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ABSTRACT
Uncertain data management is becoming increasingly important in
many applications, in particular, in scientific databases and data
stream systems. Uncertain data in these new environments is natu-
rally modeled by continuous random variables. An important class
of queries uses complex selection and join predicates and requires
query answers to be returned if their existence probabilities pass a
threshold. In this work, we optimize threshold query processing for
continuous uncertain data by (i) expediting joins using new indexes
on uncertain data, (ii) expediting selections by reducing dimension-
ality of integration and using faster filters, and (iii) optimizing a
query plan using a dynamic, per-tuple based approach. Evaluation
results using real-world data and benchmark queries show the accu-
racy and efficiency of our techniques and significant performance
gains over a state-of-the-art threshold query optimizer.

1. INTRODUCTION
Uncertain data management is becoming increasingly important

in a wide range of applications. Much research in the literature has
been motivated by traditional applications such as data integration,
information extraction, and sensor networks. Recent studies have
shown that uncertain data management also plays a key role in large-
scale scientific applications including severe weather monitoring
[23] and computational astrophysics [20, 21]. The recent initiative
to build professional data management and analytics software for
scientific research [11] has further confirmed that almost all scien-
tific data that results from real-world measurements is uncertain,
and hence capturing uncertainty from data input to query output is a
key component of the scientific data management system.

A Motivating Application. Let us consider computational as-
trophysics for a concrete example. The Sloan Digital Sky Survey
(SDSS) benchmark [21] and the ArrayDB benchmark show the fol-
lowing characteristics of the uncertain data management problem:

Continuous uncertain data. Most attributes that resulted from sci-
entific measurements or their data cooking processes are uncertain.
These attributes are naturally modeled by continuous random vari-
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ables. Gaussian distributions are the most commonly used distribu-
tions [20, 21] while more complex distributions such as asymmetric
and bimodal distributions can be useful in special domains such as
tornado detection [23]. As a concrete example, the Galaxy table in
the SDSS archive has 297 attributes, out of which 151 attributes are
uncertain. (The schema is partially shown in Appendix A.)

Complex selection and join predicates. An important class of
queries employs a Select-From-Where SQL block using a wide
variety of predicates. Queries Q1 and Q2 from the SDSS bench-
mark (shown in Appendix A) involve four types of predicates: (i)
predicates on deterministic attributes, (ii) range predicates on a
single uncertain attribute, e.g., the first selection predicate in Q1;
(iii) multivariate linear predicates on uncertain attributes, e.g., the
second and third join predicates in Q2; (iv) multivariate quadratic
predicates on uncertain attributes, e.g., the last selection predicate
in Q1 and the last join predicate in Q2. Each query can have an
arbitrary mix of these types of predicates.

Efficient processing of threshold queries. Given uncertainty of
input data, the user would want to retrieve query answers of high
confidence, reflected by high existence probabilities of these an-
swers. A common practice is that the user specifies a threshold so
that only those tuples whose existence probabilities pass the thresh-
old are finally returned. In many scenarios, such threshold queries
need to be processed efficiently, for instance, in near real-time to
detect dynamic features, transient events, and anomalous behaviors,
or with short delay to support interactive analysis where scientists
issue explorative queries and wait for quick answers online.

Most work on probabilistic databases models uncertain data using
discrete random variables and evaluates queries based on the possi-
ble worlds semantics (e.g., [5, 12, 24]). Recent work has argued for
using new techniques natural to continuous random variables [20],
and showed significant performance gains of such techniques over
discretization or Monte Carlo simulation for evaluating relational
operators [23] and for ranking [15]. CLARO [22, 23] and ORION [17,
19] are two state-of-the-art systems that provide native support of
queries on continuous uncertain data (without using discretization
or sampling). CLARO, however, does not consider the threshold
in query processing; a naive extension that applies the threshold
filter at the end of query processing wastes a lot of computation
on nonviable answers. ORION has general evaluation strategies for
selection-projection-join queries, but lacks optimizations of queries
with complex predicates such as those in Q1 and Q2. Furthermore,
its query optimizer uses simple static query plans and results in
inefficient execution, which we show later in this paper.

Contributions. In this paper, we address efficient threshold query
processing on continuous uncertain data. We support selection-join-
projection queries with a threshold on the existence probabilities
of query answers. We propose to optimize such query processing



using a suite of new techniques grounded in statistical theory and a
new design of the query optimizer. Our contributions include:

Selections (§3): Selections with complex predicates on continu-
ous uncertain data often involve high-dimensional integrals such as
with Q1 and Q2. In this work, we propose optimizations to reduce
dimensionality of integration. We further develop fast filters for a
wide range of predicates which efficiently compute an upper bound
of the probability that a tuple satisfies the predicates. Hence, these
filters can be used to prune tuples quickly.

Joins (§4): Joins on continuous uncertain data have traditionally
used the strategy of a cross-product followed by a selection. This
strategy can be highly inefficient as it may generate a large number
of intermediate tuples. A join index can potentially prune many
intermediate tuples. However, the design of a join index for continu-
ous uncertain data is challenging because the index not only stores
continuous distributions, but also takes a search condition based on
the distribution from the probing tuple, which is not deterministic,
and returns all candidates that can potentially produce join results
that pass the threshold filter. The (only) relevant type of join in-
dex [9, 10] is based on primitive statistical results and has limited
filtering power. We propose several new indexes based on much
stronger statistical results and support a range of join predicates.

Query optimization (§5). Query optimization for continuous
uncertain data fundamentally differs from traditional query opti-
mization because selectivity becomes a property of each tuple that
carries a distribution. Depending on the attribute distribution, the
optimal plan for one tuple can be bad for another tuple. This change
dictates per-tuple based query planning. Furthermore, in data stream
systems the selectivity of operators cannot be estimated until the
tuple arrives, and the selectivity of post-join operators cannot be
estimated until the join results with new joint distributions are pro-
duced. Hence, selectivity estimation and query planning need to be
performed during query execution. We design a query optimizer
that supports such dynamic, per-tuple based planning at a low cost.

Evaluation (§6). Using real data and benchmark queries from
SDSS, we demonstrate the accuracy and efficiency of our join in-
dexes, selection filters, and optimization technique. Our results
further demonstrate remarkable performance gains over the state-of-
the-art join indexes [9, 10] and optimizer for threshold queries [17].

2. BACKGROUND
In this section, we present a data model for probabilistic query

processing on continuous uncertain data. This model provides a
technical context for our discussion in later sections.

Probability distributions. A Gaussian Mixture Model (GMM)
describes a probability distribution using a convex combination of
Gaussian distributions. A multivariate Gaussian Mixture Model
(multivariate GMM) naturally follows from the definition of mul-
tivariate Gaussian distributions. We include their definitions in
Appendix B. GMMs offer two key benefits to uncertain data man-
agement: First, theoretical results have shown that GMMs can ap-
proximate any continuous distribution arbitrarily well [13]. Hence,
they are suitable for modeling complex real-world distributions.
Second, GMMs allow efficient computation of relational operators
based on Gaussian properties and advanced statistical theory as
shown in our prior work [23] and later sections in this paper.

Data model. We consider an input data set that follows the
schema A

d ∪A
p. The attributes in A

d are deterministic attributes,
like those in traditional databases. The attributes in A

p are continuous-
valued uncertain attributes, such as the location of an object and
the luminosity of a star. In each tuple, A

p is modeled by a vector
of continuous random variables, X, that has a joint pdf, fAp (x).
According to the schema, A

p can be partitioned into independent

groups of correlated attributes. Each group of correlated attributes
can be modeled by a (multivariate) GMM denoted by f j(xj). Then
the joint distribution for A

p can be written as ∏j f j(xj). For sim-
plicity, we use A to refer to uncertain attributes when our discussion
focuses on uncertain attributes only. This model can be extended to
address inter-tuple correlation by leveraging existing work [19] (for
details, see Appendix B).

3. OPTIMIZING THRESHOLD SELECTION
In this section, we consider probabilistic threshold selections over

a relation on a set of continuous uncertain attributes. Our goal is to
support efficient evaluation of such selections, especially when they
contain complex predicates.

Definition 3.1 (Probabilistic Threshold Selection) A probabilistic

threshold selection, σθ,λ, over a relation T is defined as:

σθ,λ(T) = {t | Pr[Rθ(X)] ≥ λ, t ∈ T} ,

where θ is the selection condition on continuous uncertain attributes

A, λ is the probability threshold, and Rθ is the selection region

defined as {a|a ∈ R|A| ∧ θ(a) = true}. For each tuple t, X is the

random vector for t.A, and Pr[Rθ(X)] is the probability for X to

satisfy the selection condition, i.e., Pr[Rθ(X)] =
�

Rθ
fX(x)dx.

A basic evaluation strategy for the selection follows the definition
above, using an integral of the joint attribute distribution fX for
each tuple. For instance, the WHERE clause in Q2 (in Appendix A)
specifies a condition θ involving ten uncertain attributes. Assume
that a cross-product is first performed. Then the selection with
condition θ involves a ten-dimensional integral for each tuple.

An improvement is to factorize this integral into lower dimension
integrals based on independence [19]. Suppose that the schema
indicates that the uncertain attribute set A can be partitioned into
attribute groups that are independent of each other. Denote this par-
titioning using a set system S = {A1, A2, . . . AG}. Then consider
each predicate in the condition θ: if the predicate involves attributes
from different groups, merge these groups into one. After doing so
for all predicates, we obtain a new set system S� = {A

�
1, A

�
2, . . .

A
�
G�}. Now we can rewrite the big integral as the product of the in-

tegrals for the attribute groups in S�. Revisit Q2. The SDSS schema
shows that S = {{G1.u}, {G1.g}, {G1.r}, {G1.rowc, G1.colc},
{G2.u}, {G2.g}, {G2.r}, {G2.rowc, G2.colc}}. The predicates in
WHERE yields S� = {{G1.u, G1.g, G1.r, G2.u, G2.g, G2.r}, {G1.r-
owc, G1.colc, G2.rowc, G2.colc}}. Hence for each tuple, we will
perform a 6-dimensional integral plus a 4-dimensional integral.

As can be seen, the basic evaluation approach can be expensive
or even intractable when the integral has a high dimensionality and
a complex shape of the selection region. In this section, we propose
two classes of optimization techniques grounded in statistical theory:
the first class reduces the dimensionality of integration, while the
second class efficiently filters (most of) tuples whose probabilities
fall below the threshold without using integrals.

3.1 Reducing Dimensionality of Integration
We first propose to reduce the dimensionality of integration by

leveraging the following result [18]:
Linear Transformation: Let X ∼ Nk(µ, Σ). For a given l × k
matrix B of constants and a l-dimensional vector b of constants,
Y = BX + b ∼ Nl(Bµ + b, BΣB

T).
The result states that a linear transformation of multivariate normal
random vector still has a multivariate normal distribution. It is natu-
ral to extend linear transformation to a GMM: we simply perform a
linear transformation of each mixture component separately.



To apply the above result, given a selection condition θ, we define
a transformed selection region R�θ ={y|y=Bx+b∧ x∈Rθ}. If there
exists a transformation matrix Bl×k (l < k) such that Pr[Rθ(X)]=
Pr[R�θ(Y)], we can reduce the dimensionality of integration, i.e.,

�

Rθ

fX(x) dx = Pr[Rθ(X)] = Pr[R�θ(Y)] =
�

R�θ
fY(y) dy. (1)

Given a condition θ on a set of continuous uncertain attributes,
we can construct B and b by taking the following steps: (1) Partition
attributes into independent groups based on the schema and θ, as
described at the beginning of the section. (2) For each group of
attributes, define a random vector X. Find maximum linear subex-
pressions relevant to X from θ, and denote them using a new vector
Y. Rewrite each variable in Y as the product of a row vector and X,
plus a constant. Let B be the matrix that contains all the row vectors
and b be the column vector that contains all the constants. (3) If
B does not have full row rank, remove rows from B, one at a time,
until it has full row rank. Remove elements from b accordingly.
The correctness of the procedure is shown in Appendix C.

Denote the matrix returned as Bl×k. Since it has full row rank,
l ≤ k. If l < k, we can apply Eq. (1) to transform the integration
from the space for X to that for Y; If l = k, linear transformation
does not help to reduce the dimensionality of integration.

Example 3.1 For Q2, we obtain two independent groups of at-

tributes after step (1), which is the factorization described at the

beginning of the section. In step (2), let us consider the first

group: S�1 = {G1.u, G1.g, G1.r, G2.u, G2.g, G2.r}. Let X be

the random vector for S�1. There are two maximum linear subex-

pressions in θ for S�1. Let y1 = (G1.u−G1.g)−(G2.u−G2.g),

y2 = (G1.g−G1.r)−(G2.g−G2.r). Then, we have:

Y=
�

y1
y2

�
=

�
1 −1 0 −1 1 0
0 1 −1 0 −1 1

�
X+

�
0
0

�
=BX+b

Since B has full row rank, step (3) is omitted. We can get the pdf of

Y using linear transformation from X. Finally based on Eq (1), the

integral dimensionality is reduced from 6 to 2:

�
· · ·

�

Rθ

6

∏
i=1

�
fXi (xi) dxi

�
=

0.05�

−0.05

0.05�

−0.05

fY(y1, y2) dy1 dy2

3.2 A Filtering Framework without Integrals
Although linear transformation can improve performance by de-

creasing the dimensionality of integration, it still requires the use of
one integral for each tuple. In this section, we propose a filter opera-
tor, σ̃, that computes an upper bound (p̃) of the true probability (p)
that a tuple satisfies the selection condition without using integrals.
When such upper bounds are tight enough, most tuples that fail to
pass the threshold selection can be removed by the filter p̃ < λ. In
(rare) cases that p < λ ≤ p̃, the original selection operator (σ) with
exact integration is needed to compute the true probability. Hence, a
key issue in designing the filter is how to derive a tight upper bound
at a cost much lower than the integration cost.

3.2.1 A General Filtering Technique

We first propose a general filtering technique that leverages the
multidimensional Chebyshev’s inequality, and explores its relation-
ship with a selection region in a high-dimensional space. Let X be
a k-dimensional random vector with expectation µ and covariance
matrix Σ. If Σ is an invertible matrix, then for any real number
a > 0, multidimensional Chebyshev’s inequality states that:

Pr[(X− µ)TΣ−1(X− µ) > a2] ≤ k
a2 . (2)

0.5
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u_r

(a) q r2+u r2>0.25

0.2

-0.2

0.2-0.2

u

g

(b) |u|<0.2 and |g|<0.2
Figure 1: Illustration of the predicate region (shaded in gray) and a
tuple’s chebyshev region (shaded in stripes).

To leverage the above result, we transform threshold selection
evaluation into a geometric problem. Besides the predicate region
Rθ ⊆ Rk from Definition 3.1, we also define a geometric region
specific to each given random vector X of size k and a threshold λ:

Definition 3.2 (Chebyshev region) A Chebyshev region Rλ(X) for

a given λ and a random vector X with mean µ and variance Σ is:

Rλ(X) = {x | (x− µ)TΣ−1(x− µ) <
k
λ
}. (3)

Geometrically, the Chebyshev region is an ellipse (in R2) or
ellipsoid (in Rk where k ≥ 3) centered at µ. According to Eq. (2),
we can see that Pr[Rλ(X)] > 1− λ. That is, for the random vector
X, the Chebyshev region covers the probability mass of more than
1− λ. Therefore, when the Chebyshev region Rλ(X) for a given
tuple does not overlap with the predicate region Rθ , it is easy to
bound the probability mass of this tuple in the predicate region:
Pr[Rθ(X)] ≤ 1− Pr[Rλ(X)] < λ. We can then safely filter the
tuple. As such, the threshold selection problem is transformed into
the geometric problem of judging whether the predicate region and
a tuple’s Chebyshev region are disjoint in a k-dimensional space.

Example 3.2 For a bivariate random vector X with mean µ and

covariance Σ, the Chebyshev region is a region bounded by an

ellipse centering at µ, shown as the areas shaded in stripes in

Fig. 1(a) and Fig. 1(b). The predicate “q r
2
+u r

2>0.25” in Q1 is

marked by the grey area outside the circle with center (0, 0) and

radius 0.5 in Fig. 1(a). The predicate region of “|u| < 0.2 and

|g|<0.2” is a square shown by the grey area in Fig. 1(b).

Detecting disjoint regions. The Rθ and Rλ(X) regions are dis-
joint in the space Rk if they satisfy two conditions: (1) the center
of Rλ(X), which is µ, falls outside of Rθ ; (2) the boundary of Rθ
is outside Rλ(X). When Rθ has a simple shape, e.g., a rectangle
as shown in Fig. 1(b), condition (2) is satisfied if none of the edges
intersects with the boundary of Rλ(X) and the center of Rθ lies
outside Rλ(X). Generally, to test condition (2), we can minimize
(X− µ)TΣ−1(X− µ) on Rθ . If the minimum is larger than k/λ,
condition (2) is satisfied. While constrained optimization in general
can be a difficult problem, in many common cases it can be solved
efficiently. For example, when the region Rθ is an intersection
of ellipsoids, the constrained optimization becomes the so called
Quadratically Constrained Quadratic Program (QCQP), which can
be solved as easily as the linear programs [7]. When the boundary
of Rθ can be readily defined by equalities, the minimization can be
done on the boundary and solved using the Lagrange multiplier. For
example, when Rθ is an ellipsoid, the Lagrange multiplier leads to a
system of linear equations.

In summary, for those common predicates whose regions are
of simple shapes or whose boundary can be defined by linear or
quadratic equalities, our general technique based on the multidimen-
sional Chebyshev’s inequality can provide efficient filtering.



3.2.2 Fast Filters for Common Predicates

For several common types of predicates, we can devise fast filters
for threshold selection evaluation by exploiting known statistical
results. Consider the following predicates on the attribute set A:

(1) One-dimensional: |A|=1, Rθ =
�n

i=1(ai, bi), where ai >bi−1.
An example is “ra2 > 1” , whose selection region can be written
as (−∞,−1) ∪ (1, +∞).

(2) Multi-dimensional quadratic forms: |A|>1, Rθ ={a|aTΛa op
δ}, where Λ is an |A|-dimensional symmetric matrix, op is “>”
or “<”. An example is “q r2+u r2 >0.25” in Q1, where Λ is
the identity matrix.

(3) Predicates that can be reduced to category (1) or (2) above by
applying linear transformation. Consider “|(G1.u−G1.g)−
(G2.u−G2.g)|<0.05” in Q2. By letting z =(G1.u−G1.g)−
(G2.u−G2.g), we have “|z| < 0.05”, which belongs to cate-
gory (1). Next consider “(G1.rowc−G2.rowc)2+(G1.colc−
G2.colc)2 < 4E6” in Q2. With z1 = G1.rowc−G2.rowc and
z2 = G1.colc−G2.colc, we have “z2

1+z2
2 < 4E6”, which be-

longs to category (2).

One-dimensional predicates. We exploit the following statisti-
cal results to devise fast filters.

Markov’s inequality states that for a random variable X, Pr[|X|≥
a]≤E|X|/a for any real number a > 0. It can be applied to predi-
cates Rθ =

�n
i=1(ai, bi), if the point 0 does not lie in the predicate

region (otherwise we will get a trivial upper bound of value 1).
Chebyshev’s inequality and Cantelli’s inequality: Chebyshev’s

inequality states that for a random variable X with expected value
µ and standard deviation σ, Pr[|X − µ| ≥ aσ] ≤ 1/a2 for any
real number a > 0. Cantelli’s inequality, known as the one-sided
version of Chebyshev’s inequality, provides a tighter bound on
each side of the distribution: Pr[X≥µ+aσ]≤1/(1+a2), Pr[X≤
µ−aσ] ≤ 1/(1+a2). Both inequalities can be applied to predicates�n

i=1(ai, bi) if µ does not reside in the predicate region.
We derive upper bounds using the above three inequalities for

predicates in category (1), as listed in Appendix C.
Multi-dimensional quadratic forms. If X follows a GMM, its

quadratic form X
TΛX yields a new random variable for which

we can compute the mean and variance. This allows us to apply
Chebyshev’s inequality and Cantelli’s inequality similarly as above.
See Appendix C for the details of the upper bounds.

4. OPTIMIZING THRESHOLD JOIN
In this section, we consider probabilistic threshold joins of rela-

tion R and relation S on a set of continuous uncertain join attributes.

Definition 4.1 (Probabilistic Threshold Join) A probabilistic thre-

shold join of R and S on continuous uncertain attributes A is:

R✶θ,λS = {(r, s) | Pr[Rθ(Xr, Xs)] ≥ λ, r ∈ R, s ∈ S} ,

where θ is the join predicate, λ is the probability threshold, Xr and

Xs are the random vectors for r.A and s.A, Rθ is the predicate

region in R2|A|
, and Pr[Rθ(Xr, Xs)] is the probability for Xr and

Xs to satisfy the join condition.

When the input relations R and S are independent, Pr[Rθ(Xr, Xs)]=��
Rθ

fXr (xr) fXs (xs)dxrdxs. If R and S tuples are correlated, we
can compute the joint distribution using history [19].

A default evaluation strategy for the threshold join R ✶θ,λ S is
to perform a cross-product R× S followed by a threshold selection
with the condition θ(R.A, S.A) and the threshold λ. The cross-
product can create a large number of intermediate tuples, hence
highly inefficient. In this section, we propose new join indexes

to implement a filtered cross-product, denoted by R×θ,λ S, which
returns a superset of true join results but a subset of the cross-product
results. Then R ✶θ,λ S = σθ,λ(R×θ,λ S), that is, the true join results
are produced by further applying a threshold selection.

Designing a join index for continuous random variables is much
more difficult than its counterpart for deterministic values. Consider
R ✶R.A−S.A<δ S, and we want to build an index on S. First, the
design of the join index needs to answer two questions: (1) what is
the search key of the index? (2) given a R tuple, how do we form
a query region over the index? In a traditional database, S.A has a
deterministic value and naturally forms the search key of the index.
Given a R tuple, the join predicate is instantiated with R.A = v,
which naturally yields a query region, S.A > v− δ, on the index.
Now consider the join where R.A and S.A are random variables
and each follows a distribution. To build an index on S.A, it is not
clear which aspects of the distribution of S.A can be used as the
index key, and given an R tuple, how we use the distribution of R.A
to form the query region over the index.

Second, the index for probabilistic threshold join needs to take
into account the probability threshold λ. For each tuple r in R,
probing the index should return all those tuples s in S that can
possibly satisfy Pr[Rθ(Xr, Xs)] ≥ λ, called candidate tuples. In
other words, we want to ignore other tuples s̃ for which we know
for sure Pr[Rθ(Xr, Xs̃)] < λ, hence improving performance.

Our main idea is that if we can find a necessary condition for
Pr[Rθ(Xr, Xs)] ≥ λ, then the negation of the necessary condition
identifies all those tuples s̃ that can be ignored in the index lookup.
To improve the index’s filtering power, we seek necessary and suffi-
cient conditions if possible, or necessary conditions that are “tight”
enough. Furthermore, to have real utility for index design, the nec-
essary condition has to meet two requirements: (1) In the necessary
condition, the quantities concerning S can be used to form the search
key of a common index structure such as an R-tree [4]; (2) Given
an R tuple, after the necessary condition is instantiated with all the
quantities concerning R, it should yield a query region that can be
easily tested for overlap with the index entries.

Existing join indexes for continuous uncertain attributes [9, 10]
make simplifying assumptions about attribute distributions, and use
a “loose” necessary condition in index design, resulting in poor per-
formance as we will show in §6. Below we derive tighter necessary
conditions for common join predicates, including a necessary and
sufficient condition, and develop new indexes based on them.

4.1 Band Join of General Distributions
We start with the simple case of a single join attribute. A band

join uses the predicate “a< R.A− S.A<b”. Given a tuple r from
relation R, we use Xr to denote the random variable of its join at-
tribute, which follows a univariate GMM. Similarly, Xs denotes the
random variable for the join attribute in an s tuple, again following
a GMM. We denote the mean, variance, and pdf of Xt using µt, σ2

t ,
fµt ,σ2

t
(xt), respectively (t = r, s).

A necessary condition. As shown in §3.1, the linear transforma-
tion Z = Xr−Xs can transform the original band-shaped integral
region into a single interval:

Pr[a< Z = (Xr − Xs)<b] =
� b

a
fµr−µs ,σ2

r +σ2
s
(z) dz.

For a single variable Z, the following theorem provides a necessary
condition for Pr[a < Z < b] ≥ λ. Our proof is based on Cantelli’s
inequality as shown in Appendix D.1.

Theorem 1 Given a range [a, b], if a random variable Z with mean

µ and variance σ2
satisfies the condition Pr[a< Z < b] ≥ λ, then

µ + σ
�

(1− λ)/λ ≥ a and µ− σ
�

(1− λ)/λ ≤ b.



Since Z = Xr−Xs ∼N(µ, σ2), plug µ = µr−µs, σ2 = σ2
r +σ2

s
back to the inequalities in the theorem. Then we obtain a necessary
condition for Pr[a< Xr−Xs <b] ≥ λ:

µr − µs +
�

1− λ

λ
(σ2

r + σ2
s ) ≥ a, (4a)

µr − µs −
�

1− λ

λ
(σ2

r + σ2
s ) ≤ b. (4b)

Index construction and retrieval. We now design an index
on the S relation to provide efficient support for the filtered cross
product R×a<R.A−S.A<b, λ S. In Eq. (4a) and (4b), µs and σ2

s are
the quantities from relation S. We use them to form the search key of
an index: for each tuple s, we insert the pair (µs, σ2

s ) together with
the tuple id into an R-tree index [4]. This index essentially indexes
points in a two-dimensional space in the leaf nodes and groups them
into minimum bounding rectangles in non-leaf nodes. All existing
R-tree construction methods can be used.

For each probing tuple r, the query region is naturally formed by
instantiating µr and σ2

r in Eq. (4a) and (4b). However, this query
region has a nonstandard shape, so we re-implement the overlap

method in the R-tree, which returns True when a minimum bounding
rectangle in a tree node, denoted by RI , overlaps with the query
region, denoted by RQ. Let (x, y) denote the search key of the index,
that is, x = µs and y = σ2

s . Then RI is a rectangle [x1, x2; y1, y2].
The query region RQ has two conditions. By setting x = µs and
y = σ2

s in Eq. (4a), we can rewrite the first condition as:

RQ1: (1)x≤µr−a, or

(2)x>µr−a and y≥λ(x−µr+a)2/(1−λ)−σ2
r .

It is not hard to see that RI overlaps with the union of region (1) and
region (2) in RQ1 if its upper left vertex (x1, y2) lies in either region.
We can rewrite the second condition from Eq. (4b) and develop the
test condition in a similar way.

4.2 Band Join of Gaussian Distributions
We next consider the most common distributions, Gaussian dis-

tributions, for continuous random variables. The known Gaussian
properties allow us to find a sufficient and necessary condition
and hence design an index with better filtering power.

Theorem 2 Given a range [a, b], a normally distributed random

variable Z ∼ N(µ, σ2) satisfies the condition Pr[a < Z < b] ≥ λ
iff there exists an α ∈ (0, 1−λ) such that a−Φ−1(α)σ ≤ µ ≤
b−Φ−1(λ + α)σ, where Φ−1

is the inverse of the standard normal

cdf (also called the quantile function).

The proof is given in Appendix D.1. Given a range [a, b] and a
threshold λ, Theorem 2 essentially identifies all normally distributed
random variables, i.e., all the (µ, σ) pairs, that satisfy Pr[a < Z <
b] ≥ λ. Let Ω denote this collection of (µ, σ). Formally,

Ω(a, b, λ)=
�

0≤α≤1−λ

�
(µ, σ) | a−Φ−1(α)σ ≤ µ ≤ b−Φ−1(λ+α)σ

�

(5)
The Ω region will play a key role in the index design, in particular,

representing the query region. Fig. 4 in the appendix shows the
shape of Ω when λ = 0.7, where the x and y axes denote µ and σ,
respectively. In general, λ controls the shape of Ω, and the a and b
values determine the stretch along both dimensions.

Index construction and retrieval. We next present a new index
that exploits the above sufficient and necessary condition and thus
returns only the true matches for each probing tuple. Recall that the
join predicate is “a < R.A−S.A < b”, and Xr and Xs denote the
join attribute of a r tuple and an s tuple. As in Section 4.1, we build

an R-tree index on S.A: we take the mean µs and variance σ2
s of the

variable Xs for each tuple and insert them as a pair to the R-tree.
Given each probing tuple r, we next design the query region over

the R-tree. As before, consider two variables Xr and Xs, and let
Z = Xr − Xs. Eq. (5) has defined all possible distributions of Z
that would satisfy Pr[a< Z<b] ≥ λ. Now plug µ = µr − µs and
σ = σ2

r + σ2
s into Eq. (5). Since for a particular probing tuple r, µr

and σr are simply constants, Eq. (5) naturally yields a query region
over all the distributions (µs, σ2

s ) in the R-tree.
Given the query region, the next task is to design the “overlap”

routine that directs the search in the R-tree by comparing the query
region (RQ) with the minimum bounding rectangles (RI) in each
non-leaf node of the tree. However, the above query region has a
complex shape and hence it is slow to test the overlap between RQ
and RI . The first technique we use is to transform both RQ and RI
to a different domain through a mapping. Letting (x, y) = (µs, σ2

s )
be the search key of the index, the mapping F has:

x� = µr − x and y� =
�

σ2
r + y

Each rectangle in the index RI = [x1, x2; y1, y2] is transformed to:

R�I =
�

ur − x2, ur − x1;
�

σ2
r + y1,

�
σ2

r + y2

�

Finally, the query region becomes:
R�Q =

�

0≤α≤1−λ

�
(x�, y�) | a−Φ−1(α)y� ≤ x� ≤ b−Φ−1(λ+α)y�

�
,

which is exactly Ω. It is also known RI and RQ overlap if and only
if R�I and R�Q overlap because F is a one-to-one mapping.

Now our task becomes testing the overlap between R�I and R�Q =
Ω. The overlap test involves several steps based on results of a de-
tailed mathematical analysis. Due to space constraints, this analysis
is described in Appendix D.2.

Other types of join indexes. We also provide join indexes for
(1) band joins of multivariate GMMs, (2) other joins using linear
predicates, and (3) proximity joins using Euclidean distance. Due
to space constraints, we leave the details to Appendix D.3.

5. PER-TUPLE BASED PLANNING
We next discuss threshold query processing that takes a selection-

join-projection query and returns tuples that satisfy the query with
a probability over the threshold λ (i.e., their tuple existence proba-
bilities > λ). A naive approach would be to perform probabilistic
query processing as in earlier work and then apply the threshold
filter at the end of the processing, wasting a lot of computation on
nonviable answers. To prune nonviable answers early, we push the
threshold λ earlier to each relational operator in the query plan, and
apply our techniques from the previous sections as follows:

R ✶θ,λ S = σθ,λ(R×θ,λ S), σθ,λ(T) = σθ,λ(σ̃θ,λ(T)),

where R×θ,λ S is the filtered cross product using a join index (§4),
σ̃θ,λ(T) is the fast filter that prunes tuples with a relaxed condition
(§3.2), and σθ,λ(T) is the exact selection that evaluates the condition
using integrals but possibly with reduced dimensionality (§3.1). For
continuous uncertain attributes, projections do not involve duplicate
elimination because there does not exist an finite set of values to
project onto. Hence, projections do not change tuple existence
probabilities and are not further discussed in this work.

Besides our techniques for joins and selections separately, there
remains a query optimization issue: What is the most efficient way
to arrange filtered cross products, fast filters for selections, and
exact selections in a query plan? We consider both the cost and



Tuple Selectivity
id r q r u r r < 24 q r2 + u r2 > 0.25
1 N(27.0, 2.2) N(1.2, 2.2) N(0.1, 1.1) 0.08 0.95
2 N(21.6, 0.1) N(0.1, 0.1) N(−0.1, 0.1) 1 1.74× 10−4

Table 1: Illustration of per-tuple based selectivity with Q1 and two
tuples: each tuple has three normally distributed attributes, r, q r, and
u r; for each predicate in Q1, these tuples have different selectivities.

selectivity of operators as in a traditional query optimizer. However,
several key differences exist in the new context: (1) Due to the
use of integrals, exact selections can have high costs and should be
treated as “expensive predicates”. (2) The selectivity of an operator
captures its filtering power on the input data. Under attribute uncer-
tainty, selectivity needs to be defined on a per-tuple basis. (3) The
above property further implies that the optimal order of evaluating
operators also varies on a per-tuple basis.

Example 5.1 Consider Q1 and two tuples t1, t2 in Table 1. For

predicate θ1 : “r < 24”, let X1
r and X2

r be the random variables

for t1.r and t2.r correspondingly. X1
r ∼ N(27, 2.2), so Pr[X1

r <
24] = 0.08; X2

r ∼ N(21.6, 0.1) and Pr[X2
r < 24] ≈ 1. So t1 has

a much lower probability of satisfying θ1, hence more likely to be

filtered. To the contrary, for predicate θ2 : “q r
2+u r

2 > 0.25”, t2
has a much lower probability to pass θ2 than t1. Thus, the optimal

evaluation order is θ1 followed by θ2 for t1, and the reverse for t2.

Due to the above reasons, we advocate a per-tuple, dynamic query
optimization approach with the following features: (1) A query plan
is determined for each tuple rather than a whole set. (2) The query
plan arranges all operators based on both cost and selectivity. (3)
Such planning is performed at a low cost for each tuple. Traditional
query optimizers consider a static query plan for a set of tuples [8],
hence not suitable for our problem. Data stream systems [3, 6] can
adapt query plans dynamically but only estimate selectivity for a
set of tuples and lack support of uncertain attributes. Recent work
on probabilistic threshold query optimization establishes algebraic
equivalence for query optimization, but still uses static query plans
and further ignores operator costs in query planning [17].

In the rest of this section, we detail our new query optimization
approach. We focus on the data stream setting: like in existing
systems [3], some streams can have indexes built on while other
streams are used to probe these indexes. We assume that the decision
of which indexes to build has been made separately and focus on
query optimization only. Our approach can be applied to stored data
by viewing the result of a file scan as a data stream.

To begin with, we define the selectivity, denoted by Γ, of a selec-
tion on each tuple t and the selectivity of a filtered cross product
between a probing tuple t and a set S:

Γσ
θ,λ(t) = Pr[Rθ(X

t)], Γ×θ,λ(t, S) =
num. true matches from S

|S|
Query optimization requires the knowledge of both cost and

selectivity of each operator. Our approach combines offline mea-
surements of unit operation costs, which depend only on the types
of predicates, and online selectivity estimation, which depends on
the attribute distribution in each tuple. These techniques are fairly
straightforward and hence left to Appedix E.

5.1 Online Query Planning and Execution
In our approach, online query planning and execution for each

tuple interleaves selectivity estimation and ordering of operators in
iterations. This is because while we can estimate the selectivity of
predicates on a base tuple r, we cannot estimate the selectivity of the
join predicate on r and s until the tuple including r and s is produced
with the new joint attribute distribution. Moreover, we cannot afford
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Figure 2: Illustration of tuple-based query planning.

to perform an exhaustive search of the global optimal plan as in
earlier work [8] due to per-tuple based planning. Therefore, we
break a query into several blocks that each involve at most one join.
For each query block, we repeat the following steps:

Step 1: Estimate selectivities of selections. We take all predi-
cates specified on an input tuple t, and group these predicates into
independent groups as described at the beginning of §3. For each
independent group of predicates θi, we then allocate a selection op-
erator σi(t). We estimate the selectivity of each selection by taking
the average of its lower and upper bounds.

Step 2: Rank and execute filters and selections. We expand
each selection with all possible filters: σi(t) = σi(σ̃ij(· · · σ̃i1(t))).
If there exist fast filters based on known statistical inequalities, we
apply all of them as they have negligible costs; otherwise, we apply
the filter using constraint optimization. We rank filters and selections
in ascending order of selectivity over cost. Filters are ranked before
the corresponding selection if they have a lower cost; otherwise,
they are unnecessary and should be removed from the plan.

Then we execute the filters and selections in order. The tuple
starts with the existence probability Ep = 1 and a query threshold
λq. A selection with the predicate θ reduces the tuple existence
probability to E�p = Ep ·Pr[Rθ(Xt)]. A filter estimates an upper
bound Ẽ�p. The tuple is dropped whenever E�p <λq or Ẽ�p <λq.

Step 3: Choose a relation to join with. For all relations that
have not been joined with t, we probe all available indexes and count
the number of matches of t from each index. We then multiply the
number of matches with the cost of an index lookup, and finally
choose the join index that yields the smallest value of the product.
If we have exhausted join indexes, we simply choose the relation
with the smallest size and use a full scan as the access method.

Step 4: Execute the (filtered) cross product. Once we have
chosen to join the tuple t with an relation S, we execute the filtered
cross product using the index on S if existent, or a cross product
using a file scan on S. Once a new tuple t� is emitted, we mark all
join predicates relevant to t� as selection predicates, and repeat the
above four steps for the next query block.

Example 5.2 Figure 2 shows the planning for tuple t1 from relation

R. t1 has to pass three selection predicates, a join with relation S
with three join predicates, and a join with relation T with two join

predicates. These predicates and their estimated costs are shown

in the shaded rows of the tables. In step 1, the selectivities of three

selections are entered into the top table. In step 2, the selections

are ranked with θ2 first, then θ1, and finally θ3 (the filters are not

shown in this example). In step 3, we choose the join with S using

the second predicate because there is a join index and the expected

cost of retrieving matches is the lowest. In step 4, tuple t1 is paired

with three matches from the join index. The three new tuples are sent

back to the to-process pool for further processing. For these tuples,



δ1 δ2 static static dynamic performance optimal
order time (ms) time (ms) gain time (ms)

20 0.2 [1 2] 0.6 0.181 70% 0.177
20 0.5 [1 2] 0.6 0.068 89% 0.067
20 1 [2 1] 9.6 0.050 99% 0.048
22 0.2 [2 1] 18.2 7.216 60% 7.007
22 0.5 [2 1] 13.9 1.515 89% 1.482
22 1 [2 1] 9.6 0.351 96% 0.348
24 0.2 [2 1] 18.2 15.613 14% 15.287
24 0.5 [2 1] 14.4 6.390 56% 6.334
24 1 [2 1] 9.6 2.264 76% 2.236

Table 2: Static planning vs Dynamic planning for Q1.

the join predicates associated with S become selection predicates,

while those associated with T remain as join predicates.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate our threshold query processing and

optimization techniques. To demonstrate our performance benefits,
we compare to the state-of-the-art techniques for indexing continu-
ous uncertain data [9, 10] and for optimizing threshold queries [17].
Our evaluation uses real data and queries from the Sloan Digital Sky
Survey (SDSS) [21]. See Appendix A for details about the dataset.

6.1 Techniques for Optimizing Selections
Expt 1: We first evaluate our general filtering technique described

in Section 3.2.1. We consider a selection “100< rowc<100 + δ and
100< colc<100 + δ”, which selects stars located in a square region
anchored at the lower left vertex (100, 100) and with side length δ.
We can directly test the overlap between the selection region and
each tuple’s Chebyshev region due to their regular shapes.

We first set the threshold λ = 0.7 and varied δ from 200 to 2000,
which approximately covers selectivities from 0% to 100%. We
report the time cost per tuple for evaluating the selection with and
without filters (baseline) in Fig. 3(a). The baseline has a constant
high cost because it computes a 2-dimensional integral for each
tuple, no matter what δ value is given. In contrast, using our filter
the per tuple cost is very low for small δ values because most tuples
can be filtered without computing integrals. As δ grows, more tuples
pass the filter and invoke integrals for exact evaluation. The two
curves meet when δ = 2000 and 98% tuples satisfy the predicate.

We also varied λ in [0.7, 0.9]. λ mainly affects the number of
tuples that pass the selection. A larger λ value results in fewer true
matches, so our filter can prune more tuples and hence improve the
performance shown in Fig. 3(a). More results are shown in [16].

Expt 2: We also evaluate the effectiveness of the fast filters from
§3.2.2. Our results can be summarized as follows: For predicates on
a single attribute, the Cantelli filter provides tight upper bounds. For
multivariate quadratic predicates, both the Cantelli filter and general
filter work well. In the interest of space, the details are left to §F.2.

6.2 Techniques for Optimizing Joins
Expt3: Band Join of Gaussians. We first study the filtering

power and efficiency of our index for Gaussians, called GJ for short,
and the state-of-the-art indexing method called xbound (detailed
in Appendix F.1). We consider a join “|R.u− S.u| < δ” with the
threshold λ = 0.7 and varied δ.

We first evaluate the join in the stream setting: A tumbling win-
dow of size W is applied to both R and S inputs; each window
contains a set of tuples. An index is built in-memory on the current
window of S. Each tuple in the current R window probes the index
after it is constructed. The retrieved (r, s) pairs are finally validated
for true matches by computing an integral of the joint distribution.
Hence, there are three cost components in this windowed join: index

construction, index lookup, and validation using integrals. We ob-

δ3 δ4 static static dynamic performance
order time (s) time (s) gain

0.5 400 [3 4] 28.0 4.25 85%
0.5 800 [3 4] 80.1 12.1 85%
0.5 1600 [3 4] 142 22.9 84%
1 400 [4 3] 149 16.7 89%
1 800 [3 4] 105 49.3 53%
1 1600 [3 4] 187 97.2 48%
2 400 [4 3] 160 72.1 55%
2 800 [4 3] 486 217 55%
2 1600 [3 4] 487 432 11%

Table 3: Static planning vs Dynamic planning for Q2.
serve consistently that the validation step is the dominating cost as
integration is indeed very expensive. Below we report results using
W =500 (other W sizes reveal similar trends).

Fig. 3(b) shows the number of candidates returned by our GJ
index and the xbound index as well as the number of true matches.
We can see that GJ returns exactly the true match set because it uses a
sufficient and necessary condition for the join predicate. In contrast,
the xbound index returns much more candidates. The difference
becomes smaller as δ increases, because more tuples become true
matches; when δ = 100, almost all tuples in the indexed relation
are true matches. Fig. 3(c) shows the efficiency of the two indexes.
GJ significantly outperforms xbound because there is no need to
validate the candidates returned from the index.

We then evaluate the join in a disk setting, where indexes are pre-
computed and stored on disk. Due to the limited size of the real data,
we replicated it to 500MB with 28 million tuples. The R-tree took
1.3GB while the memory size was set to 1GB in our Java system.
Since indexes are pre-constructed, their construction costs are not
reported. Fig 3(d) shows the number of candidates for each probing
tuple. While the trend appears similar to that in the stream setting,
the absolute number for the y-axis is much larger. This determines
the drastic difference between GJ and xbound in time cost shown in
Fig 3(e). This difference comes from both the validation cost and
the I/O cost as xbound returns many false positives.

Expt 4: Band Join of GMMs We then evaluate our join index
for general distributions modeled as GMMs (called GMJ for short)
and compare to xbound. As the SDSS uses Gaussians only, we gen-
erated a synthetic trace of GMMs for this experiment. The attribute
u in each tuple has two Gaussian components; the coefficient, mean
and variance of each component are uniformly drawn from (0,1), (0,
100), and (0,10) respectively. We report the results using the stream
setting with W =500. As Fig. 3(f) shows, both indexes return more
candidates than the true matches because they are both based on
necessary conditions for the join predicate. But GMJ is always bet-
ter than xbound until they meet at δ=100, where the selectivity is
near 100%, because xbound uses a “looser” condition as discussed
in Appendix F.1. Since validation is the dominating cost, the time
cost follows the same trend as the number of candidates in Fig. 3(f).

6.3 Per-tuple Based Planning and Execution
We finally evaluate our dynamic per-tuple planning technique.

We compare it with static query planning [17], where a fixed plan
is chosen for each query based on the selectivities of predicates
over the entire data set—we give such full knowledge to the static
query optimizer, hence showing its best performance. We design
two query templates based on Q1 and Q2 from SDSS. We vary the
parameters δ1 and δ2 to control selectivities of predicates for Q1 and
δ3 and δ4 for Q2. The details of our setup are given in Appendix F.3.

Expt 5: We first consider Q1 and vary δ1 and δ2. Table 2 shows
the time cost per tuple for static, dynamic and optimal planning. The
optimal planning loads the optimal plan for each tuple (generated
offline) into memory before it runs. The plan space for dynamic
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Figure 3: Experimental results for selections and joins.

planning is shown in Appendix F.3. Our dynamic query planning
outperforms the static one in all cases, with over 50% gains in
most cases and is very close to the optimal planning. The reasons
are three-fold: (1) Each tuple is routed based on its distribution
and resulting selectivities of predicates. A tuple may be sent to
a predicate that is overall not selective but has a larger chance to
filter this tuple. (2) The predicate cost is taken into consideration.
It is possible for a tuple to be routed to a predicate with only a
modest chance to filter the tuple but has a very low cost. (3) Our
fast filters can drop tuples earlier at a lower cost than using the exact
integration to evaluate predicates.

Expt 6: We next consider Q2 and vary δ3 and δ4. For this query,
a join index is constructed for G2 on the “rowc” and “colc” attributes
for each window of size W. Table 3 shows the time cost of joining
W tuples from the input G1 with W tuples from G2. We make
similar observations as before: The dynamic planning is better than
the static one in all cases. As we increase δ3 and δ4, more tuples
satisfy both predicates. So the difference between the two schemes
decreases and is mainly due to the benefit of using fast filters. Due
to space constraints, the plan space for dynamic planning and the
detailed analysis are given in Appendix F.3.

7. CONCLUSIONS
We presented techniques to optimize threshold query processing

on continuous uncertain data by (i) expediting joins using new
indexes, (ii) expediting selections by reducing dimensionality of
integration and using faster filters, and (iii) using dynamic, per-tuple
based plannig. Results using the SDSS benchmark show significant
performance gains over a state-of-the-art indexing technique and its
threshold query optimizer. In future work, we will extend threshold
query optimization to a larger class of queries including group
by aggregation, support user-defined functions, and evaluate our
techniques in broader applications.
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APPENDIX
A. DETAILS OF THE SDSS DATABASE

We illustrate the schema of the SDSS data set in Table 4.
name type description
OBJ ID bigint SDSS identifier with [run, ..., field, obj]
... ...
(rowc, rowc err) real (row center position, error term)
(colc, colc err) real (column center position, error term)
(q u, qErr u ) real (stokes Q parameter, error term)
(u u, uErr u ) real (stokes U parameter, error term)
(ra, dec, ra err, real (right ascension, declination, error in ra,
dec err, ra dec corr) error in dec, ra/dec correlation)
... ...

Table 4: Schema of the Galaxy table in the Sloan Digital Sky Survey
(SDSS). Attributes in italics are uncertain.

We use two complex queries from the SDSS benchmark [21],
where the attributes in the lower case are uncertain attributes:
Q1: SELECT *

FROM Galaxy G
WHERE G.r < 22
AND G.q r2+G.u r2 > 0.25;

Q2: SELECT *
FROM Galaxy AS G1, Galaxy AS G2
WHERE G1.OBJ ID < G2.OBJ ID
AND |(G1.u-G1.g)-(G2.u-G2.g)| < 0.05
AND |(G1.g-G1.r)-(G2.g-G2.r)| < 0.05
AND (G1.rowc-G2.rowc)2+(G1.colc-G2.colc)2<1E4;

The released data archive takes about 1GB. For experiments on
selections and joins, we used the Star table, which has 57328 tuples
and each column of uncertain attribute is about 1MB. We consider
Q1 and Q2 for experiments on query planning, both of which involve
the Galaxy table with 91249 tuples.

B. DETAILS OF THE DATA MODEL
A Gaussian Mixture Model (or distribution) is defined as follows.

Definition B.1 A Gaussian Mixture Model (GMM) for a continuous

random variable X is a mixture of m Gaussian variables X1, X2,

· · · , Xm. The probability density function (pdf) of X is:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

σi
√

2π
e
− (x−µi )

2

2σ2
i (Xi ∼ N(µi, σ2

i )),

where 0 ≤ pi ≤ 1, ∑m
i=1 pi = 1, and each mixture component is a

Gaussian distribution with mean µi and variance σ2
i .

Definition B.2 A multivariate Gaussian Mixture Model (multivari-

ate GMM) for a random vector X naturally follows from the defini-

tion of multivariate Gaussian distributions:

fX(x) =
m

∑
i=1

pi fXi (x),

fXi (x) =
1

(2π)k/2|Σi|1/2 e−
1
2 (x−µi)

T Σ−1
i (x−µi) (Xi∼N(µi, Σi)),

where k is the random vector size, and each mixture component is a

k-variate Gaussian with mean µi and covariance matrix Σi.

Correlation. To address inter-tuple correlation in our data model,
we adopt the use of history to capture dependencies among attribute
sets as a result of prior database operations [19]. The history, H,
of an attribute set is defined as follows: (1) For a newly inserted
tuple t, H(t.A) = t.A. (2) If a new set of attributes, t̄.Ā, is derived
from multiple attribute sets, {ti.Ai|i = 1, 2, . . .}, via a database

operation, then H(t̄.Ā) = ∪H(ti.Ai). That is, the history of the
new attribute set includes the base pdf’s that can be used to derive
the joint pdf of this set of attributes. Finally, if two attribute sets
intersect, they become correlated. Then a joint distribution of the
two sets can be computed from their histories to capture correlation.

C. DETAILS OF OPTIMIZING SELECTIONS
Correctness of finding the transformation matrix

PROOF. Given a selection region Rθ , it is known that for any non-
singular transformation matrix Dk×k, Pr[Rθ(X)] = Pr[RD

θ (Y
D)],

where RD
θ is the transformed region by matrix D. Below we show

that given Bl×k and bl×1 obtained from the procedure in §3.1,
we can find a nonsingular matrix Dk×k such that Pr[RD

θ (Y
D)] =

Pr[RB
θ (Y

B)], i.e., B gives the correct integration result.
Since B has full row rank, we can apply elementary column opera-

tions and transform it into
�
B
�
l×l , 0l×(k−l)

�
, where B

� is nonsingular
and 0 is the zero matrix. Define a new matrix and a new vector

D
�
k×k =

�
B
�
l×l 0l×(k−l)

0(k−l)×l I(k−l)×(k−l)

�
, d =

�
bl×1

0(k−l)×1

�
,

where I is the identity matrix. It can be proved that D
� is nonsingular.

We can then apply elementary column operations to D
� such that

the two upper blocks are transformed back to B. Denote the new
matrix as D and obviously D is also nonsingular. Then we have:

Y
D=DX+d=

�
Bl×k

I
�
(k−l)×k

�
X+

�
bl×1

0(k−l)×1

�
=

�
BX+b

I
�
X

�
=

�
Y

B

Y
�

�
.

Since there is no predicate on Y
� in the selection condition θ, the

integration interval on each dimension of Y
� is (−∞, +∞) and that

on each dimension of Y
B does not vary with Y

�. So the integral of
the joint pdf of Y

D over region RD
θ equals that of its marginal dis-

tribution on Y
B over region RB

θ , i.e., Pr[RD
θ (Y

D)] = Pr[RB
θ (Y

B)].
Then Pr[Rθ(X)]= Pr[RB

θ (Y
B)].

One-dimensional predicates:
Fast filters using Markov’s inequality. We consider three cases

that apply Markov’s inequality based on the different relationships
between the point 0 and the predicate region:

• 0< a1: Pr[Rθ(X)] < Pr[(a1, +∞)] ≤ E|X|/a1

• bn <0: Pr[Rθ(X)] < Pr[(−∞, bn)] ≤ −E|X|/bn

• bi−1 <0< ai: Pr[Rθ(X)] < Pr[(−∞, bi−1)]+Pr[(ai, +∞)]
≤ E|X|/min{−bi−1, ai}

The distribution of |X| can be computed as follows: When X
follows a GMM with m components, each identified by parame-
ters (pi, µi, σ2

i ), we have E|X| = ∑m
i=1 piE|Xi|, where E|Xi| =

σi
√

2/π exp(−µ2
i /

�
2σ2

i )
�
+ µi

�
1− 2Φ(−µi/σi)

�
and Φ is the

cdf of a standard normal distribution.
Fast filters using Chebyshev’s inequality and Cantelli’s inequality.

Both inequalities can be applied to predicates
�n

i=1(ai, bi) if µ does
not reside in the predicate region. Again, we consider three cases
below. In the first two cases, Cantelli’s inequality gives a tighter
upper bound. In the third last case, we need to compute upper
bounds using both inequalities and choose the smaller one.

• µ< a1: Pr[Rθ(X)]< Pr[(a1, +∞)]≤ σ2

σ2 + (a1 − µ)2

• bn <µ: Pr[Rθ(X)]< Pr[(−∞, bn)]≤ σ2

σ2 + (µ− bn)2

• bi−1<µ<ai: Pr[Rθ(X)]< Pr[(−∞, bi−1)]+Pr[(ai, +∞)]≤

min
�

σ2

(min{µ−bi−1,ai−µ})2 ,
σ2

σ2+(µ−bi−1)2 +
σ2

σ2+(ai−µ)2

�



Multi-dimensional quadratic predicates:
If X follows a GMM, its quadratic form X

TΛX yields a new
random variable. We first derive the new distribution as follows: For
X ∼ N(µ, Σ), we have

E[XTΛX] = tr[ΛΣ] + µTΛµ

Var[XTΛX] = 2tr[ΛΣΛΣ] + 4µTΛΣΛµ,
where tr[·] denotes the trace of a matrix.

For X follows a GMM with m components, each identified by
(pi, µi, Σi) (i = 1 · · ·m),

E[XTΛX]=
m

∑
i=1

piE[XT
i ΛXi]

Var[XTΛX]= E
��

X
TΛX

�2
�
−

�
E[XTΛX]

�2

=
m

∑
i=1

piE
��

X
T
i ΛXi

�2
�
−

�
E[XTΛX]

�2

=
m

∑
i=1

pi

�
Var[XT

i ΛXi]+
�
E[XT

i ΛXi]
�2

�
−

�
E[XTΛX]

�2

Now suppose that the quadratic form X
TΛX yields a new random

variable with mean µ0 and variance σ2
0 . This allows us to apply

Chebyshev’s inequality and Cantelli’s inequality as before. How-
ever, in the case of comparing a quadratic form with a constant, the
predicate contains only one interval: either (−∞, δ) or (δ, +∞).
Hence, when u0 lies outside the predicate region, Cantelli’s inequal-
ity always gives a tighter bound. Formally,

• If the predicate region is X
TΛX < δ, when δ < µ0:

Pr[Rθ(X)] ≤ σ2
0 /

�
σ2

0 + (µ0 − δ)2�

• If the predicate region is X
TΛX > δ, when δ > µ0:

Pr[Rθ(X)] ≤ σ2
0 /

�
σ2

0 + (δ− µ0)2
�

D. DETAILS OF JOIN INDEXES
D.1 Proofs of Theorems
Proof for Theorem 1

PROOF. Suppose µ+σ
�

(1− λ)/λ< a or µ−σ
�

(1− λ)/λ>
b. Then interval (µ − σ

�
(1− λ)/λ, µ + σ

�
(1− λ)/λ) does

not overlap with(a, b). According to Cantelli’s inequality,

Pr[a < Z < b] <
1

1 + (1− λ)/λ
= λ,

which is a contradiction. This completes the proof.
Proof for Theorem 2

PROOF. If there exists an α ∈ (0, 1−λ) such that a−Φ−1(α)σ≤
µ ≤ b−Φ−1(λ + α)σ, then we have

a− µ

σ
≤Φ−1(α),

b− µ

σ
≥Φ−1(λ + α).

Therefore
Pr[a< Z<b] = Pr[

a− µ

σ
≤ Z− µ

σ
≤ b− µ

σ
]

≥ Pr[Φ−1(α) ≤ Z− µ

σ
≤Φ−1(λ + α)] = λ.

On the other hand, when Pr[a< Z < b] ≥ λ, define α = Φ( a−µ
σ ).

Apparantly α ∈ (0, 1− λ) and Φ( b−µ
σ ) ≥ λ + α. Therefore, we

found an α such that a−Φ−1(α)σ ≤ µ ≤ b−Φ−1(λ + α)σ.

D.2 Overlap Test in the Gaussian Join Index
Recall that when search the R-tree for the Gaussian index, our

task is to test the overlap between R�I : [µ1, µ2; σ1, σ2] (an index
entry) and R�Q = Ω (the query region), where

!"#$ !"#$

%$ %$
&$ '$ &$ '$
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Figure 4: Two cases when R�I and Ω overlap.

Ω =
�

0≤α≤1−λ

�
(µ, σ) | a−Φ−1(α)σ ≤ µ ≤ b−Φ−1(λ+α)σ

�
.

First, we show that Ω �⊂ R�I : Since σ is the standard deviation of
a random variable Z, σ ≥ 0. In the extreme case when σ = 0, Z
is reduced to a constant, so σmin = 0, where σmin is the minimum
value of σ in Ω. For a valid search key, it is impossible that σ1 < 0,
so Ω �⊂ R�I .

Given that Ω �⊂ R�I , testing whether R�I and Ω overlaps is the
same as to test whether there exists a point (µ0, σ0) on the edges of
R�I , such that (µ0, σ0) ∈ Ω.

Define a function g(µ, σ) = Φ
�

b−µ
σ

�
−Φ

�
a−µ

σ

�
, where Φ is

the cdf of the standard normal distribution. It is straightforward to
see that (µ, σ) ∈ Ω iff g(µ, σ) ≥ λ. Then the problem is again
transformed to checking whether the maximum value of g(µ, σ) on
edges of R�I , denoted as gmax, is no less than λ.

Without loss of generality, let us consider one edge of R�I , defined
as Eσ1 = {(µ, σ) | µ1 ≤ µ ≤ µ2, σ = σ1}. The goal is to find
gmax for all points on Eσ1 . Let g�(µ) = g(µ, σ1) = Φ

�
b−µ
σ1

�
−

Φ
�

a−µ
σ1

�
. By taking the derivative w.r.t. µ and setting it to be 0,

we get φ
�

b−µ
σ1

�
= φ

�
a−µ
σ1

�
, where φ is the pdf of the standard

normal distribution. According to the symmetry of the standard
normal distribution, g�(µ) has an extreme value at µ = (a + b)/2.
Then gmax can be gained as follows:

gmax =
�

max
�

g�(µ1), g�(µ2), g�
� a+b

2
��

if µ1 < a+b
2 < µ2

max
�

g�(µ1), g�(µ2)
�

otherwise
Similar analysis can be made for other edges of R�I .
An optimization According to the above discussion, for each

index entry R�I , we find the maximum value of g(µ, σ) on its edges
and check whether it is no less than λ. A further optimization would
be to find the circumscribed rectangle (minimum bounding box) of
Ω, denoted as MBRΩ = [µmin, µmax; σmin, σmax]: if R�I does not
overlap with MBRΩ, it is guaranteed that it does not overlap with
Ω either. Below we show how to find µmin, µmax, σmin and σmax.

We have already showed that σmin = 0. When λ≥ 0.51, ∀α ∈
[0, 1−λ], Φ−1(α)≤0 and Φ−1(λ+α)≥0. Then a≤ a−Φ−1(α)σ≤
µ ≤ b−Φ−1(λ+α)σ ≤ b. And we get µmin = a and µmax = b,
both obtained when σ =0. Finally in order to find σmax, we write
out the expression of any point (µ, σ) on the boundary of Ω as:






µ =
aΦ−1(λ + α)− bΦ−1(α)
Φ−1(λ + α)−Φ−1(α)

σ =
b− a

Φ−1(λ + α)−Φ−1(α)

Let ∂σ/∂α = 0, we have φ(Φ−1(λ + α)) = φ(Φ−1(α)), where
φ is the pdf of the standard normal distribution. Then α = (1+λ)/2
and finally we get

σmax =
b− a

Φ−1( 1+λ
2 )−Φ−1( 1−λ

2 )
.

1We focus on cases when λ ≥ 0.5, as it is more desirable in real applications.



Overlap routine design
Step 1 If R�I does not overlap with MBRΩ, return FALSE.
Step 2 Find gmax for points on the edges of R�I , if gmax < λ, return

FALSE; otherwise, return TRUE.

D.3 Additional Join Indexes
Extension of Band Joins to multivariate GMMs. When we

have multiple join attributes A, the band join involves conjunctive
predicates that each is a 1-dim range predicate. It is easy to see that

Pr[∧|A|
i=1(ai< R.Ai−S.Ai <bi)]≤min

i
{Pr[ai< R.Ai−S.Ai <bi]}.

A necessary condition for Pr[
�|A|

i=1(ai < R.Ai−S.Ai <bi)] ≥ λ is
Pr[ai < R.Ai−S.Ai < bi] ≥ λ for all i. This transforms the join of
multivariate GMMs (or Gaussians) into multiple joins of univariate
GMMs (or Gaussians). So we build an index for each join attribute
in S. For a probing tuple r, all join indexes need to be retrieved, and
a tuple s is a candidate match if it is returned by all the indexes.

Other Joins with Linear Predicates and General Distribu-
tions. We also support join predicates that are the “opposite” of
band joins, e.g., “|R.A−S.A|>δ”. Such predicates can be useful
for detecting a sudden dramatic change of the value of an attribute,
e.g., the brightness of a star. We offer a necessary condition for
such joins and build a join index accordingly. We can still apply
linear transformation Z= Xr−Xs. Then we can prove the following
statement by contradiction based on Chebyshev’s inequality:
Theorem 3 For a randome variable Z with mean µ and variance

σ2
, if Pr[|Z| > δ] ≥ λ, then δ ≤ |µ|− σ√

λ
.

Plugging µ = µr − µs, σ2 = σ2
r + σ2

s back, we can get the
necessary condition for Pr[|r.A− s.A| > δ] ≥ λ as follows:

δ ≤ |µr − µs|−

�
σ2

r + σ2
s

λ
. (6)

Define the search key to be x = µs and y = µ2
s −

σ2
s

λ
, then

Eq. (6) can be broken into two cases:





x < µr − δ

y− 2(µr − δ)x ≥ −(µr − δ)2 +
σ2

r
λ

(7)

or 




x > µr + δ

y− 2(µr + δ)x ≥ −(µr + δ)2 +
σ2

r
λ

(8)

The index is still an R-tree and the query region is defined by
inequalities in Eq. (7) and (8).

Distance Join of General Distributions. We next consider join
predicates that involve the Euclidean distance between two sets of
attributes R.A and S.A:

D(R.A, S.A) =
�

∑|A|
i=1(R.Ai − S.Ai)2 < δ

Then the probabilistic threshold join is R ✶D(R.A,S.A)<δ, λ S. Such
joins are commonly used to check proximity of objects, e.g., two
stars that are within 30 arcseconds of each other in query Q2.

Proximity joins can be supported using our techniques for band
joins. When |A|=1, the join predicate can be rewritten to “−δ<
R.A−S.A<δ”, and thus can be directly supported as a band join.
When |A| > 1, we seek an upper bound of Pr[D(R.A, S.A) < δ].
We know that if the Euclidean distance between R.A and S.A is
less than δ, then the Manhattan distance between R.A and S.A
is less than δ in each dimension. So, Pr[D(R.A, S.A) < δ] <

Pr[
�|A|

i=1(−δ< r.Ai−s.Ai <δ)]. This allows us to use indexes for
band joins of multivariate GMMs or Gaussians for distance joins.

E. DETAILS OF QUERY PLANNING
Cost and Selectivity Estimation The unit operation in an exact

selection is an integral. The integration cost depends on the di-
mensionality of integration and the shape of the selection region.
For instance, we can benchmark 1-dimensional integrals on inter-
vals, 2-dimensional integrals on rectangles and circles, and higher-
dimensional integrals on hyper-rectangles and circles. Regarding
the filters for selection, if they use known inequalities, then they
have negligible costs. Filters that use optimization techniques such
as the Lagrange multiplier may have a non-trivial cost, which can
again be measured offline based on the types of predicates. Finally,
the unit operation in a filtered cross product is to retrieve a match
from the index for each probing tuple. Its cost can be estimated
based on the height of the tree and the cost of the overlap test at
each level of the tree.

We then define the selectivity, denoted by Γ, of a selection on
each tuple t and the selectivity of a filtered cross product between a
probing tuple t and a set S:

Γσ
θ,λ(t) = Pr[Rθ(X

t)], Γ×θ,λ(t, S) =
num. true matches from S

|S|
The selectivity of an operator can be estimated only when a tuple

arrives with its attribute distribution. For a selection, we estimate its
selectivity for a tuple, Γσ

θ,λ(t), by taking the average of its upper and
lower bounds. Recall that we showed many upper bounds derived
from statistical inequalities in Section 3. Actually we can also obtain
lower bounds using appropriate inequalities. For instance, given a
one-dimensional range predicate (a, b), Markov’s inequality can be
applied when 0 ∈ (a, b) and yields a lower bound on the selectivity.
Chebyshev’s and Cantelli’s inequalities can be applied similarly. The
upper and lower bounds used for the three categories of predicates
in §3.2.2 are shown in our technical report [16]. Finally, to estimate
the selectivity of a filtered cross product for a probing tuple, our
current solution is to perform the index lookup to count the matches
but without retrieving the complete tuples. We will consider more
advanced techniques in future work.

F. DETAILS OF EVALUATION
F.1 XBound-based Join Index

We implemented a state of the art join index on continuous uncer-
tain attributes [10, 9], called xbound join index. As stated earlier,
this technique makes simplifying assumptions about attribute distri-
butions; that is, every uncertain attribute has a known interval [l, u]
in which a pdf is defined. This assumption does not hold for general
continuous uncertain attributes which range from [−∞, ∞]. Relax-
ing the interval of an uncertain attribute from [l, u] to [−∞, ∞] will
yield zero filtering power of the Xbound join index. In addition,
this join index is based on a “loose” necessary condition for the
join predicate to be true, hence resulting in poor performance as we
demonstrate in Section 6. Details of the join index are as follows.

Definition F.1 (x-bound) For a random variable Y with density

function f and domain [l, u], given 0 ≤ x ≤ 1, the x-bound of

a distribution consists of two values, called left-x-bound (lx) and

right-x-bound (ux), where
� lx

l f (y)dy = x and
� u

ux
f (y)dy = x.

Consider R✶θ,λS, a necessary condition for Pr[|Xr−Xs| ≤
δ] ≥ λ extracted from [9] is us,λ ≥ lr − δ and ls,λ ≤ ur + δ,
where (lr, ur) is the domain of Xr, ls,λ and us,λ are the left-λ-
bound and right-λ-bound for Xs. Assume an join index is built
on S. Given λ, for each tuple s, insert the search key (ls,λ, us,λ)
into an R-tree. When a probing tuple r arrives, the query region is
{(ls,λ, us,λ) | ls,λ ≤ ur + δ, us,λ ≥ lr − δ}.
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Figure 5: Experimental results for the filtering techniques for selections.

δ1 δ2 δ3 δ4

Value 20 22 24 0.2 0.5 1 0.5 1 2 400 800 1600
Selectivity(%) 8.3 61.9 95.9 44.3 14.5 6.9 40.1 81.7 99.4 45.4 83.7 100

Table 5: Selectivity for different δi(i = 1 · · · 4).

For a probing tuple r with domain (−∞, +∞), the above nec-
essary condition has no power in guiding the search of (ls,λ, us,λ).
We modify the domain of a normally distributed random variable
to be (µ− 5σ, µ + 5σ), and modify the domain of a GMM to be
(F−1(0.00001), F−1(0.99999)), where F−1 is the inverse cdf of
the random variable.

F.2 More Results on Selections
Expt 2: We evaluate the effectiveness of the fast filters from

§3.2.2. Since they have negligible costs, we focus on how tight their
upper bounds are, i.e., their filtering power. We here use synthetic
data with various controlled properties in microbenchmarks.

Consider predicates on a single attribute (Category 1 in §3.2.2):
(i) a< x<b, (ii) a1 < x<b1 or a2 < x<b2. To have workloads with
controlled properties, we generated synthetic data where the mean
and variance of the normal distribution for each tuple are randomly
chosen from (-50,50) and (0,10) respectively. For the predicate
(i), the Cantelli filter always gives a tighter upper bound than the
Chebyshev filter, so we only compare Markov with Cantelli and use
the exact probability as the baseline. We set the interval length to
be 10 and vary the starting point of the interval from -150 to 150.
As shown in Fig. 5(a), Cantelli’s upper bound is much tighter than
Markov and close to the exact probability, which agrees with known
statistical results. For predicate (ii), we compare all three filters as
they may have tradeoffs. From Fig. 5(b), we observe similar trends
as before. In addition, the upper bounds by the Chebyshev filter lie
in between those by Markov and Cantelli on the average (though for
specific tuples, the order of the filters may be otherwise).

We next consider predicates in a quadratic form: “x2+y2 < δ2”
(Category 2). We used a synthetic trace with attributes x and y whose
mean and variance are uniformly distributed in (0,100) and (0,10)
respectively. We compared the Cantelli filter which transforms the
quadratic form to a single random variable, with the general multi-
dimensional filter that uses the Lagrange multiplier for constraint
optimization (for this predicate, there is a fast solver). We varied
δ from 10 to 100. Fig. 5(c) shows that both the Cantelli filter and
general filter capture the trend of the exact probability and offer tight
bounds, with Cantelli being slightly better. They are both over 400x
faster than integration, hence good choices for quadratic predicates.

F.3 More Results on Query Planning
We design two query templates based on Q1 and Q2 on the Galaxy

view in SDSS and show them in Fig. 6. Basically all tuples will

be routed to the quick filters whenever the filters can be applied
and there is no specific order of applying filters, as their costs are
all very low. After that, the dynamic optimizer decides the order
of evaluating exact selection predicates, shown by a box in Fig. 6.
We vary the parameters δ1,· · · ,δ4 to tune the selectivity of each
predicate, which affects planning.

Query Q1 uses two predicates: θ1 : r < δ1; θ2 : q r2 + u r2 >
δ2

2 . Query Q2 uses two join predicates: θ3 : |(G1.u−G1.g)−
(G2.u−G2.g)| < δ3 and |(G1.g−G1.r)−(G2.g−G2.r)| < δ3;
θ4 : (G1.rowc− G2.rowc)2 + (G1.colc− G2.colc)2 < δ2

4 .
Given various values of δi, the selectivity of each predicate aver-

aged over the entire data set is shown in Table 5. The static query
plan is decided by ordering predicates with lowest selectivity first.

Expt 6: We consider Q2 and vary δ3 and δ4. For this query, a join
index is constructed for G2 on the “rowc” and “colc” attributes for
each window of size W. Table 3 shows the time cost for the join per
window. To evaluate the join predicates θ3 and θ4, all tuples need to
be routed to probe the (only) join index first. Moreover, the evalu-
ation costs of δ3 and δ4 are close due to the use of 2-dimensional
integrals after linear transformation. The dynamic planning is better
than the static one in all cases due to the reasons mentioned previ-
ously. There are several other interesting observations: (1) When
δ3 = 0.5, the static optimizer always evaluates θ3 first; the dynamic
optimizer tends to choose θ3 for most tuples as well. This is be-
cause for each tuple, most candidates returned by our index are true
matches, then the selectivity of each pair of probing tuple and its
candidate w.r.t. θ4 will be estimated to be very close to 1. Since both
optimizers route tuples to θ3 as we increase δ4, our improvement is
mainly gained by the benefit of using fast filters. (2) When δ3 = 1
and δ4 = 400, the static optimizer evaluates θ4 first, which is not a
wise choice, because as mentioned above, most candidates returned
by the index are true matches, then the evaluation of θ4 can only
filter very few tuples, and most tuples will be passed on to θ3 next.
In contrast, the dynamic optimizer tends to route tuples to θ3 as
discussed above and fewer tuples will be passed on to θ4.
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Figure 6: Plan space in dynamic planning for Q1 and Q2.


