The performance of
the new configuration dominates the manual configuration
in 9 jobs, while it explores tradeoffs in the rest 5 jobs.
5. Comparative results. In modules 2-4, our demo

also includes a comparison to alternative modeling methods
such as Ottertune [8] and popular MOO methods such as
Weighted Sum [4], Normal Constraints [5], and evolutionary
algorithms [1], to illustrate their strengths and limitations.
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