
On Supporting Kleene Closure over Event Streams

Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao and Neil Immerman
Department of Computer Science, University of Massachusetts Amherst

{dpg, jagrati, yanlei, immerman}@cs.umass.edu

Abstract— Complex event patterns involving Kleene closure
are finding application in a variety of stream environments for
tracking and monitoring purposes. In this paper, we propose
a compact language, SASE+, that can be used to define a wide
variety of Kleene closure patterns, analyze the expressive power
of the language, and outline an automata-based implementation
for efficient Kleene closure evaluation over event streams.

I. INTRODUCTION

Complex event processing is a new stream processing
paradigm where continuously arriving events are matched
against complex patterns and the events used to match each
pattern are transformed into new events for output. Of partic-
ular interest are Kleene closure patterns that can be used to
extract from the input stream a finite yet unbounded number
of events with a particular property. Such patterns are finding
application in a growing number of areas including financial
services, RFID-based inventory management, click stream
analysis, and electronic health systems.

While Kleene closure has been proposed and well studied
for regular expression matching, Kleene closure over event
streams has the following features that fundamentally dis-
tinguish it from conventional regular expression matching.

Relevant Event Definition: Sophisticated predicates de-
fine what events are relevant to Kleene closure. Such pred-
icates may specify constraints on a value of an individual
event, on how this value compares to that of a previous event,
or how this value compares to an aggregate value computed
from a series of earlier events.

Event Selection Strategy: Kleene closure over streams
also requires flexibility in deciding how to select relevant
events from a stream mixing relevant and irrelevant events.
Some queries only intend to select relevant events contiguous
in the input, while others want to sift out relevant events from
interleaving irrelevant ones.

Termination Criteria: Since the input is an infinite
stream and queries can proceed as far as possible by skipping
irrelevant events, the termination criteria in this problem also
differ from regular expression matching where the input is a
finite string and the finite automata for matching have limited
flexibility in skipping characters.

Despite recent interest in event processing, Kleene clo-
sure over streams remains insufficiently addressed. Event
languages for active databases [3], [10] offer temporal
operators including variants of Kleene closure, but do not
support complex predicates to compare events. As we shall
show, such predicates are crucial to Kleene closure patterns.
Relational stream systems [2], [4] use windowed joins to
specify event patterns. Joins, however, are inherently unable

to express Kleene closure, as the number of inputs that may
be involved is a priori unknown.

In this paper, we present the design, analysis, and im-
plementation of SASE+, an event language that supports
Kleene closure over streams. Our first contribution is the
design of a compact, rich language that allows patterns to
be fully defined regarding the relevant event definition, event
selection strategy, and termination criteria. The language
further allows complete pattern matches to be output to
end applications. Our second contribution is an analysis
of the expressive power of SASE+ and its relationship
with recent relevant event languages. The results of this
analysis are summarized in this paper. Our third contribution
is an automata-based approach to efficient Kleene closure
evaluation over event streams, which is only briefly outlined
in this paper due to space constraints.

II. THE SASE+ EVENT LANGUAGE

In this section, we present the underlying event stream
model and introduce the reader to SASE+.

Our proposed language uses the following event model.
An event stream is an infinite sequence of events, and each
event represents an occurrence of interest at a point in
time. An event contains the name of its event type and
a set of attribute values. Attributes can take complex data
types, which are categorized along two dimensions: the first
makes a distinction between atomic types, whose values are
indivisible, and sequence types, whose values consist of a
sequence of values; the second distinguishes between simple
types, which are not defined in terms of other data types, and
composite types, which are. The event model allows com-
binations along both dimensions (examples are presented
shortly). Each event also has a special time attribute that
is set by the event provider to capture the occurrence time
of the event. In this work, we assume that events arrive in
order of the occurrence time.

A. Overview of the Language
SASE+ is a declarative language for specifying complex

event patterns over streams. It extends the SASE language
that we proposed previously [9] with Kleene closure. The
overall structure of SASE+ is shown in Figure 1(a).

The FROM clause specifies the input stream to a query,
which can be the default input stream to the system or the
result stream of another query. We survey other constructs
of the language through examples below. For ease of com-
position, these constructs are described by first considering
events of simple-atomic data types and then adding addi-
tional constructs to handle more complex data types.

(a) Language Structure of SASE+:

FROM <input stream>
 PATTERN <pattern structure>
 [WHERE <pattern matching condition>]
 [WITHIN <sliding window>]
 [HAVING <pattern filtering condition>]
 RETURN <output specification>

(c) Query 2:
FROM InputStream
 PATTERN SEQ(Alert a, Shipment+ b[])
 WHERE skip_till_any_match(a, b[]) {
 a.type = 'contaminated'
 and b[1].from = a.site
 and b[i].from = b[i-1].to }
 WITHIN 3 hours
 RETURN a.type, a.site, b[].to

(b) Query 1:
FROM InputStream
 PATTERN SEQ(Start a, RFID+ b[], End c)
 WHERE skip_till_next_match(a, b[] !, c) {
 [loading_dock]
 and a.session_id = c.session_id
 and b[i].packaging_level = 'pallet' }
 RETURN a.session_id, count(b[]),
 b[].(tag_id, reader_id)

Fig. 1. Example queries expressed in SASE+.

Query 1 in Figure 1 counts the pallets read by an RFID
reader at a loading dock. The PATTERN clause specifies
a sequence pattern with three components: the first and
the third refer to the events sent by the control system to
signal the start and the end of a loading session; the second
component addresses one or more readings in the session
using the Kleene plus operator ‘+’. Each component declares
a variable to refer to the corresponding event(s), in particular,
an array variable (“[]”) for a Kleene plus component.

The WHERE clause further refines the constraints on the
addressed events. (For now, focus on the predicates enclosed
in { }.) The first predicate, [loading dock], requires all the
events to refer to the same loading dock. It is called an
equivalence test as in SASE. The second predicate requires
the start and end events to match on the session id. The
third predicate, used with the Kleene plus, selects only the
readings of pallets; it uses the b[i] variable (where i ≥ 1) to
specify the requirement that “every” relevant reading refer
to a pallet, hence called as an iterator predicate.

Each match of the pattern consists of a unique sequence of
events, stored in a, b[], and c. For each match, the RETURN
clause creates an event with three attributes. In particular,
b[].(tag id, reader id) selects the tag id and reader id from
each pallet reading and converts them into a composite type,
resulting in an attribute of the sequence-composite type.

Query 2 shows an example in food supply chain monitor-
ing. It captures an alert for a contaminated site and reports
a unique series of infected shipments in each pattern match.
A Kleene plus is used to compute each series of shipments,
with b[1] referring to the shipment from the origin of con-
tamination, and b[i] referring to each subsequent shipment
infected via collocation with the previous one. The WITHIN
clause constrains the pattern to a 3 hour period.

The structure of the pattern and associated predicates form
the first dimension of the Kleene closure definition, which
we call relevant event definition.

B. Event Selection Strategies
A second dimension of the Kleene closure definition,

event selection strategy, addresses how to select the rel-
evant events from an input stream mixing relevant and
irrelevant events. SASE+ offers significant flexibility in event
selection, hence able to support a wide range of applications.

Strict contiguity. In the most stringent event selection
strategy, two selected events must be contiguous in the input
stream. This requirement is typical in regular expression
matching against strings, DNA sequences, etc.

Partition contiguity. A relaxation of the above is that
two selected events do not need to be contiguous; however, if
the events are conceptually partitioned based on a condition,
the next relevant event must be contiguous to the previous
one in the same partition. In SASE+, the equivalence tests,
e.g. [loading dock] in Query 1, are commonly used to form
partitions, as they amount to partitioning the stream on
the specified attribute and matching the pattern in each
partition. Partition contiguity, however, is not flexible enough
to support Query 1, where readings of pallets can be mixed
with readings of cases and items.

Skip till next match. A further relaxation is to remove
the contiguity requirements: all irrelevant events will be
skipped until the next relevant event is read. As such, Kleene
closure will go as far as possible to select the next relevant
event until its termination criteria (explained shortly) are
met. Using this strategy, Query 1 can conveniently ignore
readings of items and cases. This strategy is important in
many real-world scenarios where some events in the input
are the “semantic noise” to a particular pattern and should
be skipped to enable the evaluation to continue.

Skip till any match. Finally, skip till any match relaxes
the previous one by further allowing non-deterministic ac-
tions on relevant events. Query 2 illustrates this use. Suppose
that the last shipment selected by the Kleene plus reaches
the location X. When a relevant shipment, e.g. from X to Y,
is read from the input stream, skip till any match has two
actions: (1) it selects the event in one instance of execution
to extend the current series, and (2) it ignores the event in
another to preserve the current state of Kleene closure, i.e.
location X, so that a later shipment, e.g. from X to Z, enables
a different series to be instantiated. This strategy essentially
computes the transitive closure on a subset of events (e.g.
all infected shipments in three hours).

Event selection strategies can be applied beyond Kleene
closure to all the events selected in a pattern match. In
SASE+, the strategy used in a query is declared as a function
in WHERE that includes the pattern variables as arguments
and encloses all the predicates in its body. Further, different
strategies can be used for different pattern components,
expressed as a series of functions, one for each pattern
component over its variable. The interested reader is referred
to [1] for more details.

C. Termination Criteria
A third dimension in the Kleene closure definition relates

to its termination criteria. With contiguity requirements,

2

Kleene closure terminates when the next event in the input or
a particular partition fails to satisfy the relevant predicates.
However, when event selection is relaxed to skip till next
match or further, Kleene closure does not terminate at this
point due to its ability to skip irrelevant events. To ensure
expected results while avoiding unnecessary work, SASE+
offers two ways to terminate each Kleene plus in the pattern.

Time constraint. A common type of termination uses a
time constraint. For a pattern like SEQ(A+ a[]), a query can
use the predicate a[a.LEN].time - a[1].time < T to specify
a time window on the Kleene plus, where a[a.LEN] refers
to the last event selected for each match. If the query has
the WITHIN clause, the time window for the entire pattern
is also applied to every Kleene plus in the pattern.

Minimal effort. A second type of termination is to allow
Kleene closure to perform minimal computation and then
break. It is often used as an optimization to save work. For
instance, the Kleene plus in Query 1 can stop as soon as the
event signaling the end of the session is read; continuing the
Kleene plus further will not produce any result. To do so,
the forced break operator, ‘!’, is appended to the Kleene plus
variable in the event selection strategy declaration. However,
caution should be taken when using ‘!’ as it may produce
only a subset of the desired results. For example, applying
‘!’ to Query 2 will produce only one series of infected
shipments, while the query intends to return all unique series.
The semantic correctness of ‘!’ is query-specific and the
appropriate decision is left to the discretion of the user.

We briefly remark on other features of SASE+. SASE+
offers a HAVING clause that filters each pattern match by
applying predicates on the constituent events. The distinction
between WHERE and HAVING in SASE+ is analogous to that
in SQL. The difference is that HAVING is applied to each
pattern match in SASE+ whereas it is applied to each group
created by GROUP BY in SQL. SASE+ also allows negation
to be applied to Kleene closure. Aggregation functions
can be applied to WHERE, HAVING, and RETURN clauses.
Finally, SASE+ supports two output formats: the default
format returns all matches of a pattern, while NON-OVERLAP
outputs only one among those that satisfy the same partition
condition and overlap in time. Examples of these features
are omitted here and are available in [1].

D. Extension for Complex Data Types
SASE+ queries can be composed to detect more complex

patterns. To do so, the output stream of one query is named
and fed as input to another query. The language presented
thus far supports composition if the output events of the
first query contain only simple-atomic attributes. As the
above queries show, the output events may also contain
complex data types such as sequence-composite. To handle
such events, SASE+ leverages XML as the event encoding
scheme and adopts several features of XQuery for more
advanced event processing: The ‘.’ operator for retrieving
an attribute (e.g. a.type) from a tuple-based event is replaced
by the path operators (e.g. ‘/’ and ‘//’) for hierarchical data.
Further, the comparison operators are overloaded with those

in XQuery, including general comparison operators (e.g. ‘=’)
for existentially qualified comparisons between sequences.

III. EXPRESSIBILITY OF SASE+
We summarize results about the expressibility of SASE+

below. We can show that SASE+ has a close correspondence
with certain low-level complexity classes. Namely, when we
restrict queries to use only (1) strict or partition contiguity,
(2) these or skip-till-next-match, or (3) the full language, re-
spectively, we obtain robust subsets of the complexity classes
(1) NC1, (2), DSPACE[log n], and (3) NSPACE[log n] [8].
In each case, the subsets include complete problems for the
relevant classes.

These results also allow us to show that SASE+ is much
more expressive than standard languages such as the regular
languages and temporal logic [5]. Further, existing stream
languages such as SQL-TS [7] and Cayuga [6] can be
mapped to strict sublanguages of SASE+. SQL-TS adds a
pattern matching part to SQL to handle Kleene closure. The
expressive power of this extension can be shown to be the
same as SASE+ without negation and restricted to strict or
partition contiguity. We can also show that Cayuga amounts
to SASE+ using partition contiguity or skip till next match
but without a negation operator.

IV. AN AUTOMATA-BASED APPROACH

We propose a new automaton model, NFAb , that consists
of a nondeterministic finite automaton and a match buffer,
to formally define the semantics of SASE+ including all its
semantic variations. This model is crucial for understanding
the meanings of queries and for producing efficient query
plans that faithfully implement them. To generate NFAb

based query plans, we propose compilation techniques that
translate SASE+ queries into these plans and optimizations
that improve these plans for more efficient evaluation. We
further design a runtime system that evaluates these plans
over event streams. Our runtime optimizations exploit shar-
ing in both storage and processing of NFAb evaluation.

Acknowledgments. This work has been supported in part
by a gift from Cisco.

REFERENCES

[1] J. Agrawal, Y. Diao, et al. On supporting kleene closure over event
streams. Technical Report 07-03, UMass Amherst, 2007. http://
www.cs.umass.edu/∼yanlei/sase-plus.pdf.

[2] A. Arasu, S. Babu, and J. Widom. CQL: A language for continuous
queries over streams and relations. In DBPL, pages 1–19, 2003.

[3] S. Chakravarthy, V. Krishnaprasad, et al. Composite events for active
databases: Semantics, contexts and detection. In VLDB, 606–617, 1994.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, et al. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In CIDR, 2003.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, MA, 1999.

[6] A. J. Demers, J. Gehrke, M. Hong, et al. Towards expressive
publish/subscribe systems. In EDBT, pages 627–644, 2006.

[7] R. Sadri, C. Zaniolo, et al. Expressing and optimizing sequence queries
in database systems. ACM Trans. Database Syst., 29(2):282–318, 2004.

[8] H. Vollmer. Introduction to Circuit Complexity. Springer, Berlin, 1999.
[9] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event

processing over streams. In SIGMOD, pages 407–418, 2006.
[10] D. Zimmer and R. Unland. On the semantics of complex events in

active database management systems. In ICDE, pages 392–399, 1999.

3

