ABSTRACT

RDF data is complex; exploring it is hard, and can be done through many different metaphors. We have developed and propose to demonstrate Spade, a tool helping users discover meaningful content of an RDF graph by showing them the results of aggregation (OLAP-style) queries automatically identified from the data. Spade chooses aggregates that are visually interesting, a property formally based on statistic properties of the aggregation query results.

While well understood for relational data, such exploration raises multiple challenges for RDF: facts, dimensions and measures have to be identified (as opposed to known beforehand); as there are more candidate aggregates, assessing their interestingness can be very costly; finally, ontologies bring novel specific challenges but also novel opportunities, enabling ontology-driven exploration from an aggregate initially proposed by the system.

Spade is a generic, extensible framework, which we instantiated with: (i) novel methods for enumerating candidate measures and dimensions in the vast space of possibilities provided by an RDF graph; (ii) a set of aggregate interestingness functions; (iii) ontology-based interactive exploration; and (iv) efficient early-stop techniques for estimating the interestingness of an aggregate query.

The demonstration will comprise interactive scenarios on a variety of large, interesting RDF graphs.

1. INTRODUCTION

RDF graphs are increasingly being published and shared, as part of the Linked Open Data (LOD) movement. However, given their size, heterogeneity and complexity, their information content is hard to grasp, in particular for non-expert users. Figure 1 shows a portion of an RDF graph about food, recipes, ingredients, etc. from the Foodista dataset. It illustrates the heterogeneity frequently encountered in RDF. Here, n4 and n9 are labeled with the Recipe type; n2 and n11 are Food; n3 lacks a type, but its outgoing properties suggest that it is a Recipe; n8’s outgoing properties hint that it is probably Food. This example also shows that logically similar resources do not always have the same structure, e.g., n4, n5 and n9 are all Recipe, have a title and a country, but only n5 has a description. Similarly, n5 has two categories while n4 has only one and n9 none at all.

This small portion of data shows RDF’s flexibility and heterogeneity. Its flip side is the difficulty, especially for casual users, in approaching the data, that is, viewing and understanding its content and discovering, at a glance, useful insights. This fundamental issue indicates a need for automatic (or very low-effort) tools to guide users in exploring RDF graphs for insight discovery.

The automatic extraction of interesting aggregates is one among the data exploration techniques that have been studied recently. All of these systems assume a fixed relational data warehouse schema, which is not available for RDF graphs. Some recent works consider graphs, and use entropy to identify interesting portions of the graph. However, they assume that the graph has a very regular and simple structure, and that a cube over the data has been computed. In contrast, we seek to work with any graphs, and aim to compute only interesting aggregates. Dugger was an earlier version of our work that was designed to identify only mono-dimensional aggregates and evaluate them in a naive time-consuming fashion. In sampling was used to speed up the evaluation process but the aggregate selection accuracy is sensitive to the chosen sampling strategies. As we show below, our work explores rich multi-dimensional aggregates from RDF graphs, which drastically expands the computation space and calls for novel techniques.

Spade outcome We have developed Spade, a system that provides users with top-k most interesting aggregate queries identified automatically in a given RDF graph. For instance, from the Foodista dataset, Spade recommends “the number of recipes by category” (Figure 2(a)) and “the number of recipes by ingredient and category” (Figure 2(b)). Figure 2(b) is interesting as there is a peak of sugar usage in fruits and desserts (the two yellow cells), leading to a huge variance among ingredients/categories. Users may further refine a given aggregate, e.g., selecting the dessert category allows zooming on its semantic subclass thatDesserts etc.

Inspired by classical data warehousing, we define a (potentially multi-dimensional) aggregate centered around a set of facts, which are nodes of the RDF graph, e.g., recipes in the above example. An aggregate comprises: (i) a set of dimensions along which the facts are studied, e.g., category and country; (ii) a set of measures, e.g., the time to cook, the ingredients, and (iii) a set of aggregate functions which define how the measures should be aggregated, e.g., the average cooking time, the number of ingredients, etc. Given an integer k, identifying automatically the k most interesting aggregates in a given RDF graph raises many challenges. We outline them below, and highlight Spade’s contributions.

1. Identifying candidate facts sets In the absence of a relational data warehouse schema, it is not clear where “the facts” are in an RDF graph. Spade uses a variety of methods to identify candidate fact sets (CFS, in short):
Figure 1: Sample data inspired from the Foodista dataset.

Figure 2: Aggregates from Foodista.

Spade also identifies CFS automatically based on their incoming and outgoing properties, with the help of an RDF graph summary. This new feature is crucial as in some graphs, e.g., Foodista, many nodes of interest have no type.

2. Identifying candidate dimensions and measures

The dimensions and measures, according to which a given CFS is analyzed, need to be automatically found. Besides the properties or derived properties (e.g., "the number of ingredients in each recipe") of CFS nodes, Spade is also capable of using keywords extracted from text nodes as dimensions, e.g., "group recipes by the keywords in their titles" ("Ricotta" in the title of n1), or paths as dimensions or measures, e.g., "group recipes by the names of their ingredients" ("Beef" is the name of n11, an ingredient for n9). In addition, multi-dimensional aggregates that combine the variety of dimensions significantly increase the richness, as well as the computation complexity, of such RDF exploration.

3. Interestingness functions

There is no standard view of what makes an aggregate “interesting”; intuitively, it corresponds to a trend, peak, outlier, etc. in the aggregation query result. To capture this, we rely on statistic moments (variance, skew or kurtosis) but we provide an open architecture to accommodate more measures as user needs arise.

4. Efficient aggregate evaluation

The above extensions lead to an explosion in the number of aggregates to be evaluated in order to find the most interesting ones. To address this, Spade employs key techniques including new extensions of lattice-based computation for multi-dimensional aggregates, and new extensions of online aggregation to stop the computation of an aggregate as soon as it is deemed not in the top-k, which distinguishes from our prior work with formal guarantees of the correctness of pruning.

5. Handling and exploiting semantics

An RDF graph may feature an ontology, stating relationships that may exist between types and properties, e.g., any FrenchRecipe is a Recipe, or a recipe with a correction is a ModifiedRecipe. An ontology may lead to implicit data; for instance, if r1 is of type FrenchRecipe in an RDF graph, r1 is also of type Recipe, even though this is not explicitly part of the graph. Spade handles implicit data when exploring CFS, dimensions and measures by relying on an ontology-aware RDF platform. Further, based on the ontology, users may navigate from an interesting aggregate to another through generalization, e.g., changing the CFS from FrenchRecipes to Recipes, or on the contrary through specialization, e.g., going from FrenchRecipes to BourgogneRecipes to see how the aggregate results (and thus, its interestingness) vary.

2. Spade DESIGN AND ARCHITECTURE

We explain the concepts and operations underlying Spade (Figure 3), before outlining our algorithms.

2.1 Spade Concepts

A candidate fact set (CFS) is a set of RDF resources on which we may build an interesting aggregate; we call candidate fact (CF) a member of this set.

We call attribute (A) a property attached to CFS nodes, which can be used as a dimension (to group facts by the value of this property) or as a measure (for each fact group, the values of this property will be aggregated). An attribute is either an RDF property (denoted P) that some CFS nodes have, or a derived property (denoted DP). As aggregation function (Agg), we rely on the common set of sum, average, count, max and min.

A multi-dimensional aggregate (MDA) is determined by a CFS, one or several dimensions (which are attributes), a measure (also an attribute), and an aggregation function. The MDA’s semantics accounts for: (i) dimensions and/or measures which may be missing for some CFS; such CFS do not contribute to the aggregate; (ii) each attribute that is defined multiple times for some CFS; it contributes to several aggregate groups (if used as a dimension) or contributes with several values (if used as a measure).

An interestingness function (IF) takes as input a set of (di, Agg) pairs; each di is a vector of dimension values (e.g., vegan Italian recipes) and Agg is the result of the aggregation function on the corresponding group, e.g., the number of such recipes. An IF returns a positive real number, reflecting some measure of interestingness of the aggregate.

2.2 Interesting MDA Selection Framework

Spade is designed as a framework (see Figure 3) where operations are chained to identify the most interesting MDAs. We implemented it as a Java-based tool (circa 40 classes and 10K lines of code) running on top of OntoSQL a Java and Postgres-based platform we developed for efficient RDF storage and query answering. Spade stores RDF graphs in OntoSQL; it builds an RDFQuotient summary; it also finds CFS, enumerates and analyzes their properties, creates and stores derived properties directly in Postgres.

https://ontosql.inria.fr
For exploration, the first operation, after an RDF graph has been loaded, is Candidate Fact Selection. Spade considers the following CFS: (i) for each type T in the graph, the set of resources of type T; (ii) for a (user-specified) set of properties, all the resources having those outgoing properties; (iii) each set of resources identified as equivalent by the RDFQuotient summary. In the third case, the summary divides RDF graph nodes in equivalence classes based on flexible criteria on their incoming/outgoing properties and/or their types (when present). Nodes in the same class tend to have many common properties, making them interesting candidates to be analyzed together as a CFS. Other CFS selection criteria, e.g., based on another summary or the results of a given query, can be easily plugged in here.

Next, for each CF, Direct Properties and Derived Properties are Enumerated to obtain all possible CF attributes. The (possibly missing, or multiple) values of these attributes are computed for each CF and stored in the RDF database (RDF-DB in Figure 3). A null is used to record absent values. Spade derives the following properties: (i) counts, e.g., how many ingredients a recipe has; (ii) keywords, e.g., if a recipe is called “Apple and Cinnamon Rolls”, we consider the keywords “Apple”, “Cinnamon” and “Rolls”; (iii) types, sub-types and super-types, as values of the property kw-title for the same resource; (iv) the language obtained by analyzing text attributes; (v) paths, e.g., a recipe with an ingredient whose name is “Beef”, has the attribute ingredient-name with the value “Beef”; (vi) types, sub-types and super-types; when CFS are typed, we pre-compute (from the ontology which may come shared data, etc.) the attributes can be; (vii) discretized values, e.g., transforming the minutes needed to cook a recipe into buckets: [0-10], [10-20], [20-100], [>100] etc.

Then we have Attribute Analysis which computes a set of statistics: number of CFs having an attribute, type (e.g., String, Integer, Date) of the attribute values, their number of distinct values, lowest and highest value, etc. Spade explores these statistics in various ways in different steps, e.g., to guide the choice of dimensions, measures and aggregation functions, and to improve the aggregate evaluation.

Next, we move to Aggregate Enumeration to find combinations of a set of dimensions, a measure, and an aggregation function. To avoid meaningless aggregates, e.g., “the number of ingredients for each recipe ingredient”, we apply rule-based pruning to restrict the measure to differ from the multidimensional data structure to keep track of several dimensions, e.g. the number of recipes, the maximum and average time of cooking, etc. (3) In the same step as (2), we aggregate not only along the measures, but also opportunistically along the dimensions, e.g., while computing the number of recipes in the {category, difficulty, keyword} lattice, we also compute the average difficulty per category, the number of keywords by category, etc. In this way we make the best use of each pass on the data and maximize values. In Figure 2 (b) and (c) show two bi-dimensional aggregates. There is a cell for each dimension value pair, e.g., ingredient=“sugar” and category=“dessert”. The colors of the cells represent the measure, i.e., the number of recipes. Values in (b) vary a lot, e.g., the two yellow cells represent peaks of values; thus this aggregate is considered interesting. In contrast, in (c), cells have a very mixed color pattern, and hence this result is deemed not interesting. The interestingness of highly dimensional aggregates (3, 4 or more dimensions), when statistic moments are considered, is harder for users to interpret. More sophisticated strategies for insight detection, e.g., such as proposed in [11], can be plugged in.

2.3 Optimization for Improved Efficiency

In this section, we discuss optimization of expensive operations in Spade. Aggregate evaluation is a very expensive operation because our rich variety of ways to derive properties and enumerate multi-dimensional aggregates leads to an explosion of the space of aggregates for evaluation. Thus, we introduce novel techniques to improve efficiency.

Lattice-based computations MDAs can be captured in lattices [7], e.g., the attributes {category, difficulty, keyword} lead to a lattice of $2^3 = 8$ nodes (that is, MDAs), from the top (group by the three attributes) to intermediary levels (group by two, successively by one attribute) to the bottom node that does not group at all. To optimize the computation we build on the efficient technique [14], which takes a known set of dimensions, a fixed measure and an aggregate function, and computes the whole lattice in one pass over the data, sharing computation across all the nodes. The technique also relies on a smart spatial data storage layout. Our new RDF scenario raises several challenges: (i) a lattice’s dimensions are not known at the start and hence we cannot pre-load the data as in [14]; (ii) we may recommend MDAs from different lattices; (iii) a given set of dimensions can be associated to different measures and aggregate functions.

We extend the technique described in [14] to address these challenges as follows. (1) We adapt maximal frequent pattern mining [6] to find, inside each CFS, the sets of dimensions to be used for MDAs. For recipes, the sets of frequent attributes can be: \{nrOfIngredients\}, \{country, category\}, \{category, difficulty, keyword\}. Each corresponds to a lattice of MDAs. (2) While materializing each lattice, we adapt the multidimensional data structure to keep track of several measures, e.g., the number of recipes, the maximum and average time of cooking, etc. (3) In the same step as (2), we aggregate not only along the measures, but also opportunistically along the dimensions, e.g., while computing the number of recipes in the \{category, difficulty, keyword\} lattice, we also compute the average difficulty per category, the number of keywords by category, etc. In this way we make the best use of each pass on the data and maximize
the number of MDAs that are computed.

Novel early-stop techniques are used to stop the evaluation of an aggregate as soon as we can determine (with high probability) that it will not be among the k most interesting. We build on top of \mathcal{S}, which approximately computes aggregation query results in a given confidence interval. Our problem is harder because we want to approximate the IF computed over the aggregation results. Using advanced statistical tools such as the Delta Method* we construct confidence intervals for variance, skewness and kurtosis over partially evaluated results of candidate aggregates. This allows us to prune a large set of aggregates early, and focus computation on the interesting ones.

While the above techniques significantly improve the efficiency of aggregate evaluation, Spade also optimizes the order in which all tasks in Figure 3 are executed.

Task-based execution Spade relies on a priority queue where small-granularity tasks are added and taken from for execution. For instance, $\text{SummaryBasedCFSenumeration()}$ is one such task, which, upon execution, adds to the queue a task $\text{EnumerateAttributes(CFS,)}$ for each enumerated CFS$_i$. Each such task has a priority, derived from the number of resources in CFS$_i$. Next, $\text{EnumerateAttributes(CFS,)}$ adds to the queue tasks such as $\text{EnumerateDirectProperties(CFS,)}$ and $\text{ExtractKeywords(CFS, a),}$ where a is a property; the latter implements derived property enumeration.

This fine-grained decomposition of operations also provides much flexibility and modularity as it allows to: (i) explore in parallel different MDAs; (ii) show some MDAs fast, even if they have not all been explored yet (informing users that the result may change); (iii) flexibly distribute a given time budget between the different operations, e.g., exploring more linguistic features if a given CFS has few properties which are quickly computed etc. Task priorities are set in a dynamic fashion, and can be controlled between a depth-first style exploration of the space to a breadth-first one. We use a combination of timers (how much to spend on tasks) and division of a given time budget, in order to set the timers of the tasks on the queue and thus control the execution order.

3. DEMONSTRATION SCENARIOS

We will use publicly available datasets, including: *Foodista*: NobelPrize* (90K triples) and DBLP* (20M triples)*

The RDFQuotient summary is shown as a first overview of the RDF graphs, refine them and deepen their analysis through interactive scenarios enable users to get insights from large very large graph cubes. In *ICDM*, pages 163–170, 2001.

I. Manolescu and M. Mazuran. Speeding up RDF aggregate discovery through sampling. In *BigVis*, 2019.

