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ABSTRACT
Uncertain data management has become crucial to scientific appli-
cations. Recently, array databases have gained popularity for sci-
entific data processing due to performance benefits. In this paper,
we address uncertain data management in array databases, which
may involve both value uncertainty within individual tuples and
position uncertainty regarding where a tuple should belong in an
array given uncertain dimension attributes. Our work defines the
formal semantics of array operations under both value and position
uncertainty. To address the new challenge raised by position un-
certainty, we propose a suite of storage and evaluation strategies
for array operations, with a focus on a new scheme that bounds
the overhead of querying by strategically treating tuples with large
variances via replication in storage. Results from real datasets show
that for common workloads, our best-performing techniques out-
perform alternative methods based on state-of-the-art indexes by
1.7x to 4.3x for the Subarray operation and 1 to 2 orders of magni-
tude for Structure-Join, at only a small storage cost.

1. INTRODUCTION
Uncertain data management has been studied intensively in areas

such as sensor networks, information extraction, data cleaning, and
business intelligence. Recently, it has also started to play a key role
in large-scale scientific applications such as severe weather moni-
toring [27], computational astrophysics [28, 40], and asteroid threat
detection [15]. In particular, recent studies [15, 39, 40, 29] show
that almost all scientific data are noisy and uncertain. Therefore,
capturing uncertainty in data processing, from data input to query
output, has become a key issue in scientific data management.

There is a recent realization that most scientific data naturally
reside in multi-dimensional arrays rather than relations, because
most scientific data are produced to characterize physical phenom-
ena that rely heavily on the notions of “adjacency” and “neighbor-
hood” in a multi-dimensional space. Hence, array databases [15, 9,
38, 18], as well as relational databases with arrays as a first-class
citizen [25, 6, 46], have been developed for scientific data process-
ing. In particular, the new chunk-based storage scheme proposed
in array databases enables better alignment of logical locality and
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physical locality (i.e., objects close to each other in the logical array
are likely to be stored in the same chunk). Since many array oper-
ations exploit logical locality of data (e.g., finding objects close to
a location), the associated physical locality can lead to significant
I/O savings, which is a major reason that array databases can offer
significant performance gains over relational databases [36].

The increasing popularity of array data management has signif-
icant implications on uncertain data management: Recent work on
multidimensional arrays [22, 21] has considered the case that a tu-
ple belongs to a specific cell of an array and some of its value
attributes are uncertain, which is referred to as the “value uncer-
tainty”. On the other hand, a more complicated case arises when
the attributes chosen to be the dimensions of an array are uncertain.
For example, the x-y positions of an object in the Sloan Digital Sky
Survey (SDSS) [40] naturally serve as the dimensions of the array,
but they are uncertain and characterized by a bivariate Gaussian dis-
tribution. As such, the uncertain location of an object can cause its
tuple to belong to multiple cells in the array, referred to as the “po-
sition uncertainty”. SciDB, a leading effort on array databases, has
acknowledged this issue in real-world applications but leaves the
solution to future work [38]. Existing indexes for uncertain data
can be built on array databases but can still incur high I/O cost, as
we will show later in this paper.

In this paper, we provide a thorough treatment to uncertain data
management in array databases. We focus on continuous uncertain
data because they are a natural fit for scientific data and harder to
support than discrete uncertain data due to the difficulty in enu-
merating the possible values. We assume that tuples are loaded
into an array database in a batched, append-only fashion, which
is common in scientific applications [9, 38], and each tuple has
obtained a (joint) distribution for uncertain attributes through a sci-
entific cooking process, as described above. We then address two
key questions: (i) What are the intended answers of array opera-
tions on uncertain data that may involve both position and value
uncertainty? (ii) What are the storage and evaluation methods for
efficient array operations on continuous uncertain data?

Given position uncertainty, naive solutions would replicate a tu-
ple in every possible location in the array, or store the tuple once
in a default location but to answer a query, search as widely as the
entire array to retrieve all the tuples that satisfy the query with a
high probability. These solutions incur both high I/O cost to read
numerous tuples, and high CPU cost to validate retrieved tuples by
computing their probabilities. Hence, the challenge in addressing
position uncertainty lies in finding a storage and evaluation strategy
that minimizes both I/O and CPU costs while returning all tuples
that satisfy the query with a required probability. We address these
challenges by strategically treating tuples with uncertain dimen-
sion attributes via (limited) replication in storage, which allows us



to fully exploit the locality benefit of array databases and bound the
overhead of querying. More specifically, our contributions include:

1. We define the formal semantics of array operations on uncer-
tain data involving both position and value uncertainty (§2). We
show that Subarray and Structure-Join are the two most important
array operations that involve position uncertainty; many other array
operations can be transformed into (one of) these two.

2. For Subarray, we provide native support for its operation
on arrays with uncertain dimension attributes (§3). We propose
a number of storage and evaluation schemes to deal with posi-
tion uncertainty. In particular, we focus on a novel scheme, called
store-multiple, that bounds the overhead of querying by strategi-
cally placing a few replicas for the tuples with large variances,
which would otherwise make the query region grow very large. We
also augment store-multiple with a detailed cost model and use it to
configure storage for best performance under various workloads.

3. For Structure-Join, we propose a new evaluation strategy,
called the subarray-based join (SBJ), which works without a pre-
built index and employs tight conditions for running repeated sub-
array queries on the inner array of the join, as well as a detailed
cost model for configuring the storage for best performance.

4. We evaluate our techniques using both synthetic workloads
and the Sloan Digital Sky Survey (SDSS) [40] (§5). For Subarray,
store-multiple outperforms other alternatives due to the bounded
overhead of querying and optimized storage based on the cost model.
For Structure-Join, our SBJ outperforms existing join methods due
to the tight conditions for probing the inner array and optimiza-
tion based on the cost model. Our case study shows that for SDSS
datasets, the storage overhead of store-multiple is rather small: over
79% tuples have only 1 copy and over 92% tuples have at most
3 copies (considering that 3 is the common number for replication
in today’s big data systems). In addition, our best techniques out-
perform those based on state-of-the-art indexes by 1.7x to 4.3x for
Subarray and 1 to 2 orders of magnitude for Structure-Join.

2. ARRAY MODEL AND ALGEBRA
In this section, we provide background on the array model and

array algebra proposed recently [9, 37]. Furthermore, we extend
the array model to accommodate uncertain data and formally define
the semantics of array algebra under the uncertain data model.

2.1 Array Data Model
Background on the Array Model. An array database contains

a collection of arrays. Each array is represented as A(Dd; Vm),
where Dd denotes the d dimension attributes that define the array,
and Vm denotes m value attributes. We sometimes also use the
shorthand, Ad, to denote a d-dimensional array. Consider an exam-
ple in the Digital Sky Survey domain: A2(x_loc, y_loc; luminosity,
color) defines a two-dimensional array with two dimension at-
tributes (x_loc, y_loc) and value attributes (luminosity, color).
If a dimension attribute is discrete-valued, the model requires a lin-
ear ordering of its values. If a dimension attribute is continuous-
valued instead, a user-defined mapping function M (e.g., the floor
function) is assumed available for discretizing the domain into an
ordered set of values. These ordered values are used as the index
values in a given dimension, where the number of index values is
determined by the domain size and the user function M.

In an array Ad, a unique combination of the index values of the
d dimensions defines a cell. Array cells are addressed by the in-
dex values of dimensions, e.g., a single cell addressed by A[1, 2],
or multiple cells by A[2 : 6, 1 : 4]. Since multiple values of a di-
mension attribute can be mapped to the same index value, a cell
can contain multiple tuples. Tuples include the value attributes and

in the continuous case, the dimension attributes as well since the
attribute values offer differ from the index values. To draw an
analogy with the relational model, we can translate Ad to a rela-
tion R(D1, . . . , Dd, V1, . . . , Vm) by treating dimension attributes
as regular value attributes and storing tuples in no particular order.

An Array Model for Uncertain Data. We next extend the ar-
ray model to accommodate uncertain data. When array data are
uncertain, the dimension attributes can be uncertain (e.g., the x-y
locations of a galaxy follow a bivariate Gaussian distribution); the
value attributes can be uncertain (e.g., the luminosity of a galaxy
follows a Gaussian); or both groups of attributes can be uncertain.

Uncertainty of value attributes, referred to as value uncertainty,
is easy to support: we store a (joint) probability distribution of the
uncertain value attributes, instead of fixed values, in each tuple.

Uncertainty of dimension attributes is harder to support because
a dimension attribute with multiple possible values can cause a tu-
ple to belong to multiple cells in an array, referred to as position
uncertainty. Consider a tuple t with uncertain dimension attributes.
When the tuple position follows a (joint) discrete distribution, it can
be stored in the cells corresponding to the possible values in the dis-
tribution. When the position follows a (joint) continuous distribu-
tion, instead, enumerating all values in the distribution is not pos-
sible. Hence, we define the tuple’s possible range Rt as a hyper-
rectangle within which the tuple existence probability is (approx-
imately) 1. More specifically, we can construct Rt by taking t’s
marginal distribution, fi, of each uncertain dimension. For exam-
ple, if fi is a uniform distribution U(a, b), the possible range is sim-
ply [a, b] and the existence probability within this range is 1. If fi
is a normal distribution N(µ, σ), the possible range (µ−3σ, µ+3σ)
achieves a probability 0.997. If fi is an arbitrary distribution with
mean µ and standard deviation σ, we can define the possible range
to be (µ − kσ, µ + kσ) with a sufficiently large k chosen based
on Chebyshev’s inequality. As convention in this paper, we always
“round up” the possible region Rt to the boundary of cells, i.e., to
be the smallest set of cells that contain Rt.

In this paper, we focus on the position uncertainty which has not
been sufficiently addressed before. Our solution is compatible with
existing techniques on value uncertainty because we aim to retrieve
all tuples that overlap with a query region on the dimension at-
tributes with a required probability (formally defined below). Once
such tuples are returned as a set, uncertain value attributes can be
handled by any techniques for relational databases [31, 41].

Example 2.1 Fig. 1 shows an array, A(x_loc, y_loc; luminosity),
where continuous uncertain attributes, x_loc and y_loc, are di-
mension attributes, and discretized by the floor function for the
index values. Tuple t0 has fixed values for x_loc and y_loc and
hence belongs to a single cell. Tuple t1, however, has a bivariate
Gaussian distribution. Therefore, although its mean value is in cell
A[1, 2], with a significant probability it can reside in any cell in a
possible range, A[0 : 5, 0 : 3], marked by the red box in the figure.
Similarly, t2 also has a possible range, A[2 : 6, 1 : 4], due to un-
certain x_loc and y_loc. The top-right corner in Fig. 1 shows the
corresponding relation of array A in the relational model.

2.2 Array Algebra
For multidimensional arrays, SciQL [25, 46] and the Array Query

Language (AQL) [33] are two popular high-level declarative lan-
guages, while the Array Functional language (AFL) [33] is a func-
tional language with a list of array operators. Since our work fo-
cuses on query processing, below we survey directly the operators
in AFL. As those operators are proposed for tuples with determin-
istic values, we also extend their semantics to work under the un-
certain data model, as shown in the following two categories.
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Figure 1: Array A with dimension attributes, x_loc and y_loc, and
the value attribute luminosity, all of which can be uncertain.

Value-based operators operate only on the value attributes of tu-
ples. An example is Filter, which applies predicates to the value
attributes of tuples stored in the array. Another example is Project,
which projects out some value attributes from existing tuples. Since
the above operators operate only on the value attributes of tuples,
their semantics of uncertain data processing under the array model
is the same as the semantics under the relational model; The se-
mantics of the latter is already defined in previous work [42].

Structure-based operators operate on dimension attributes and op-
tionally on value attributes as well. The common ones include:

(1) Subarray takes an array A and a condition θ on the dimen-
sion attributes, and returns a new array with the tuples that satisfy
the condition θ. Revisit our example array. Subarray(A, 1.5 ≤
x_loc ≤ 3.3 and 2.1 ≤ y_loc ≤ 4.8)) will first retrieve tuples
from the array block A[1 : 3, 2 : 4], and then filter those tuples
based on the precise condition, 1.5 ≤ x_loc ≤ 3.3 and 2.1 ≤
y_loc ≤ 4.8. The output array always has the same dimensions as
the input, but usually fewer cells and tuples. Subarray can be trans-
lated into selection in relational algebra, i.e., Subarray(A, θ) ≡
σθ(RA), where RA is the relational representation of the array.

When the dimension attributes addressed in the condition θ are
uncertain, Subarray is semantically equivalent to selection on the
uncertain dimension attributes in the relational setting. Hence, we
have the following definition:

Definition 2.1 (Probabilistic Subarray) Given an array Ad, con-
dition θ on uncertain dimension attributes, and a user-specified
probability threshold λ ∈ (0, 1), Subarray(A, θ, λ) returns an
array Bd where the cell B[i1, . . . , id] contains each tuple t from
A[i1, . . . , id] that satisfies the condition θ with a probability at least
λ, i.e.,

R
θ
ft(x)dx ≥ λ, where ft(x) is the tuple’s probability den-

sity function on the the uncertain dimension attributes.
Revisiting the above example, Subarray(A, 1.5 ≤ x_loc≤ 3.3

and 2.1 ≤ y_loc ≤ 4.8). When x_loc and y_loc are uncertain, we
can no longer restrict the search to only the block A[1 : 3, 2 : 4]. It
is because tuples that belong to other cells, e.g., A[1, 5], may satisfy
the Subarray condition with a probability larger than λ. Based on
the formal semantics, the entire array needs to be searched.

(2) Structure-Join (SJoin) in the array model takes as input an ar-
ray Ad, a second array Bd of the same dimensionality, and a join
condition θ. SJoin(A,B, θ) returns an array C2d, where the cell
C[i1, · · · , id, id+1, · · · , i2d] contains the result of θ-join between
the tuples in A[i1, · · · , id] and the tuples in B[id+1, · · · , i2d]. The
equivalent expression in relational algebra is, RA 1θ RB, where
RA and RB are the relational representations of A and B.

The join condition, θ, has a few common forms: (1) If the dimen-
sion attributes are discrete-valued, θ usually specifies equality com-
parison on the dimension attributes, as in the AFL proposal [33].1

1In this case, the output array, C = SJoin(A,B, θ), can be simplified to
have the same dimensionality as A and B, where each cell C[i1, . . . , id]
contains the result of A[i1, . . . , id] 1θ B[i1, . . . , id]. This definition is
consistent with equi-join in relational algebra where only one copy of the

(2) If the dimension attributes are continuous-valued, equi-join is
seldom used. Instead, θ takes a form of proximity join. A common
form is linear proximity (a.k.a. l1-distance) join, |A.di−B.di| < δ
for each dimension attribute di. The join condition essentially de-
fines a band region for each pair of join attributes. As noted ear-
lier, we focus on continuous uncertain data in this paper and hence
proximity join in later technical sections.

Next we consider the case that the continuous dimension at-
tributes of arrays A and B are uncertain. While the tuples have
default positions in the array based on their mean values, they may
belong to multiple cells with non-zero probabilities. In the face of
position uncertainty, the join between A and B must return all pairs
of tuples that satisfy the join condition θ with a significant proba-
bility. To do so, we leverage the semantics of cross-product in the
above SJoin definition, which involves pairing each cell in A with
each cell in B and then pairing the tuples within those cells. More
specifically, we define probabilistic Structure-Join as follows:

Definition 2.2 (Probabilistic Structure-Join) Given Ad and Bd,
a join condition θ, and a probability threshold λ, SJoin(A,B, θ, λ)
returns an array C2d where C[i1, · · · , id, id+1, · · · , i2d] contains
the result of probabilistic θ-join, A[i1, · · ·, id]1θ,λB[id+1, · · ·, i2d]
= {(t1, t2)|t1∈ A[i1, · · ·, id], t2 ∈ B[id+1, · · ·, i2d],

RR
θ
ft1(x)

·ft2(y)dxdy ≥ λ}, where ft1(x) and ft2(y) are the probability
density functions for t1 and t2, respectively.

We survey additional structure operators in Appendix A. At the
end of discussion, we show that many other structure operators can
be implemented using Subarray and Structure-Join. Hence, we fo-
cus on them in the rest of the paper.

3. NATIVE SUPPORT FOR SUBARRAY
In this section, we focus on the Subarray operator under position

uncertainty. More specifically, we focus on Subarray(A, θ, λ),
where θ =

Vd
i=1(ai ≤ A.di ≤ bi) defines a hyper-rectangle in

the d-dimensional space. In our work, other predicate shapes are
supported by first relaxing them to a hyper-rectangle and then vali-
dating them using exact integration.

Since Subarray is equivalent to selection in relational algebra,
there are two options for implementation: The first option is to
translate Subarray to selection in the relational setting. When the
dimension attributes are uncertain, to avoid scanning all tuples in
the database, existing work has built various indexes based on sta-
tistical quantities such as quantiles [10, 11, 41] and moments [31]
of tuple distributions. However, these indexes may not be effective
when the filtering power is low and can trigger many index I/O’s,
as we will show in §5. The second option is to build native support
of Subarray in array databases where logical and physical localities
are aligned. For instance, Subarray that exploits logical locality of
data, e.g., looking for adjacent array cells from a point, may need
to retrieve only a few relevant physical storage units called chunks.
This effect of exploiting physical locality in an array database is
similar to using a clustered primary index on the tuples in a rela-
tional database, but without having to build the index.

Hence, in this work we focus on native support of array oper-
ations on uncertain data. The task is challenging due to position
uncertainty: each tuple can belong to multiple cells with non-zero
probabilities and such cells form the tuple’s “possible range” as de-
fined in §2.1. The evaluation of Subarray takes two steps: (1) I/O
step: the cells that store any tuple whose possible range overlaps
with the query region are read from disk. (2) CPU step: the exact
existence probability in the query region is computed for each re-
trieved tuple based on its distribution and compared with the proba-

common join attributes is retained.
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Figure 2: Alternative storage and evaluation strategies for tuples with uncertain dimension attributes.

bility threshold. Basically, the first step ensures that no true results
are missed and the second step guarantees that only the true results
are returned. We aim to reduce both the number of chunks loaded
(I/O cost), and the number of costly integrations to compute tuple
probabilities (CPU cost) for all the tuples in the loaded chunks.

3.1 Storage and Evaluation Schemes
Below we propose a few schemes with the guarantee that tuple t

can be retrieved if its possible range overlaps with a query region.
Store-All: One solution is to store a copy of the tuple in each cell

of the tuple’s possible range. Fig. 2(a) depicts the storage of two
tuples, t1 and t2, where t1 is replicated in its possible range A[0:5,
0:3] (including the red and yellow cells), and t2 is replicated in
A[2:6, 1:4] (the green and yellow cells), with the overlap region
marked in yellow. A query region, A[2:2, 3:3], is marked by a solid
blue box in Fig. 2(d). A major advantage of this scheme is that
we can execute the query region directly on the array, without any
missed results. The disadvantages include possibly high storage
overheads and high I/O costs in querying because each logical cell
may contain many physical chunks to store the replicated tuples.

Store-Mean: To reduce storage overheads, we next consider
storing a tuple only once based on the mean values of its dimen-
sion attributes. However, directly running Subarray on such stor-
age will lead to missed results: tuples whose mean values are out-
side the query region but whose possible ranges overlap with the
region will be missed. To fix the problem, the query region must
be expanded. For ease of composition, given a region Q we define
C(Q) to be the minimum set of cells that cover Q.

Definition 3.1 (Expanded Query Region)Given a hyper-rectangle
query region Q, its expanded query region Q̃ is a super hyper-
rectangle Q̃ (⊇ Q) such that any tuple whose possible range over-
laps with Q has at least one copy stored in C(Q̃).

It is easy to see that reading all cells in C(Q̃) in the I/O step
can avoid missed results. However, the size of Q̃ varies with the
storage scheme. For store-all, the expanded query region Q̃ = Q
covers the least number of cells. For store-mean, without any auxil-
iary information, Q̃ should cover the whole array in the worst case.

To constrain Q̃, we can augment each cell with upper and lower
bounds for each dimension, indicating the distance to travel along
each dimension in order to find all tuples that could belong to that
cell—we call these bounds the upper and lower fences for expand-
ing the query region from this cell. This way, the storage overhead
is limited to two integers per dimension per cell. Fig. 2(b) shows the
storage layout for tuples t1 and t2. Fig. 2(e) shows that the query
region (the solid blue box) covers a single cell A[2, 3]. The fences
for the x dimension, (−1, 3), means that at query time, from this
cell we need to walk one step to the left and three steps to the right,
while the fences for the y dimension, (−1, 1), indicates walking
one step up and one step down. After walking on both dimensions,
the expanded query region, marked by a dashed blue box, covers
cell A[1, 2] to retrieve tuple t1 and cell A[5, 4] to retrieve t2.

To generate fences, whenever a new tuple is inserted into a cellC
in the array based on its mean value, we identify every other cell C̄
in the tuple’s possible range, compute its distance from the cell C,
then expand C̄’s fences if they do not cover the computed distance.
At query time, for each cell contained in the query region, we ex-
pand it using the upper and lower fences, and take the union of all
these expansions to produce a complete expanded query region.

The advantage of this strategy is small storage overhead in each
cell, i.e., only two fences for each dimension, in contrast to store-
all . However, the issue is that the expanded query region can grow
very large, containing both relevant and irrelevant tuples, which
will incur both high I/O cost for fetching all the tuples and high
CPU cost for validating them using costly integration based on the
precise Subarray condition.

Store-Multiple: Finally, we propose a scheme that employs lim-
ited replication of tuples and guarantees that from any cell in a tu-
ple’s possible range, walking at most k cells (steps) along each
dimension is able to find a copy of the tuple. We call k the step
size. Below we define an expanded query region for store-multiple
and prove its optimality under this storage scheme.

Proposition 3.1 Consider an array Ad under store-multiple with
a step size configuration 〈k1, k2, · · · , kd〉 and a query region Q :

(ai, bi) on each dimension i. Then Q̃ : (ai−kisi, bi+kisi), where
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Figure 3: Tuple copy distribution and validation under store-multiple.

si is the length of cell, is a valid expanded query region and re-
quires to read the least number of cells on A.

PROOF. We first prove that Q̃ is a valid expanded query region,
i.e., for any tuple t with possible range Rt ∩ Q 6= φ, t will have
at least a copy stored in C(Q̃). Denote the cell A[x1, x2, . . . , xd]
as A[x] and a range of cells A[x1 : y1, x2 : y2, . . . , xd : yd] as
A[x : y] for short. Since Rt ∩ Q 6= φ, there exists a cell A[o] ∈
C(Rt) ∩ C(Q). It is easy to see that for any cell A[x] ∈ C(Q),
A[x−k : x+k] ⊆ C(Q̃). Hence A[o−k : o+k] ⊆ C(Q̃).
According to the definition of store-multiple, given A[o] ∈ C(Rt),
there must exist one cell in A[o−k : o+k] that stores a copy of t.
Then t will have at least a copy stored in C(Q̃).

We next prove that reading a strict subset of C(Q̃) can miss
results. Assume cell A[õ] ∈ C(Q̃) is not read. Apparently, there
exists a cell A[o] ∈ C(Q) such that A[õ] ∈ A[o−k : o+k].
Consider a tuple t with its possible range to be just the single cell
A[o]. Then storing only one copy of t in cell A[õ] satisfies the
definition of store-multiple. Since A[o] ∈ C(Q), tuple t can be a
true result, but it will be missed as cell A[õ] is not read.

Store-multiple overcomes the shortcomings of the previous two
schemes: First, its controlled expansion of the query region, by k
cells, is particularly helpful when some tuples have large variances
and hence large possible ranges. In other schemes, tuples of large
variances will cause them to be replicated in numerous cells (store-
all) or cause the query region to be expanded based on the largest
tuple variance in a wide neighborhood (store-mean). Second, store-
multiple offers the flexibility to configure the parameter k for dif-
ferent workloads to achieve best performance, as we shall show
shortly. It is also worth noting that store-multiple subsumes both
store-all and store-mean: it becomes store-all when k = 0, and
approximates store-mean (without fences) when k is big enough to
cover the largest possible range among all tuples.

Fig. 2(c) shows such storage with k=1, where tuple t1 is stored
in four cells and t2 in another four cells. We can verify that from
each cell in t1’s possible region (the red rectangle), we need to walk
only one step along both dimensions to find a copy of t1. The same
guarantee holds for t2. Fig. 2(f) shows a query region matching the
cell A[2, 3], marked by the solid blue box, and the expanded region
A[1 : 3, 2 : 4] using k = 1, marked by the dashed blue box.

Since store-multiple uses limited replication to constrain the ex-
panded query region caused by tuples with large possible ranges,
duplicate removal, a standard database technique, can be applied at
the end of Subarray evaluation to remove duplicates. As an opti-
mization for selective queries (which is the common case), the CPU
step runs duplicate removal using an in-memory hash table to avoid
repeated integrations for copies of the same tuple.

So far we have introduced the store-multiple storage and the Sub-
array evaluation under store-multiple. Two questions still remain:
First, the way to store tuples while guaranteeing the step size k is
not unique, leading to different degrees of replication of a tuple.

si si

si si si sisi si si

r si si r
pri pri

{cell

possible
range

Figure 4: Illustration of the cells that a possible range overlaps with

How do we find the best layout of tuples under the step size k con-
figuration? Second, given a dataset and typical query workloads,
how do we choose the best configuration of k for optimal perfor-
mance? We address these two issues in §3.2 and §3.3, respectively.

3.2 Tuple Layout under Store-Multiple
Consider the tuple layout in a d-dimensional array Ad stored us-

ing store-multiple with a step size configuration 〈k1, k2, · · ·, kd〉.
This means that from any cell in the tuple’s possible range, walk-
ing ki cells in both directions on the i-th dimension, for 1 ≤ i ≤ d,
guarantees to find a copy of the tuple. Finding the best way to store
tuple copies amounts to a coverage problem, as we define below.

Definition 3.2 (Covering Cell) Given a d-dimensional array Ad
under store-multiple with a step size configuration 〈k1, k2, · · ·, kd〉,
the covering range of the walk from a cell A[x1, x2, · · ·, xd] is
A[x1 − k1 : x1 + k1, · · · , xd − kd : xd + kd]. We also say each
cell in A[x1−k1 : x1 + k1, · · · , xd − kd : xd + kd] is “covered”
by the cell A[x1, x2, · · ·, xd].

Definition 3.3 (Covering Set) A given set of cells C is covered by
a (discrete) set of cells S if and only if each cell in C is covered by
at least one cell in S; S is called the covering set of C.

Definition 3.4 (Problem of Tuple Copy Layout) Given a tuple t,
find the minimum covering set S of its possible range C(Rt) =
A[l1 : u1, l2 : u2, · · · , ld : ud] so that placing one copy of t in
each cell in S is a valid layout under store-multiple with the step
size configuration 〈k1, k2, · · · , kd〉. That is, walking ki steps from
any cell in C(Rt) along all dimensions is able to find a copy of t.

We address the problem by first showing the lower bound of the
size of a covering set, as shown in the following proposition. The
proof can be found in Appendix B.

Proposition 3.2 Given an array Ad under store-multiple with a
step size configuration 〈k1, k2, · · · , kd〉, if tuple t’s possible range
is C(Rt) = A[l1 :u1, l2 :u2, · · · , ld :ud], at least

Qd
i=1 (b(ui−li)

/(2ki + 1)c+ 1) cells are needed to cover C(Rt).

Note that in the worst case, Proposition 3.2 may suggest an ex-
plosion of the number of cells (and tuple replicas in those cells) to
cover a tuple’s possible range. In practice, most real-world datasets
have 2 to 3 dimensions to reflect our physical space, and the major-
ity of tuples have some degree of concentration in the location dis-
tribution. Take SDSS for example. When the cell size is set to 1, the
possible ranges of most tuples on dimension attributes (rowc, colc)
are within 2.5×2.5 cells on average. According to Proposition 3.2,
one copy is enough for most tuples for store-multiple with k = 1,
the same as store-mean and 1/9 of store-all. We will show how to
choose an appropriate step size configuration in §3.3.

Given the lower bound on the size, we next consider how to dis-
tribute the covering set, i.e., the cells with tuple copies, to achieve
this lower bound. To maximize the union of the covering ranges of
those tuple copies, we can store them in evenly-spaced cells: on
the i-th dimension where the possible range is li, ui, the first copy
is stored at li + ki and the other copies are stored 2ki cells away



symbol description
T number of tuples
b number of bytes per tuple
pri length of a tuple’s possible range on the i-th dimension
d dimensionality of an array
c chunk size (the I/O unit) in bytes
si length of each cell on the i-th dimension
ni number of cells on the i-th dimension
qi query region size on the i-th dimension
ki step size on the i-th dimension

Table 1: Notation in modeling and analysis.

from each other. Fig. 3(a) shows such distribution of tuple copies
in a two-dimensional array when k1 = k2 = 2. The tuple’s pos-
sible range consists of all the cells within the solid boundary and
requires at least 9 copies to be placed. The layout of 9 copies is
shown by the shaded cells (ignore the red color for now). However,
three copies are stored outside the tuple’s possible range, which
will increase the chance of reading irrelevant copies when a query
region falls outside the tuple’s possible range. It is thus desirable
to store all copies of a tuple inside its possible range. In our work,
when a tuple needs only one copy on the i-th dimension, we store it
at the center of its possible range, i.e., b(li+ui)/2c; when it needs
more copies, we store the first copy at li+ki, the last copy at ui−ki,
and the others (if any) are evenly spaced in between, as shown by
the red cells in the figure. Thus we still use the minimum number
of copies to cover the tuple’s possible range.

3.3 A Cost Model for Optimization
We next propose a cost model for Subarray under the store-

multiple scheme and use the model to find the optimal step size
configuration. The symbols used in the model are summarized in
Table 1. Like in SciDB [9], a cell is a logical unit in an array while
a chunk is a physical storage unit as well as the I/O unit; tuples in a
logical cell can be stored in one or multiple chunks2. For Subarray
evaluation under store-multiple, the I/O cost consists of the seek
and transfer time of chunks in the expanded query region, while
the CPU cost is the product of the number of tuples to be validated
and the validation cost per tuple. For simplicity, we assume that
the centers of tuples’ possible ranges are uniformly distributed over
the whole array. We also begin by assuming that all tuples’ possi-
ble ranges have the same size, pri, on the i-th dimension. These
assumptions can be relaxed, as we explain at the end of the section.

I/O Cost: To capture I/O cost, we focus on a key factor, the
number of chunks in the expanded query region.

Let us first compute the number of cells with which a tuple’s
possible range overlaps on the i-th dimension. Obviously this de-
pends on the alignment of the possible range and the cells along
this dimension, as shown in Fig. 4. We can chop the possible
range into dpri/sie segments, where the first dpri/sie − 1 seg-
ments have length si and the last segment has length r = pri −
(dpri/sie − 1) si. Depending on the starting position of the possi-
ble range in the first cell, it can overlap with different numbers of
cells: when the starting position is in [0, si − r], it overlaps with
dpri/sie cells; when the starting position is in (si − r, si), it over-
laps with dpri/sie + 1 cells. Then the expected number of cells
with which the possible range [li, ui] overlaps is

si − r
si

‰
pri
si

ı
+
r

si

„‰
pri
si

ı
+ 1

«
=
pri
si

+ 1 (1)

Calculated in a similar way, the number of cells that overlap with
2The relationship between logical cells and physical chunks is fur-
ther discussed in Apprendix E.2.

the query region Q on the i-th dimension is qi/si + 1, and the
number for the expanded query region Q̃ is qi/si + 1 + 2ki.

We next model the number of chunks in the expanded query re-
gion Q̃. It is the product of the number of cells in Q̃ and the av-
erage number of chunks per cell. To compute the latter, we first
write ui − li + 1 = pri/si + 1 based on Eq.(1), and plug it into
Proposition 3.2 to derive the number of copies per tuple tcopies:

tcopies =

dY
i=1

„—
pri/si
2ki + 1

�
+ 1

«
. (2)

Then the average number of chunks per cell Cchunks is the total
number of tuple copies divided by the number of cells in the array
and then by the number of tuples a chunk can hold, i.e., bc/bc:

Cchunks = T · tcopies
. dY
i=1

ni
.
bc/bc . (3)

Multiplying Cchunks with the number of cells in Q̃,
Qd
i=1(qi/si+

1 + 2ki), we get the number of chunks in Q̃, denoted as Q̃chunks:

Q̃chunks = Cchunks ·
dY
i=1

„
qi
si

+1+2ki

«
. (4)

CPU Cost: To capture CPU cost, we model the number of tuples
to be validated, Tval. Given an expanded query region Q̃, a tuple is
retrieved for validation as long as it has one copy stored in Q̃. Let
us define the validation region, V , to be the set of cells where the
centers of the possible ranges of to-be-validated tuples reside, and
model the number of cells in V first. Consider the i-th dimension of
the array: (1) When ki is large enough that every tuple only needs
one copy to cover its possible range, V = Q̃, with (qi/si+1+
2ki) cells. (2) When ki is small so that all tuples have more than
one copy, V ⊃ Q̃, as shown by Fig. 3(b) with one of the furthest
tuples that needs to be validated: the tuple’s possible range is the
red box; it has a copy in Q̃ but its center of the possible range,
marked by a black dot, lies outside Q̃. To get V , we need to further
expand Q̃ by the distance between the green and blue dashed lines
in Fig. 3(b), denoted as ∆ = d(pri/si+1)/2e−(ki+1) cells, along
each direction of dimension i. Expanding Q̃ along both directions,
V has (qi/si+1+2ki)+2∆ ≈ (qi/si+1+pri/si) cells on the i-th
dimension. Summarizing the two cases and multiplying the size of
V with the average number of tuples per cell, we have:

Tval = T
. dY
i=1

ni ·
dY
i=1

„
qi
si

+1+ zi

«
, (5)

where zi=2ki when pri/si<2ki+1 and zi=pri/si otherwise.
Finally we combine the I/O and CPU costs by plugging in unit

cost measurements, including the seek and transfer time per chunk
and per tuple validation time using integration.

A Generalized Model. We next relax two assumptions made
previously in our model: (1) When tuples have different possible
range sizes, we can group tuples based on the possible range size.
The runtime of a query will be a weighted sum of runtime over
each group of tuples, where the number of tuples per group serves
as the weight; (2) When tuples are not evenly distributed in the
domain, we can feed statistics of tuples’ mean positions and the
query position into our model to get a more accurate estimate: in-
stead of using T/Πd

i=1ni, which is the average number of tuples
per cell, we can use the number of tuples in each cell of the query.
In practice, we can collect above-mentioned statistics when a batch
of tuples comes in. For instance, SDSS [40] updates the scanned
image of the sky on a nightly basis and can build the statistics as a



A B{CA} {CB}

Pair tuples

Validate & DupElim

a red block, then 
a green block

cells in the 
green block candidate 

cells

subarray on B

2.1.

3.

4.

5.

Mapping
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nightly observation is being produced. If domain knowledge shows
that the statistics do not change drastically from day to day, we can
also re-use statistics collected in the past.

Implementation. Given the cost model and basic statistics of
tuples’ possible range sizes and query sizes, at data loading time we
estimate the costs of representative queries by running our model
for a wide range of step size configurations (which runs once and
fast), and choose the configuration that offers the best performance.
More implementation details are given in Appendix C.

4. SUPPORT FOR STRUCTURE JOIN
In this section, we focus on the Structure-Join operator under

position uncertainty. More specifically, we focus on linear proxim-
ity (a.k.a. l1-distance) join, i.e., SJoin(Ad,Bd, θ, λ) where θ =Vd
i=1|A.di−B.di| < δ. Non-linear proximity join based on Eu-

clidean distance, e.g., θ =
P
i(A.di−B.di)2 < δ2, can be first

relaxed to linear proximity join, and then followed by additional
filtering using exact integration based on θ. More complex predi-
cates are further discussed in Appendix E.1.

The default evaluation strategy, as stated in Definition 2.2, cre-
ates all pairs of tuples from the two input arrays and evaluates an
integral for each pair of tuples, which is prohibitively expensive. To
improve performance, existing indexes for relational databases [13,
12, 31] can be built on top of the store-mean scheme. As we will
show in §5.3, such index-based evaluation can incur many index
and data I/O’s. Here we propose a new evaluation strategy, called
subarray-based join (SBJ), which does not require a pre-built index,
as well as model-based optimization to achieve best performance.

4.1 Subarray-based Join (SBJ)
Similar to block nested loops joins, Structure-Join can be trans-

formed into iterative Subarray operations on the inner array. As-
sume that the smaller array, A, is the outer. The basic idea is that
for each outer cell CA, we form a subarray condition θCA on the in-
ner array B, run the Subarray query on B to retrieve relevant tuples,
and finally pair the A tuples and B tuples for exact evaluation us-
ing integration. For best performance, the subarray condition θCA
for each outer cell CA must produce all join results while being as
tight as possible. Below we propose several necessary conditions
for linear proximity join that guarantee to return all join results.

Given a tuple tA, let
“
ldi
tA , u

di
tA

”
denote the lower and upper bounds

of its possible range on dimension i. Similarly, we have
“
ldi
tB , u

di
tB

”
for tuple tB. Then we have:

Proposition 4.1 For any tuple pair (tA, tB) returned by SJoin(Ad,
Bd,
Vd
i=1|A.di−B.di|<δ, λ), the intervals

“
ldi
tA−δ, u

di
tA +δ

”
and“

ldi
tB , u

di
tB

”
overlap on each dimension i (i = 1, . . . , d).

The proof is in Appendix B. The proposition states a way to find a
superset of the join answers: for each tuple tA from A, expand its
possible range by δ on each dimension, denoted by ItA , then pair tA
with all tuples tB from B whose possible ranges overlap with ItA .

When A is stored using store-mean, we use the above result to
form a subarray condition on B, for each cell CA ∈ A. The next
proposition shows how to do so, i.e., by relaxing the condition us-
ing the minimum lower bound and maximum upper bound of pos-
sible ranges of all tuples in CA.

Proposition 4.2 (Subarray for Store-mean)Consider SJoin(Ad,
Bd,
Vd
i=1|A.di−B.di|<δ, λ) when A is under store-mean. For a

cell CA, a subarray condition θCA that returns all join results is:
d̂

i=1

min
tA∈CA

ldi
tA−δ<B.di< max

tA∈CA
udi
tA +δ.

When A is stored using store-multiple, we do not need to relax
the join condition as aggressively, e.g., to accommodate the largest
possible ranges of the tuples. Instead, we can bound the relaxation
using the step size of A and δ. Given the step size 〈k1, k2, · · · , kd〉
of array A, we define some notation:

• The value range of cell CA on dimension di is (ldi
CA , u

di
CA).

• For any cell CA = A[x1, . . . , xd], two cells bound the ex-
pansion from CA by the step size of A, denoted as C−A =
A[x1−k1, . . . , xd−kd] andC+

A =A[x1 +k1, . . . , xd+kd].

Then the following proposition states that for each cellCA, the sub-
array condition on the inner array B can be formed by expanding
CA by the step size of A and then by δ, which are both bounded.

Proposition 4.3 (Subarray for Store-multiple) Consider
SJoin(Ad, Bd,

Vd
i=1|A.di−B.di|<δ, λ) when A is under store-

multiple. For cell CA, a subarray condition θCA that returns all
join results is:

d̂

i=1

ldi

C−A
− δ < B.di < udi

C+
A

+ δ.

PROOF. Let StA denote the set of cells that store a copy of tA,

i.e., StA = {CA|tA ∈CA}. Below we first prove that
“
ldi
tA , u

di
tA

”
⊆S

CA∈StA

„
ldi

C−A
, udi

C+
A

«
: When tA needs only one copy to cover

its possible range on dimension di, assume the copy is stored at

CA, then
“
ldi
tA , u

di
tA

”
⊆
„
ldi

C−A
, udi

C+
A

«
because otherwise it needs at

least two copies. When tA has more than one copy on dimension
di, according to §3.2, the first copy and the last copy are stored
ki cells away from the lower and upper bounds of tA’s possible
range respectively, depicted by Fig. 3(a). So ldi

tA = min
CA∈StA

ldi

C−A
and

udi
tA = max

CA∈StA
udi

C+
A

, i.e.,
“
ldi
tA , u

di
tA

”
=
S
CA∈StA

„
ldi

C−A
, udi

C+
A

«
. Com-

bining the two cases, we have
“
ldi
tA , u

di
tA

”
⊆
S
CA∈StA

„
ldi

C−A
, udi

C+
A

«
.

Then for any tuple tB, if its possible range
“
ldi
tB , u

di
tB

”
overlaps with“

ldi
tA−δ, udi

tA +δ
”

, which is a necessary condition for tB being a
true match of tA according to Proposition 4.1, it must also overlap

with
S
CA∈StA

„
ldi

C−A
−δ, udi

C+
A

+δ

«
. This means that tB will be re-

turned by at least one of the subarray queries formed for all cells in
StA , say Subarray(B, θCA0

, λ). In this way, we guarantee that no
result can be missed.



Algorithm 1 Subarray-based Join (SBJ)
1: for each read block RA in A do
2: toRead.clear(); map.clear();
3: for each cell CA in RA do
4: loadToMemory(CA);
5: Q← formQueryRegion(CA); S ← Subarray(B, Q);
6: for each cell CB in S do
7: toRead.add(CB); map.get(CB).add(CA);
8: for each cell CB in toRead do
9: loadToMemory(CB);

10: for each cell CA in map.get(CB) do
11: for each tuple tA in CA do
12: for each tuple tB in CB do
13: filter(tA, tB); validate(tA, tB);
14: removeDuplicates();

We now present subarray-based join (SBJ) in Algorithm 1 and
illustrate it with Fig. 5. The algorithm processes one block of the
outer at a time (Line 1 in Algorithm 1; marked as Step 1 in Fig. 5,
with a red block followed by a green block of A). For each cell
CA in the current block, the algorithm forms a Subarray query and
runs it on the inner array B (Line 5; Step 2). We call the B cells
returned by the Subarray query for each CA the candidate cells of
CA. Since the candidate cells of different outer cells may overlap,
as an optimization to save I/O, the algorithm maintains the union
of the candidate cells of all outer cells in the current block (Line
7), in {CB} in Fig. 5. To avoid nonviable pairs of tuples, the al-
gorithm maintains a hash map that maps a cell CB to only those A
cells whose candidate cells include CB, i.e., the mapping structure
in Fig. 5 (Line 7; Step 3). Then the algorithm reads relevant cells
of B and pairs tuples accordingly (Line 8-12; Step 4). As optimiza-
tion, It applies quick filters with negligible costs to the paired tuples
to reduce later CPU cost. It finally does validation using the join
condition and removes duplicates (Line 13-14; Step 5).

4.2 A Cost Model for Optimization
Next we build a cost model for SBJ under the store-multiple

scheme, which can be used to find the optimal step size during data
loading given basic data statistics. We use the symbols in Table 1
with subscripts to distinguish inner and outer arrays.

I/O cost: We model the numbers of A and B chunks read in I/O
and later translate them to seek and transfer times. First consider
the outer array A. Its number of chunks, denoted by ||A||, is the
total number of tuple copies, denoted by |A|, divided by the number
of tuple copies per chunk. Based on Eq. (2) in §3.3, we have:

|A| = TA

dY
i=1

„—
prA,i/sA,i
2kA,i + 1

�
+ 1

«
, ||A|| = |A|/ bc/bAc .

Now consider the inner array B. Each cell in B may be read mul-
tiple times as it can exist in the results of Subarray queries formed
from different A blocks. Hence, the I/O cost for reading B is the
product of (1) the number of A blocks, αRA , (2) the number of B
cells to read per A block, denoted by βRA , and (3) the number of
chunks per B cell, ||CB||. Below we model each of them in order.

We first model αRA . Assume that a memory quota of K chunks
is given to the A block and its mapping with B blocks (shown
in Fig. 5). Then the number of cells in each A block, nRA , is
K/(||CA||+||MCA ||), where ||CA|| is the number of chunks per A
cell and ||MCA || is the number of chunks for the mapping entries
per A cell. We have that

||CA|| = ||A||
. dY
i=1

nA,i.

According to Proposition 4.3, the subarray condition formed for
cell CA expands CA by A’s step size and then by δ, so the length
of the Subarray query on dimension di is (1 + 2kA,i)sA,i + 2δ.
It amounts to ((1 + 2kA,i)sA,i + 2δ) /sB,i + 1 cells in the B array
according to Eq. (1). When running this query on B, the number of
candidate cells of CA, i.e., cells in the expanded query region, is:

βCA =

dY
i=1

„
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

«
(6)

Assuming that each mapping entry has bmap bytes, we have:

||MCA || = βCA ·
bmap
c

.

We then get the number of A blocks as the total number of cells
divided by the number of cells in each RA block:

αRA =

Qd
i=1 nA,i

nRA
=

(||CA||+ ||MCA ||)
Qd
i=1 nA,i

K

We next model the second factor, βRA . For the current read block
RA, we take the union of B cells returned by the Subarray query
formed for each A cell. This union is equivalent to the set of B
cells returned by a single Subarray query formed for the entire read
block RA. Hence, similar to Eq. (6), we can get βRA as follows:

βRA =

dY
i=1

0@ (n
1
d

RA + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

1A .

We can get the last factor ||CB|| in the same way as ||CA||.
CPU cost: The CPU cost is the product of the number of tuple

pairs to be validated, which we will model below, and the validation
cost per tuple pair. According to our algorithm, tuples in each cell
CA are paired with the tuples in CA’s candidate cells and all such
tuple pairs need to be validated. Therefore, the number of tuple
pairs is the product of (1) the number of tuple copies in A, (2) the
number of candidate cells per A cell, and (3) the number of tuple
copies per B cell. Using Eq. (6), we compute the product as:

|A| ·
dY
i=1

„
(1 + 2kA,i)sA,i + 2δ

sB,i
+ 1 + 2kB,i

«
· |B|Qd

i=1 nB,i

Finally, the combined IO and CPU model allows us to find the
optimal step sizes for inner and outer arrays if SJoin is the key
workload. Statistics needed are the distribution of tuples’ possible
ranges and common distance values in joins. Collecting such statis-
tics is a common task of the query optimizer and we can leverage a
large body of work on relational DBMS’s in our work.

5. EXPERIMENTS
We evaluate our techniques for Subarray and Structure-Join us-

ing both a wide range of synthetic workloads with controlled prop-
erties and the Sloan Digital Sky Survey (SDSS) [40].

5.1 Experimental Setup
SDSS Datasets. Consider queries on dimension attributes (rowc,
colc) in SDSS. SDSS treats them as independent attributes and
does not provide any correlation coefficient between them. SDSS
describes each dimension attribute using a Gaussian distribution,
N(µ, σ). Here, µ is specified by the value of attribute rowc (or
colc) and determines where the center of a tuple’s possible range
is located; σ is specified by the value of attribute rowcErr (or
colcErr) and determines how wide a tuple’s possible range is along
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(a) Workload (2D,U , 1; 1%, 0.9)
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(b) Workload (2D,U , 100; 1%, 0.9)
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(c) Tuple counts after filtering for different
threshold λ values (2D,U , 1; 1%, λ)
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(d) Workload (2D,U , 100; 1%, 0.01)

������

������

������

������

������

������

������

������

� � � � � �� �� �� ���

�
��

��
��

��

���������

��

���

(e) Workload (2D,U , 100; 10%, 0.9)
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(f) Workload (3D,U , 1; 1%, 0.9)

Figure 6: Cost breakdown of Subarray with varied step sizes for various workloads.

dimension rowc (or colc). Without loss of generality, we consider
a tuple’s possible range per dimension to be µ± 3σ. The distribu-
tions of rowcErr and colcErr are very similar. A tuple’s possible
range along both dimension rowc and colc is 2.5 on average.

Synthetic Datasets. Our synthetic datasets of dimensionalities 1,
2 and 3 (which are the most common in scientific applications) are
generated based on the statistics of (rowc, colc) in SDSS. The pa-
rameters of synthetic datasets are summarized in Table 2. All the
datasets have 2M tuples stored in around 60000 cells of size 1. In
order to study the effect of the validation (i.e., integration) cost, dif-
ferent from SDSS datasets, here we generate tuples with correlated
dimension attributes; the CPU cost per integration for correlated at-
tributes is much higher than that for independent attributes because
it increases exponentially in dimensionality. Like in SDSS, each
tuple is described by a (multivariate) Gaussian distribution.3 We
generate µ values using the distribution, Dµ, which is set to either
a uniform distribution over the domain or a Gaussian distribution
with more tuples clustered at the center. To obtain datasets with
various average possible range sizes, we collect the top 10 frequent
σ values in SDSS and rescale the possible range size (which is de-
termined by σ) in SDSS by a factor denoted as Sσ . For example,
to generates a 2D dataset with Sσ = 16, σ values collected from
SDSS are rescaled by a factor of 4 per dimension. We generate one
dataset for each combination of data parameter configurations.

Our evaluation starts with our own techniques, and later in the
SDSS case study also compares to state-of-the-art index schemes
for uncertain data, G-index [31] and U-index [13, 41], and baseline
methods such as Block Nested Loops Join. Our experiments were
run on two identical servers, each with Intel(R) Xeon(R) CPU 5160
@3.00GHz, 8GB memory, JVM 1.7.0 on CentOS 6.4.

3Other distributions will not change our reported results because: (1) the
I/O cost does not vary with the distribution and is only affected by the pos-
sible range size; (2) the CPU cost depends on the integration cost which can
vary with the distribution, but we have already included a range of integra-
tion costs using multivariate distributions.

5.2 Evaluation of Our Subarray Techniques
We configure Subarray queries using the parameters in Table 2:

We vary the query size, q, between 0.01% and 10% of the domain.
The threshold, λ, prunes tuples based on the existence probability.
Usually the user wants the tuples with high existence probabilities;
we use λ=0.9 to represent this workload. We also tested λ=0.01
(e.g., needed if there is an aggregate after Subarray). The evalua-
tion of Subarray includes both the I/O step and the CPU step. We
optimize the CPU step by first running fast filters [31] with neg-
ligible costs before computing the expensive integral for the exact
existence probability of each retrieved tuple. Memory is set to be
10% of the data size. We first use synthetic data with controlled
properties in this set of experiments.

Expt 1: Cost Breakdown. Our store-multiple scheme has a param-
eter, step size k, which determines both the degree of replication
and query expansion. We start by showing how the Subarray pro-
cessing cost changes as k varies. Fig. 6(a) shows results for the de-
fault workload, (2D, Dµ=U , Sσ=1; q=1%, λ=0.9), while Fig. 6(b)
shows results for Sσ=100, with an enlarged average possible range
size and magnified trends. The overall trends are:

(1) The I/O cost first decreases and then increases with the step
size. I/O is determined by both the number of cells in the expanded
query region and the number of chunks per cell. When k is small,
which means more aggressive replication of tuples, the expanded
query region is small, but the number of chunks per cell is large and
has a stronger impact on I/O. As k grows larger, fewer tuples are
replicated, so each cell is smaller. But the expanded query region
becomes very wide and affects I/O cost more. So the optimal I/O
cost appears in the middle of the spectrum of k.

(2) The CPU cost does not change with the step size when the
probability threshold λ is high. The CPU cost depends on the num-
ber of tuples that passed the quick filter and need to be validated
using expensive integration. Fig. 6(c) shows the number of tuples
that pass the filter. When λ is sufficiently high,≥ 0.1 in this figure,
the filter can drop most irrelevant tuples, so the number of tuples
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(a) Compare store-all, store-mean, and store-
multiple for (2D,U , 1; q%, 0.9)
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(b) Compare store-all, store-mean, and store-
multiple for (2D,U , 100; q%, 0.9)
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(c) Compare store-all, store-mean, and store-
multiple for (2D,U , 100; q%, 0.01)
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(d) SBJ with varied step sizes for workload
(U , 100; 1%, 0.9)
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(e) Compare SBJ and BNLJ for workloads
(U , Sσ = (1, 16, 100); 1%, 0.9)
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(f) Compare SBJ and BNLJ for workloads
(U , Sσ = (1, 16, 100); 1%, 0.01)

Figure 7: Evaluation results of Subarray and Structure-Join on synthetic datasets.

Parameter Default Other Values

Data
dimensionality 2 1, 3
Dµ, distribution of µ uniform (U ) normal (N )
Sσ , scale factor of possible range 1 16, 100

Query q, query range / domain 1% 0.01%, 0.1%, 10%
λ, probability threshold 0.9 0.01

Table 2: Parameters in Subarray experiments on synthetic datasets.

after filtering does not change with the step size, or the number of
tuples retrieved from storage. We examined the filter’s effect using
multiple datasets and our observation is consistent.

To further study the effect of λ and q, we tune their values from
Fig. 6(b) one at a time: we change λ from 0.9 to 0.01 and show
the cost breakdown in Fig. 6(d); we also change q from 1% to
10% in Fig. 6(e). Finally Fig. 6(f) shows the cost breakdown for
a 3D workload. It can be seen from these plots that, between CPU
cost and I/O cost, which is dominating depends on many factors,
including λ (by comparing Fig. 6(b) and Fig. 6(d)), the system
constants like the per integration cost (by comparing Fig. 6(a) and
Fig. 6(f)), and the step size configuration (by comparing bars within
each plot). It is challenging to find the optimal optimal step size:
we observe that the optimal step size shifts right when the average
possible range increases (by comparing Fig. 6(a) and 6(b)); it shifts
left when λ is very small or the per integration cost is high, and it
increases with the query region size.

Expt 2: Model Accuracy. We next use the cost model in §3.3 to
determine the step size when loading data into an array. We assume
that the user can provide basic statistics including the σ distribution
in the data and common Subarray sizes. We denote the optimal step
size k∗, and the step size returned by our model k̃. We measure the
performance loss of our model, (Cost(k̃)−Cost(k∗))/Cost(k∗).
When tuples’ mean values, µ, are normally distributed around the
center of the array, the center of the query region matters as the data
density varies. For such datasets, we pick 3×3 query regions for
2D datasets and 2×2×2 for 3D datasets that evenly scattered over

the array, and report on the average.
Table 2 shows 144 combinations of parameters. Our model re-

turns the optimal step size (i.e., no performance loss) in 89.6% of
workloads when the tuples’ µ values are uniformly distributed and
in 83.3% of workloads when the tuples’ µ values are normally dis-
tributed. In those cases when our model selects a suboptimal step
size, the average performance loss is 2.72%, which shows that our
model is effective in configuring the store-multiple scheme.

Expt 3: Comparing Schemes. We now use the step size returned
by the model to configure store-multiple and compare it to store-all
and store-mean with fences for Subarray evaluation. The results
are shown in a log scale in Fig. 7(a)-7(c) for different workloads.
Each plot shows four queries with different query region sizes.

In all cases, store-multiple works the best. In comparison, when
all tuples have small possible ranges, the three storage schemes do
not differ much because store-all incurs only a small storage over-
head and the expanded query region for store-mean is also very
constrained, as shown in Fig. 7(a). However, for datasets when
Sσ = 100, store-all often incurs tremendous storage overheads
and I/O costs in querying, as shown in Fig. 7(b) and 7(c). More-
over, store-multiple outperforms store-mean considerably when the
query region q is small, e.g., q <1%, which is the common case,
due to a more constrained expanded query region. When q grows
larger, e.g., q=10%, their difference is reduced because the optimal
step size of store-multiple tends to be larger. This means that infre-
quent replication of tuples works fine if q is large, and most tuples
have only one copy under store-multiple, similar to store-mean.

5.3 Evaluation of Structure-Join
We next consider the Structure-Join where both the inner and

outer arrays are loaded from the same dataset. We start with 1D
Structure-Join, SJoin (A1,A2, |A1.x−A2.x| < δ, λ), of 100,000
tuples, mainly chosen for efficiency reasons. (Later, our case study
considers 2D Structure-Join on SDSS datasets with up to 90 million



Sσ λ Optimal step size Model step size Performance loss

1 0.9 〈2〉;〈4〉 〈4〉;〈4〉 5.3%
0.01 〈2〉;〈2〉 〈2〉;〈2〉 0%

16 0.9 〈8〉;〈8〉 〈8〉;〈16〉 3.6%
0.01 〈8〉;〈8〉 〈8〉;〈8〉 0%

100 0.9 〈16〉;〈32〉 〈16〉;〈32〉 0%
0.01 〈8〉;〈8〉 〈16〉;〈16〉 0%

Table 3: SBJ Model Accuracy when δ = 1%

tuples.) We use a recent index on continuous uncertain data [31] as
an in-memory filter whenever possible. This index returns only true
matches for 1D joins, so validation is not needed for 1D joins. The
memory size is 10% of the data size.

Expt 4: Subarray-Based Join (SBJ). We fix δ to 1% of the do-
main. SBJ incurs the I/O cost for running repeated Subarray queries
on the inner array, and the CPU cost for filtering [31]. We find that
allocating most memory to the outer block and its mapping struc-
ture works the best and use this scheme in all experiments below.

We first demonstrate that SBJ’s performance is sensitive to the
storage scheme. Fig. 7(d) shows various combinations of the outer
step size, kout, and inner step size, kin, with λ = 0.9. Each line
represents a fixed value of kout, and the x-axis varies values of kin,
with the optimal inner step size circled. There are two main trends:
(1) For a fixed kout, the optimal inner step size k∗in is in the middle
of its spectrum. As explained in Expt 1, the inner I/O first decreases
and then increases with its step size. (2) Once kin is fixed, the
optimal k∗out also occurs in the middle (e.g., k∗out=16), because it
achieves the best tradeoff between (a) pairing and filtering costs for
the same outer tuple, which decreases with larger kout, and (b) the
number of candidate cells to consider, which increases with kout
due to the enlarged expanded subarray region.

Next we show that the cost model in §4.2 can predicate the per-
formance of SBJ so that given basic statistics, we can use it to
choose the optimal step size configuration during data loading (if
SJoin is known to be the key workload). We again use the perfor-
mance loss to evaluate the model accuracy. The results are shown
in Table 3, where 〈kout〉; 〈kin〉 denotes the outer and inner step
sizes. The model returns the optimal step sizes in most cases and
the overall performance loss is within 6% (if any).

Expt 5: Comparison of Join Algorithms. We now use the step
size returned by the model to configure subarray-based join (SBJ),
and compare it to a baseline, block nested loops join (BNLJ) where
both inner and outer arrays are stored using store-mean. Fig. 7(e)
and Fig. 7(f) show the results when the tuples’ possible range sizes
are scaled up, for the probability threshold λ=0.9 and λ=0.01, re-
spectively: 1) For all datasets tested, SBJ outperforms BNLJ, e.g.,
46.3% better when λ=0.9 and 91.3% better when λ=0.01. This is
because SBJ does not incur much storage overhead and can effec-
tively limit the number of inner cells to read, as opposed to reading
the entire inner array, for each outer block. Hence, SBJ saves both
I/Os on the inner array and the CPU cost by reducing the number of
tuples to be filtered. 2) SBJ’s performance is not sensitive to large
variance tuples when λ=0.9, but shows an increase in cost when
λ=0.01, because many more tuples will be returned as join results.

5.4 Case Study using SDSS Datasets
We next perform a case study using SDSS datasets and queries.

We collect SDSS datasets with 1.89 to 90 million tuples, with the
total database size ranging from 295MB to 24GB. Each dataset
consists of tuples in a subregion of the next bigger dataset. We use
(rowc, colc) as dimension attributes. Since they are treated as in-
dependent attributes in SDSS, the CPU cost per validation is much
reduced from a 2-dimensional integration to two 1-dimensional in-
tegrations. Hence, I/O cost dominates in this study. Memory is set

Datasets Store-mean Store-all Store-multiple U-index G-index
1.89M 85MB 178MB 89MB 404MB 282MB
10.3M 479MB 1.2GB 569MB 2.2GB 1.5GB
30.2M 1.4GB 4.5GB 1.8GB 6.3GB 4.4GB
90M 3.8GB 14GB 4.5GB 19G 13.2GB

Table 4: Storage comparison of SDSS datasets on (rowc, colc).

to be 10% of the data size.
We evaluate our techniques for Subarray and Structure-Join

against two state-of-the-art indexes for uncertain data, G-index [31]
and U-index [13, 41] (with general index implementation outlined
in Appendix C and reviews of these two indexes in Appendix D).

Expt 6: Storage. We first compare our storage schemes with al-
ternative indexing schemes. Table 4 shows the disk space that each
data structure on the dimension attributes takes. We see that store-
multiple configured with step size <1,1> by our cost model incurs
much less storage cost than the index schemes, and it approximates
store-mean (which has the smallest possible storage cost) but with
much better performance, as shown below. Specifically, over 79%
tuples have only 1 copy and over 92% tuples have at most 3 copies.

Expt 7: Subarray. We first evaluate subarray queries on (rowc,
colc) with varied query size q and probability threshold λ=0.9, us-
ing the SDSS dataset with 1.89M tuples. All non-leaf nodes are
prefetched into memory. Since each subarray query hits a region
of the array uniformly at random, we do not consider the effect
of caching of leaf nodes here. The results are shown in Fig. 8(a).
(1) Comparison to results of synthetic data: The comparison among
storage schemes is similar to Fig. 7(a), except that store-mean with
fences is orders of magnitude slower than other schemes when
q ≤ 1%, and is 7 times slower than store-multiple when q=10%.
This is because its expanded query region almost covers the en-
tire array due to the existence of very large variance tuples (e.g.,
2039.782), and such tuples’ σ values are not in the top 10 frequent
values we used to generate our synthetic datasets. The absolute
values are much less than those in Fig. 7(a) because the two dimen-
sion attributes in SDSS are independent and the per validation cost
is much less than that for correlated attributes. (2) Comparison to
index-based methods: store-multiple is 1.7 - 4.3 times faster than
U-index and 8.3 - 18.3 times faster than G-index, because it finds a
good tradeoff between the tuple replication and query expansion. In
contrast, probing on-disk indexes incurs tremendous leaf I/Os due
to the nature of multi-path search in R-tree based indexes. Based
on our profiling numbers, when we vary q from 0.01% to 10%, the
accessed child nodes averaged over all non-leaf nodes are in the
range of (10.33%, 52.93%) for U-index and (22.13%, 66.29%) for
G-index. Additional analysis of both indexes and results on the I/O
counts are shown in Appendix D.

Expt 8: Structure-join. We finally consider a query used in SDSS’s
sample query set to find neighboring objects (shown in Appendix D).
It is a join of two arrays on dimension attributes (rowc and colc)
and selects 10 value attributes from each with astronomical mean-
ings to further evaluate whether each neighboring pair meets cer-
tain criteria. As typical of SDSS queries, a predicate is posed on
the outer array such that a subset of it (i.e., a small patch of the
sky) is joined with the inner. The probability threshold is 0.9. We
evaluate all the join algorithms using the same outer array but four
inner arrays with different sizes to test scalability.

Since structure-join repeatedly probes the inner array or the in-
dex on the inner, caching plays an important role. Our memory
setting, 10% of the data size including all dimension and value
attributes in the query, is enough to hold all non-leaf nodes, as
shown in Table. 5. For IBJ, as many non-leaf nodes as the mem-
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(a) Subarray on SDSS (λ=0.9, varied q)
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(b) Structure-Join on SDSS (δ = 1, λ = 0.9)

Figure 8: Case study on SDSS datasets.

ory allows are pre-fetched, and the remaining memory is used as an
LRU cache of both the leaf nodes and inner array chunks. For 2D
datasets, G-index triggers more index I/Os than U-index as shown
in Expt 7, and hence is omitted in the study below. The results are
shown in Fig. 8(b), with one group of bars per join algorithm and
bars in each group representing different sizes of the inner array.

(1) Comparison to Index Join: IBJ with U-index works poorly, 1
to 2 orders of magnitude worse than SBJ. Based on profiling results
for 1.89M tuples, the index I/O dominates. With store-mean, the
large-variance tuples lead to large range queries on the inner and
most (even all) of the leaf nodes are accessed. With the (rare) ex-
istence of such tuples, the average number of U-index leaf nodes
accessed per outer tuple is 38.9. Further, such tuples destroy the
locality of caching for the same reason. For the 76830 outer tu-
ples, with a 91.2% cache hit rate, the amount of leaf I/Os is already
263498, more than 10 times worse than SBJ. In contrast, store-
multiple addresses large variance tuples with replication and finds
a good tradeoff between tuple replication and query expansion. In
addition, SBJ puts a tight predicate on the inner array to read rel-
evant inner cells, and utilizes the memory to form blocks of outer
tuples so that many of them can share the inner I/Os. As such, SBJ
largely preserves the data locality that the array database provides
for the access to dimension attributes. To verity this, we compared
SBJ with an ideal case where each relevant inner chunk (i.e., con-
taining the join candidates for some outer tuple) is visited exactly
once. SBJ approximates the ideal case with 1.6x-2x I/Os.

(2) Comparison to BNLJ: The difference between SBJ and BNLJ
is magnified as BNLJ scans the whole inner array for each outer
block, which is much bigger in SDSS than the synthetic datasets.

(3) Scalability: SBJ scales the best among the three. For the
same outer block and the same δ, the subarray region formed us-
ing Proposition 4.3 is exactly the same. However, bigger datasets
have more tuples with large possible ranges and increased chance
of having tuple copies in formed subarray regions, which results in
a modest increase of the cost.

Additional results on I/O counts are given in Appendix D.

6. RELATED WORK
Probabilistic processing under the array model. Recent work
[22] observes that correlations in array data are mostly restricted to
local areas and proposes a unified model for modeling both corre-
lated data and physical storage. Monte Carlo processing has also
been studied for join and sampling for uncertain array data [21]. As
stated earlier, this line of work focuses on only value uncertainty in
array data but not position uncertainty, i.e., it does not consider the
fact that uncertain attributes can be used as dimension attributes.
Probabilistic relational databases. There is a large body of work
on probabilistic databases in the relational setting, which addresses
the semantics (e.g., [16, 4, 42]) and efficient query processing (e.g.,

[35, 44, 31, 7]). Systems such as ORION [10, 11, 13, 12] and
CLARO [31, 42] support uncertain data modeled by continuous
random variables, which fit most scientific data. These techniques
can be applied in our system to handle value uncertainty.

Of particular relevance to our work on position uncertainty is
indexing and storing multi-dimensional uncertain data, including
earlier work in ORION [10, 13] and more recent work [41, 26,
20, 31]. They can be leveraged in array databases as well, but can
trigger many index I/O’s (as we showed in §5) and may not be
effective when the filtering power is low. In contrast, we aim to
provide native support in the array model, where logical and physi-
cal localities are better-aligned and the effect of exploiting physical
locality is similar to using a clustered primary index on the tuples
in a relational database, but without having to build the index.

Other indexes [8, 1, 32, 3, 2] are designed for similarity and
nearest-neighbor queries, not directly applicable to our work. [30]
uses secondary storage to record query lineage and efficiently com-
pute tuple existence probabilities, but their focus is on discrete ran-
dom variables in the relational model, not on continuous random
variables in the array model.
Redundant storage for efficient query processing. Also related is
the work on using redundant storage for answering point enclosure
and range queries in an I/O efficient way [34, 24, 5, 45]. To map to
that work, we can translate our subarray query in two steps: First,
find all tuples whose possible ranges (bounding boxes of tuples’
distributions) intersect the query rectangle, which however cannot
be simply solved by point enclosure and range queries [5]. Second,
compute the existence probabilities of candidate tuples and validate
them against a probability threshold, which is CPU-intensive and
not considered in prior work (while our work does).
Spatial databases. Most prior work on spatial databases [41, 14,
19, 43] use the relational model. In contrast, array databases differ
by using a new chunk-based storage scheme that allows objects log-
ically close in an array to be likely to be stored in the same physical
chunk, a key property that our work leverages for performance.

7. CONCLUSIONS
To address the new challenge posed by position uncertainty in

array databases, we proposed a number of storage and evaluation
schemes for Subarray, in particular, the store-multiple scheme, and
building on that, the subarray-based join (SBJ) for Structure-Join.
Our case study on real-world workloads shows that for Subarray,
store-multiple is 1.7x- 4.3x faster than a state-of-the-art index, U-
index, and for Structure-Join, SBJ is 1 to 2 orders of magnitude
faster than U-index based join. Such improvement does not require
pre-built indexes and comes with very limited storage overhead:
for real datasets, over 79% tuples have only 1 copy and over 92%
tuples have at most 3 copies (considering that 3 is the common
number for replication in today’s big data systems).
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APPENDIX
A. MORE ON ARRAY OPERATORS

Below, we survey additional structure operators besides (1) sub-
array and (2) structure-join.

(3) Regrid-Aggregation partitions an input array into non-overlapping
blocks, and for each block, applies an aggregate function to all the
tuples in the block. The output array has one cell for each block
which contains the aggregate value computed. It can be viewed as



repeated application of the Subarray operation to extract each block
and then to compute the aggregate within each block.

When the dimension attributes are uncertain, one can use the
Probabilistic Subarray operator to extract the tuples that belong to
each block with non-zero probabilities (a superset of those that are
physically stored in the block). Note that even if a tuple belongs to a
block with a small probability, if its aggregate attribute has a large
value, it can still contribute a modest value, which is the product
of its attribute value and existence probability, to the aggregate.
Hence, the probability threshold for tuple existence in Subarray
should be set to 0 in theory, or a small value in practice.

(4) GroupBy-Aggregation takes three arguments including an input
array Ad, a list of grouping dimensions Gd1 , where d1 ≤ d, and an
aggregate function. Again, it can be viewed as repeated application
of Subarray to construct array blocks corresponding to the groups
and then computing the aggregate within each block.

As shown above, Subarray and Structure-Join are the two most
important primitives in array algebra. Hence, we focus on efficient
implementation of them under position uncertainty in this paper.

B. PROOFS
B.1 Proof of Proposition 3.2

PROOF. We can pick a subset of cells from the region C(Rt) =
A[l1 : u1, l2 : u2, · · · , ld : ud] as follows: C′ = {A[x1, x2,
· · · , xd]| ∀i ∈ {1, 2, . . . , d}, xi = li + pi(2ki + 1) and li ≤
xi ≤ ui, where pi ∈ {0} ∪ N}. Obviously, the size of the set of
picked cells |C′| is

Qd
i=1 (b(ui − li)/ (2ki + 1)c+ 1). Based

on Definition 3.3, if we can prove that at least |S′| cells are already
needed just to cover C′, then at least |C′| cells are needed to cover
the superset C(Rt).

Let us assume a cell A[x1, x2, · · · , xd]∈C′ is covered by (the
walk from) a cell A[y1, y2, · · · , yd]. This means yi−ki ≤ xi ≤
yi+ki on any dimension i. For any cell A[x′1, x

′
2, · · · , x′d] ∈ C′−

{A[x1, x2, · · · , xd]}, there exists a dimension j such that xj 6=
x′j . Without loss of generality, assume x′j = xj + pj(2kj + 1)
where pj ∈ N. Then x′j ≥ yj − kj + pj(2kj + 1) > yj + kj ,
which means A[x′1, x

′
2, · · · , x′d] does not fall in the covering range

of A[y1, y2, · · · , yd]. Therefore, no two cells in C′ can be covered
by the same cell. In other words, at least |C′| cells are needed in
order to cover C′. Then to cover C(Rt), a superset of C′, at least
|C′| =

Qd
i=1 (b(ui − li)/(2ki + 1)c+ 1) cells are needed.

B.2 Proof of Proposition 4.1
In §2.1, we define a tuple’s possible range as a hyper-rectangle

within which the tuple existence probability is (approximately) 1.
Before we prove Proposition 4.1, let us define it formally.

Definition B.1 (Possible Range) For a tuple whose dimension at-
tributes are modeled by a joint distribution f(x), its possible range
on dimension i is (li, ui) such that

R li
−∞ f(xi)dxi=ε/2 and

R +∞
ui

f(xi)dxi=ε/2, where f(xi) is the marginal distribution of f(x)
on dimension i and ε is 0 or a sufficiently small positive number.

For queries considered in this paper, the query threshold λ should
be (much) greater than ε. Below we prove Proposition 4.1.

PROOF. We prove by contradiction. Consider a tuple pair (tA, tB)
returned by SJoin. Assume that there exists a dimension di where“
ldi
tA−δ, udi

tA +δ
”

and
“
ldi
tB , u

di
tB

”
do not overlap, i.e., ldi

tA −δ >

udi
tB or udi

tA + δ < ldi
tB . Without loss of generality, let us assume

ldi
tA − δ > udi

tB . Below we focus on computing probability p =RR
θ
ftA(x)ftB(y)dxdy where the integration domain θ is {(x,y)|

yi =xi+�

yi =xi ��

xi

yi

ltA.di
+�

ltA.di
��

ltA.di

p̃3

p̃1

p̃2

utB.di

Figure 9: Illurstraion of p̃ = p̃1 + p̃2 + p̃3.Vd
i=1|xi−yi|<δ}. We start with finding an upper bound. Relaxing

the join condition by only considering dimension di, we have:

p<

ZZ
|xi−yi|<δ

ftA(x)ftB(y)dxdy =

ZZ
|xi−yi|<δ

ftA.di(xi)ftB.di(yi)dxidyi.

It means the probability for (tA, tB) to satisfy the join predicate is
upper bounded by the probability for their values on dimension di
to satisfy the join predicate on dimension di, denoted as p̃. The
integration domain is colored in Fig. 9 and partitioned into three
parts. Denote the probability mass of each partition as p̃1, p̃2 and
p̃3 respectively. Below we derive the upper bound for each of them
by applying the assumption.
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Finally we have p < p̃ = p̃1 + p̃2 + p̃3 = ε < λ, which
means (tA, tB) can never be in the join result. Then we reach a
contradiction and thus the assumption is wrong.

C. IMPLEMENTATION DETAILS
Our implementation follows the append-only and columnar stor-

age design as used in SciDB [9]. To illustrate, we show the storage
of three tuples, colored in yellow, red and green respectively, in
Fig. 10, which each have two dimension attributes, (x_loc, y_loc),
and one value attribute, luminosity. The logical structure of the
array is determined by applying a user-defined discretization func-
tion, e.g., floor, on the dimension attributes, so that the cells along
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Figure 10: Implementation details

each dimension attribute have index values 0, 1, 2, . . . Given a new
batch of tuples, the insertion routine takes two steps (which can be
easily modified to support tuple insertion one-at-a-time):

1. Placement in the logical array: The insertion routine first
iterates over the tuples. Based on the values of a tuple’s dimension
attributes and the storage-scheme in use (e.g., store-mean or store-
multiple), it determines which logical cell(s) the tuple belongs to.
At the end, each logical cell obtains a list of tuples to insert into.

2. Vertical partitioning and chunking: In physical storage, at-
tributes of tuples are vertically partitioned and written to multiple
arrays that share the same logical structure. In our implementation,
the dimension attributes are stored in one array as they are usually
queried together, which we call the dimension attribute array, and
each value attribute is stored in its own array, called the value at-
tribute array. Fig. 10(B) shows the storage of three tuples in two
arrays of the same logical structure, one for the dimension attributes
(x_loc,y_loc) and the other for the value attribute luminosity.

In the second step of the insertion routine, we iterate over the
logical cells. For each logical cell and its associated tuples, we par-
tition the attributes of tuples into the dimension attribute array and
value attribute arrays. In a (dimension or value) attribute array, each
cell stores tuple attributes in a series of chunks (which is the physi-
cal storage unit). Note that the cell id and the insertion order of a tu-
ple in a cell are the same across all the attribute arrays. This allows
us to easily reconstruct the tuple with all relevant attributes in query
processing, which is a standard technique in column databases. For
example, in Fig. 10(B), tuple t2 is the first tuple in cell [5, 4], and
its (x_loc,y_loc) values and the luminosity value are stored as the
first item in chunk 3 and chunk 4, respectively.

There is system metadata that records the first chunk, illustrated
by the dashed arrows in Fig. 10(B), and the last chunk for each cell.
Each chunk has a chunk header and stores multiple tuples. The
chunk header consists of the address of the next overflow chunk
(if any) with a default value -1, the number of tuples in the cur-
rent chunk and a pointer to the free space in the current chunk. In
Fig. 10(B), cell location[1, 2] has more than one chunks and the
luminosity value of tuple t1 is stored in the second chunk.

Indexes can be built on top of each attribute array (usually only
on the copy of a tuple at the mean position). Each entry in the leaf
nodes stores the chunk id and insertion order of the corresponding
tuple in that cell. As shown in Fig. 10(C), there is one index on

Datasets (tuples) 1.89M 10.3M 30.2M 90M
Memory 29.5MB 163MB 806.6MB 2.4GB

Cache size (4K pages) 7174 39631 196167 607012

U-index non-leaf 5256 28722 83388 242217
leaf 98062 535182 1561376 4515894

G-index non-leaf 1332 7176 20858 62038
leaf 70469 384988 1123279 3350078

Table 5: Cache size and node counts for different datasets.

(x_loc, y_loc) and another on luminosity, and the entries for tu-
ple t2 in the indexes store the chunk id 3 and 4, respectively, with
the same insertion order 1. Given a query on the dimension at-
tributes (a focus of this paper), the index on the dimension attribute
array can be used to identify relevant tuples. If the query requires
other attributes to be accessed or returned, the additional attributes
of those tuples are fetched from other attribute arrays, using stan-
dard operations in column databases.

D. MORE DETAILS ON CASE STUDY
Query in the case study for structure-joins:

SELECT R.objID, R.rowc, R.colc, R.psfMag_u,
R.psfMag_g, R.psfMag_r, R.psfMag_i, R.psfMag_z,
R.extinction_u, R.extinction_g, R.extinction_r,
R.extinction_i, R.extinction_z, S.objID, S.rowc,
S.psfMag_u, S.psfMag_g, S.psfMag_r, S.psfMag_i,
S.psfMag_z, S.extinction_u, S.extinction_g,
S.extinction_r, S.extinction_i, S.extinction_z

FROM PhotoObj_0 as R, PhotoObj as S
WHERE R.rowc>a1 and R.rowc<b1 and R.colc>a2

and R.colc<b2 and |R.rowc-S.rowc|<1
and |R.colc-S.colc|<1

Analysis of indexing schemes: As mentioned previously, we
consider two state-of-the-art indexing techniques for uncertain data
in comparison. G-index[31] is designed for uncertain data mod-
eled by (multivariate) Gaussian distributions. It consists of n two-
dimensional R-trees for n-dimensional datasets, one R-tree per di-
mension. In each tree, tuples are clustered based on the mean and
variance of the corresponding dimension, rather than the mean val-
ues of all dimensions. For datasets with n = 1, G-index returns
exactly the true matches; for datasets with n > 1, the intersec-
tion of the candidates retrieved by all n R-trees forms a superset of
the true matches. Note that G-index has great filtering power af-
ter the intersection, but each single tree actually touches many leaf
nodes because it is not aware of the constraints on other dimen-
sions. The above discussion suggests that G-index is not suitable
for the I/O-bound query processing on multi-dimensional datasets.
This analysis is also validated in Experiment 7.

U-index is a variant of R-tree on multi-dimensional uncertain
data (e.g., x_loc and y_loc), with each node storing statistical in-
formation (i.e., probabilistically constrained rectangles and side
lengths) to facilitate queries on uncertain data.

The page size is 4KB, which allows a fanout of 78 for G-index
and 30 for U-index when U-catalog size is 3 (suggested in [41]).
Table 5 shows, for each dataset, the number of index nodes that can
be cached in memory, as well as a breakdown of non-leaf and leaf
nodes. We see that all non-leaf nodes can be cached in memory.

I/O counts of index and subarray based schemes: Besides
time measurements reported in previous experiments, we further
show the I/O cost, measured in page counts, incurred in the SDSS
case study. The page counts in Experiment 6 and Experiment 7 are
shown in Fig. 11. The observations are consistent with Fig. 8(a)
and Fig. 8(b) because the I/O cost dominates. These observations
suggest that building R-tree based indexes for dimension attributes
on top of arrays can not easily offer performance benefits because
the dimension attributes in arrays naturally serve as the clustered
indexes without having to pay the index I/Os.
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(a) Subarray on SDSS when λ=0.9 with varied q
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(b) Structure-Join on SDSS when δ=1 and λ=0.9

Figure 11: I/O counts of Subarray and Structure-Join on SDSS datasets.

E. REAL-WORLD APPLICATIONS
We begin by explaining other scientific applications that can ben-

efit from our work, besides SDSS used in our case study.
The most notable example is the Large Synoptic Survey Tele-

scope (LSST) [28], which is currently in the design phase and
marks the next-generation technology for digital sky surveys. It
will ultimately store 55 PB of raw imagery, with astronomy-specific
feature extraction to find observations of interesting astronomical
objects (such as stars and galaxies). Since LSST adopts the array
database design and the schema of the Digital Sloan Sky Survey
(SDSS), our work is directly applicable to LSST.

Another application is severe weather monitoring [27], where
scientists have developed distributed radar sensor networks for de-
tecting hazardous weather events like tornados and severe storms.
Recent work has developed a data cooking process to produce con-
tinuous probability distributions for key meteorological measures,
e.g., wind velocity and reflexivity, for each voxel of the air in the
Polar coordinate system that radar nodes use. Based on recent con-
versation with the scientists, they also plan to transform the cooked
data into the Cartesian coordinate system so that data produced by
different radar nodes can be aggregated. Due to the difference be-
tween Polar and Cartesian coordinate systems, the data transforma-
tion between them will also introduce location uncertainty regard-
ing where the specific wind velocity and reflexivity were observed.
Once the radar data is brought into the Cartesian system and rep-
resented using multi-dimensional arrays, our system can be used to
address both value and position uncertainty.

Array databases are also gaining adoption in other disciplines in-
cluding oceanography, atmospheric sciences, climatology, remote
sensing, and seismology [9, 15]. Many of them involve locations
of measurements and such locations can be uncertain due to de-
vice accuracy. As array databases emerge as an alternative to re-
lational databases or spatial databases built on the relational model
for managing scientific data, our work can be integrated into array
databases to address position uncertainty and value uncertainty.

E.1 Coordinate Systems and Complex Queries
In real applications, the domain experts design the data cook-

ing process and select the dimension attributes. Depending on the
selected dimension attributes, the positions of tuples may not be
modeled in the Cartesian coordinate system. However, once the
domain experts choose the dimension attributes and the function
to discretize each dimension attribute into index values, the logical
structure of the array is determined as we define in §2.

Our store-multiple scheme takes the logical structure of the ar-
ray as input and decides to place the (limited) tuple replicas with
even spacing within the logical structure of the array, not within the
actual physical space. As such, it does not need to make an assump-

tion of the coordinate system, and is not restricted to the Cartesian
coordinate system only.

Support of SDSS: Consider objects in SDSS. The attributes,
(rowc, colc), are the row and column center positions, which can
serve as dimension attributes. In addition, the attributes, (ra, dec),
for the right-ascension and declination in the spherical coordinate
system can also be used as dimension attributes.

To compute neighbor pairs of objects in SDSS, a basic approach
is to write the predicate as “|A.ra−B.ra|<r∧|A.dec−B.dec|<r”
as shown in [23]. This is a Structure-Join of array A and B on
dimension ra and dec within a “band” width r. It can be directly
supported under the store-multiple scheme, as discussed in §4.

In coordinate systems other than the Cartesian, query predicates
can also become more complex. Revisit the above example. Since
the sphere is round, if the scientists require a more accurate eval-
uation, the predicate on ra needs to be corrected, for the fact that
the right-ascension is “compressed” by cos(dec) as it moves away
from the equator, to |A.ra−B.ra| < r/| cos(A.dec) + ε| [23].
For this specific predicate, during the evaluation of the join, as we
read each cell in the outer array A, based on the range of dec it
covers, we can relax the predicate by plugging in the bounds of
cos(A.dec). Then the only difference to the Structure-Join in §4 is
that instead of having a fixed band width δ for all the outer cells,
each outer cell will have its own band width computed based on
the dec range it covers. The subarray-based joins can be executed
with a modest change. Finally the retrieved tuples will be validated
against the accurate predicate. For predicates that are not able or
hard to be relaxed to a Subarray or a Structure-Join, to apply our
techniques, a backup solution is to convert the original coordinate
system to a new one where predicates can be directly written as or
easily relaxed to them. The conversion between common coordi-
nate systems is well studied and beyond the scope of this paper.

E.2 Cells versus Chunks
A chunk is the I/O unit. The chunk size in the real-world appli-

cations varies a lot and can be very skewed, e.g., the chunks for the
Automatic Identification System data have a median size of 924B,
with a standard deviation of 232MB [18]. Depending on the chunk
size, a cell, which is the logical unit, can contain multiple chunks
and multiple cells can be packed into one chunk as well.

There is no universally optimal chunk size. Selective queries can
benefit from a relatively small chunk size by reducing the overhead
of reading unnecessary data. On the other hand, a big chunk size
can potentially reduce the random seeks for non-selective queries.

For both reasons, we do not make explicit assumptions on the
chunk size. We believe the choice of the chunk size will not change
our main results that are based on the design of logical structure. By
default, we use the standard page size as the chunk size.


